Skip to main content

Cardiovascular System

  • Chapter
  • First Online:
  • 849 Accesses

Abstract

Myocardial perfusion SPECT imaging is used to assess and follow the perfusion and function of left ventricle and determine the significance of coronary lesions detected by angiography.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Verberne HJ, Acampa W, Anagnostopoulos C, Ballinger J, Bengel F et al (2015) European Association of Nuclear Medicine (EANM). EANM procedural guidelines for radionuclide myocardial perfusion imaging with SPECT and SPECT/CT: 2015 revision. Eur J Nucl Med Mol Imaging 42:1929–1940

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Henzlova MJ, Duvall WL, Einstein AJ, Travin MI, Verberne HJ (2016a) ASNC imaging guidelines for SPECT nuclear cardiology procedures: stress, protocols, and tracers. J Nucl Cardiol 23:606–639

    Article  PubMed  Google Scholar 

  3. Strauss HW, Miller DD, Wittry MD, Cerqueira MD, Garcia EV et al (2008) Procedure guideline for myocardial perfusion imaging 3.3. J Nucl Med Technol 36:155–161

    Article  PubMed  Google Scholar 

  4. Kailasnath P, Sinusas AJ (2001) Comparison of Tl-201 with Tc-99m-labeled myocardial perfusion agents: technical, physiologic, and clinical issues. J Nucl Cardiol 8:482–498

    Article  CAS  PubMed  Google Scholar 

  5. Hesse B, Lindhardt TB, Acampa W, Anagnostopoulos C, Ballinger J et al (2008) EANM/ESC guidelines for radionuclide imaging of cardiac function. Eur J Nucl Med Mol Imaging 35:851–885

    Article  CAS  PubMed  Google Scholar 

  6. Dilsizian V, Bacharach SL, Beanlands RS, Bergmann SR, Delbeke D et al (2016a) ASNC imaging guidelines/SNMMI procedure standard for positron emission tomography (PET) nuclear cardiology procedures. J Nucl Cardiol 23:1187–1226

    Article  PubMed  Google Scholar 

  7. Kim HS, Cho SG, Kim JH, Bom HS (2013) Indirect radionuclide coronary angiography to evaluate gradients of myocardial blood flow and flow reserve through coronary stenosis using N-13 ammonia PET/CT. Chonnam Med J 49:69–74

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Beanlands RS, Muzik O, Hutchins GD, Wolfe ER Jr, Schwaiger M (1994) Heterogeneity of regional nitrogen 13-labeled ammonