Skip to main content

Laser/Light Applications in Neurology and Neurosurgery

  • Chapter
  • First Online:
Lasers in Dermatology and Medicine

Abstract

Applications of light in neurology and neurosurgery can be diagnostic or therapeutic. Neurophotonics is the science of photon interaction with neural tissue. Photodynamic therapy (PDT) has been attempted to destroy infiltrative tumor cells in tissue. Spatially modulated imaging (MI) is a newly described non-contact optical technique in the spatial domain. With this technique, both quantitative mapping of tissue optical properties within a single measurement and cross sectional optical tomography can be achieved rapidly. The ability to control the activity of a defined class of neurons has the potential to advance clinical neuromodulation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.00
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Al-Juboori SI, et al. Light scattering properties vary across different regions of the adult mouse brain. PLoS One. 2013;8(7):e67626.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Yaroslavsky AN, et al. Optical properties of selected native and coagulated human brain tissues in vitro in the visible and near infrared spectral range. Phys Med Biol. 2002;47(12):2059–73.

    Article  CAS  PubMed  Google Scholar 

  3. Pascu A, et al. Laser-induced autofluorescence measurements on brain tissues. Anat Rec (Hoboken). 2009;292(12):2013–22.

    Article  Google Scholar 

  4. Stepnoski RA, et al. Noninvasive detection of changes in membrane potential in cultured neurons by light scattering. Proc Natl Acad Sci U S A. 1991;88(21):9382–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Nuriya M, Yasui M. Membrane potential dynamics of axons in cultured hippocampal neurons probed by second-harmonic-generation imaging. J Biomed Opt. 2010;15(2):020503.

    Article  PubMed  Google Scholar 

  6. Nishidate I, et al. In vivo estimation of light scattering and absorption properties of rat brain using a single-reflectance fiber probe during cortical spreading depression. J Biomed Opt. 2015;20(2):27003.

    Article  PubMed  Google Scholar 

  7. Bentley JN, et al. Real-time image guidance for brain tumor surgery through stimulated Raman scattering microscopy. Expert Rev Anticancer Ther. 2014;14(4):359–61.

    Article  CAS  PubMed  Google Scholar 

  8. Gratton G, et al. Seeing right through you: applications of optical imaging to the study of the human brain. Psychophysiology. 2003;40(4):487–91.

    Article  PubMed  Google Scholar 

  9. Jafri MS, et al. Optical coherence tomography in the diagnosis and treatment of neurological disorders. J Biomed Opt. 2005;10(5):051603.

    Article  PubMed  Google Scholar 

  10. Assayag O, et al. Imaging of non-tumorous and tumorous human brain tissues with full-field optical coherence tomography. Neuroimage Clin. 2013;2:549–57.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Thorell WE, et al. Optical coherence tomography: a new method to assess aneurysm healing. J Neurosurg. 2005;102(2):348–54.

    Article  PubMed  PubMed Central  Google Scholar 

  12. McLone DG, Naidich TP. Laser resection of fifty spinal lipomas. Neurosurgery. 1986;18(5):611–5.

    Article  CAS  PubMed  Google Scholar 

  13. Desai SK, et al. The role of flexible hollow core carbon dioxide lasers in resection of lumbar intraspinal lipomas. Childs Nerv Syst. 2012;28(10):1785–90.

    Article  PubMed  Google Scholar 

  14. Browd SR, et al. A new fiber-mediated carbon dioxide laser facilitates pediatric spinal cord detethering. Technical note. J Neurosurg Pediatr. 2009;4(3):280–4.

    Article  PubMed  Google Scholar 

  15. Yahr WZ, Strully KJ, Hurwitt ES. Non-occlusive small arterial anastomosis with a neodymium laser. Surg Forum. 1964;15:224–6.

    PubMed  CAS  Google Scholar 

  16. Shapiro S, et al. Microvascular end-to-side arterial anastomosis using the Nd: YAG laser. Neurosurgery. 1989;25(4):584–8. discussion 588-9

    Article  CAS  PubMed  Google Scholar 

  17. Quigley MR, et al. Aneurysm formation after low power carbon dioxide laser-assisted vascular anastomosis. Neurosurgery. 1986;18(3):292–9.

    Article  CAS  PubMed  Google Scholar 

  18. van Doormaal TP, et al. Treatment of giant and large internal carotid artery aneurysms with a high-flow replacement bypass using the excimer laser-assisted nonocclusive anastomosis technique. Neurosurgery. 2008;62(6 Suppl 3):1411–8.

    PubMed  Google Scholar 

  19. van Doormaal TP, et al. Treatment of giant middle cerebral artery aneurysms with a flow replacement bypass using the excimer laser-assisted nonocclusive anastomosis technique. Neurosurgery. 2008;63(1):12–20. discussion 20-2

    Article  PubMed  Google Scholar 

  20. Vajkoczy P, et al. Experience in using the excimer laser-assisted nonocclusive anastomosis nonocclusive bypass technique for high-flow revascularization: Mannheim-Helsinki series of 64 patients. Neurosurgery. 2012;70(1):49–54. discussion 54-5

    Article  PubMed  Google Scholar 

  21. Takizawa T, et al. Laser surgery of basal, orbital and ventricular meningiomas which are difficult to extirpate by conventional methods. Neurol Med Chir (Tokyo). 1980;20(7):729–37.

    Article  CAS  Google Scholar 

  22. Deruty R, et al. Routine use of the CO2 laser technique for resection of cerebral tumours. Acta Neurochir. 1993;123(1–2):43–5.

    Article  CAS  PubMed  Google Scholar 

  23. Roux FX, et al. Combined CO2 and Nd-YAG laser in neurosurgical practice. A 1st experience apropos of 40 intracranial procedures. Neurochirurgie. 1992;38(4):235–7.

    PubMed  CAS  Google Scholar 

  24. Lombard GF, Luparello V, Peretta P. Statistical comparison of surgical results with or without laser in neurosurgery. Neurochirurgie. 1992;38(4):226–8.

    PubMed  CAS  Google Scholar 

  25. Desgeorges M, et al. Laser microsurgery of meningioma. An analysis of a consecutive series of 164 cases treated surgically by using different lasers. Neurochirurgie. 1992;38(4):217–25.

    PubMed  CAS  Google Scholar 

  26. Waidhauser E, Beck OJ, Oeckler RC. Nd:YAG-laser in the microsurgery of frontobasal meningiomas. Lasers Surg Med. 1990;10(6):544–50.

    Article  CAS  PubMed  Google Scholar 

  27. Passacantilli E, et al. Neurosurgical applications of the 2-mum thulium laser: histological evaluation of meningiomas in comparison to bipolar forceps and an ultrasonic aspirator. Photomed Laser Surg. 2012;30(5):286–92.

    Article  PubMed  Google Scholar 

  28. Passacantilli E, et al. Assessment of the utility of the 2-micro thulium laser in surgical removal of intracranial meningiomas. Lasers Surg Med. 2013;45(3):148–54.

    Article  PubMed  Google Scholar 

  29. Scheich M, et al. Use of flexible CO(2) laser fiber in microsurgery for vestibular schwannoma via the middle cranial fossa approach. Eur Arch Otorhinolaryngol. 2012;269(5):1417–23.

    Article  PubMed  Google Scholar 

  30. Eiras J, Alberdi J, Gomez J. Laser CO2 in the surgery of acoustic neuroma. Neurochirurgie. 1993;39(1):16–21. discussion 21-3

    PubMed  CAS  Google Scholar 

  31. Stummer W, et al. Extent of resection and survival in glioblastoma multiforme: identification of and adjustment for bias. Neurosurgery. 2008;62(3):564–76. discussion 564-76

    Article  PubMed  Google Scholar 

  32. Kuhnt D, et al. Correlation of the extent of tumor volume resection and patient survival in surgery of glioblastoma multiforme with high-field intraoperative MRI guidance. Neuro-Oncology. 2011;13(12):1339–48.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Sanai N, et al. An extent of resection threshold for newly diagnosed glioblastomas. J Neurosurg. 2011;115(1):3–8.

    Article  PubMed  Google Scholar 

  34. Pichlmeier U, et al. Resection and survival in glioblastoma multiforme: an RTOG recursive partitioning analysis of ALA study patients. Neuro-Oncology. 2008;10(6):1025–34.

    Article  PubMed  PubMed Central  Google Scholar 

  35. McGirt MJ, et al. Independent association of extent of resection with survival in patients with malignant brain astrocytoma. J Neurosurg. 2009;110(1):156–62.

    Article  PubMed  Google Scholar 

  36. Stummer W, et al. Fluorescence-guided surgery with 5-aminolevulinic acid for resection of malignant glioma: a randomised controlled multicentre phase III trial. Lancet Oncol. 2006;7(5):392–401.

    Article  CAS  PubMed  Google Scholar 

  37. Rey-Dios R, Cohen-Gadol AA. Technical principles and neurosurgical applications of fluorescein fluorescence using a microscope-integrated fluorescence module. Acta Neurochir. 2013;155(4):701–6.

    Article  PubMed  Google Scholar 

  38. Tonn JC, Stummer W. Fluorescence-guided resection of malignant gliomas using 5-aminolevulinic acid: practical use, risks, and pitfalls. Clin Neurosurg. 2008;55:20–6.

    PubMed  Google Scholar 

  39. Stummer W, et al. In vitro and in vivo porphyrin accumulation by C6 glioma cells after exposure to 5-aminolevulinic acid. J Photochem Photobiol B. 1998;45(2–3):160–9.

    Article  CAS  PubMed  Google Scholar 

  40. Obwegeser A, Jakober R, Kostron H. Uptake and kinetics of 14C-labelled meta-tetrahydroxyphenylchlorin and 5-aminolaevulinic acid in the C6 rat glioma model. Br J Cancer. 1998;78(6):733–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. O'Goshi K, Serup J. Safety of sodium fluorescein for in vivo study of skin. Skin Res Technol. 2006;12(3):155–61.

    Article  PubMed  Google Scholar 

  42. Moore GE. Fluorescein as an agent in the differentiation of normal and malignant tissues. Science. 1947;106(2745):130–1.

    Article  CAS  PubMed  Google Scholar 

  43. Moore GE, Peyton WT, et al. The clinical use of fluorescein in neurosurgery; the localization of brain tumors. J Neurosurg. 1948;5(4):392–8.

    Article  CAS  PubMed  Google Scholar 

  44. Kuroiwa T, Kajimoto Y, Ohta T. Development of a fluorescein operative microscope for use during malignant glioma surgery: a technical note and preliminary report. Surg Neurol. 1998;50(1):41–8. discussion 48-9

    Article  CAS  PubMed  Google Scholar 

  45. Schebesch KM, et al. Sodium fluorescein-guided resection under the YELLOW 560 nm surgical microscope filter in malignant brain tumor surgery—a feasibility study. Acta Neurochir. 2013;155(4):693–9.

    Article  PubMed  Google Scholar 

  46. Diaz RJ, et al. Study of the biodistribution of fluorescein in glioma-infiltrated mouse brain and histopathological correlation of intraoperative findings in high-grade gliomas resected under fluorescein fluorescence guidance. J Neurosurg. 2015;122(6):1360–9.

    Article  PubMed  Google Scholar 

  47. Shinoda J, et al. Fluorescence-guided resection of glioblastoma multiforme by using high-dose fluorescein sodium. Technical note. J Neurosurg. 2003;99(3):597–603.

    Article  PubMed  Google Scholar 

  48. Koc K, et al. Fluorescein sodium-guided surgery in glioblastoma multiforme: a prospective evaluation. Br J Neurosurg. 2008;22(1):99–103.

    Article  CAS  PubMed  Google Scholar 

  49. Chen B, et al. Gross total resection of glioma with the intraoperative fluorescence-guidance of fluorescein sodium. Int J Med Sci. 2012;9(8):708–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Larson TR, Bostwick DG, Corica A. Temperature-correlated histopathologic changes following microwave thermoablation of obstructive tissue in patients with benign prostatic hyperplasia. Urology. 1996;47(4):463–9.

    Article  CAS  PubMed  Google Scholar 

  51. Medvid R, et al. Current applications of MRI-guided laser interstitial thermal therapy in the treatment of brain neoplasms and epilepsy: a radiologic and neurosurgical overview. AJNR Am J Neuroradiol. 2015;36(11):1998–2006.

    Article  CAS  PubMed  Google Scholar 

  52. Carpentier A, Chauvet D, Reina V, Beccaria K, Leclerq D, RJ MN, Gowda A, Cornu P, Delattre JY. MR-guided laser-induced thermal therapy (LITT) for recurrent glioblastomas. Lasers Surg Med. 2012;44(5):361–8.

    Article  PubMed  Google Scholar 

  53. Mohammadi A, Hawasli AH, Rodriguez A, Schroeder JL, Laxton AW, Elson P, Tatter SB, Barnett GH, Leuthardt EC. The role of laser interstitial thermal therapy in enhancing progression-free survival of difficult-to-access high-grade gliomas: a multicenter study. Cancer Med. 2014;3(4):971–9. https://doi.org/10.1002/cam4.266.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Schwarzmaier H, Eickmeyer F, von Tempelhoff W, Fiedler VU, Niehoff H, Ulrich SD, Ulrich F. MR-guided laser irradiation of recurrent glioblastomas. J Magn Reson Imaging. 2005;22:799–803.

    Article  PubMed  Google Scholar 

  55. Schwarzmaier H, Eickmeyer F, von Tempelhoff W, Fiedler VU, Niehoff H, Ulrich SD, Yang Q, Ulrich F. MR-guided laser-induced interstitial thermotherapy of recurrent glioblastoma multiforme: Preliminary results in 16 patients. Eur J Radiol. 2006;59:208–15.

    Article  PubMed  Google Scholar 

  56. Sloan A, Ahluwalia MS, Valerio-Pascua J, Manjila S, Torchia MG, Jones SE, Sunshine JL, Phillips M, Griswold MA, Clampitt M, Brewer C, Jochum J, MV MG, Diorio D, Ditz G, Barnett GH. Results of the neuroblate system first-in-humans phase I clinical trial for recurrent glioblastoma: clinical article. J Neurosurg. 2013;118(6):1202–19.

    Article  PubMed  Google Scholar 

  57. Jethwa P, Barrese JC, Gowda A, Shetty A, Danish SF. Magnetic resonance thermometry guided laser-induced thermal therapy for intracranial neoplasms: initial experience. Neurosurgery. 2012;71:133–5.

    Article  PubMed  Google Scholar 

  58. Carpentier A, RJ MN, Stafford RJ, Guichard JP, Reizine D, Delaloge S, Vicaut E, Payen D, Gowda A, George B. Laser thermal therapy: real-time MRI-guided and computer-controlled procedures for metastatic brain tumors. Lasers Surg Med. 2011 Dec.;43(10):943–50.

    Article  PubMed  Google Scholar 

  59. Rao M, Hargreaves EL, Khan AJ, Haffty BG, Danish SF. Magnetic resonance-guided laser ablation improves local control for postradiosurgery recurrence and/or radiation necrosis. Neurosurgery. 2014;74(6):658–67.

    Article  PubMed  Google Scholar 

  60. Carpentier A, et al. Real-time magnetic resonance-guided laser thermal therapy for focal metastatic brain tumors. Neurosurgery. 2008;63(1 Suppl 1):ONS21–8. discussion ONS28–9

    PubMed  Google Scholar 

  61. Archavlis E, et al. Survival analysis of HDR brachytherapy versus reoperation versus temozolomide alone: a retrospective cohort analysis of recurrent glioblastoma multiforme. BMJ Open. 2013;3(3):pii: e002262.

    Article  Google Scholar 

  62. Mohammadi AM, et al. The role of laser interstitial thermal therapy in enhancing progression-free survival of difficult-to-access high-grade gliomas: a multicenter study. Cancer Med. 2014;3(4):971–9.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Vojtech Z, et al. MRI-guided stereotactic amygdalohippocampectomy: a single center experience. Neuropsychiatr Dis Treat. 2015;11:359–74.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Waseem H, et al. Laser ablation therapy: An alternative treatment for medically resistant mesial temporal lobe epilepsy after age 50. Epilepsy Behav. 2015;51:152–7.

    Article  PubMed  Google Scholar 

  65. Drane DL, et al. Better object recognition and naming outcome with MRI-guided stereotactic laser amygdalohippocampotomy for temporal lobe epilepsy. Epilepsia. 2015;56(1):101–13.

    Article  PubMed  Google Scholar 

  66. Tetard MC, et al. Interstitial 5-ALA photodynamic therapy and glioblastoma: preclinical model development and preliminary results. Photodiagnosis Photodyn Ther. 2016;13:218–24.

    Article  CAS  PubMed  Google Scholar 

  67. Stummer W, et al. Long-sustaining response in a patient with non-resectable, distant recurrence of glioblastoma multiforme treated by interstitial photodynamic therapy using 5-ALA: case report. J Neuro-Oncol. 2008;87(1):103–9.

    Article  CAS  Google Scholar 

  68. Miki Y, et al. Photodynamic therapy using talaporfin sodium induces concentration-dependent programmed necroptosis in human glioblastoma T98G cells. Lasers Med Sci. 2015;30(6):1739–45.

    Article  PubMed  Google Scholar 

  69. Wang S, et al. Talaporfin sodium. Expert Opin Pharmacother. 2010;11(1):133–40.

    Article  CAS  PubMed  Google Scholar 

  70. Bechet D, et al. Multifunctional ultrasmall nanoplatforms for vascular-targeted interstitial photodynamic therapy of brain tumors guided by real-time MRI. Nanomedicine. 2015;11(3):657–70.

    Article  CAS  PubMed  Google Scholar 

  71. Benachour H, et al. Multifunctional peptide-conjugated hybrid silica nanoparticles for photodynamic therapy and MRI. Theranostics. 2012;2(9):889–904.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Ji M, et al. Rapid, label-free detection of brain tumors with stimulated Raman scattering microscopy. Sci Transl Med. 2013;5(201):201ra119.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Jermyn M, et al. Intraoperative brain cancer detection with Raman spectroscopy in humans. Sci Transl Med. 2015;7(274):274ra19.

    Article  CAS  PubMed  Google Scholar 

  74. Wang PH, et al. Gold-nanorod contrast-enhanced photoacoustic micro-imaging of focused-ultrasound induced blood-brain-barrier opening in a rat model. J Biomed Opt. 2012;17(6):061222.

    Article  CAS  PubMed  Google Scholar 

  75. Gutrath BS, et al. Size-dependent multispectral photoacoustic response of solid and hollow gold nanoparticles. Nanotechnology. 2012;23(22):225707.

    Article  CAS  PubMed  Google Scholar 

  76. Qian XM, Nie SM. Single-molecule and single-nanoparticle SERS: from fundamental mechanisms to biomedical applications. Chem Soc Rev. 2008;37(5):912–20.

    Article  CAS  PubMed  Google Scholar 

  77. Kneipp J, Kneipp H, Kneipp K. SERS—a single-molecule and nanoscale tool for bioanalytics. Chem Soc Rev. 2008;37(5):1052–60.

    Article  CAS  PubMed  Google Scholar 

  78. Kircher MF, et al. A brain tumor molecular imaging strategy using a new triple-modality MRI-photoacoustic-Raman nanoparticle. Nat Med. 2012;18(5):829–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Kim BY, Rutka JT, Chan WC. Nanomedicine. N Engl J Med. 2010;363(25):2434–43.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael E. Ivan M.D., M.B.S. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Diaz, R., Komotar, R.J., Ivan, M.E. (2018). Laser/Light Applications in Neurology and Neurosurgery. In: Nouri, K. (eds) Lasers in Dermatology and Medicine. Springer, Cham. https://doi.org/10.1007/978-3-319-76220-3_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-76220-3_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-76218-0

  • Online ISBN: 978-3-319-76220-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics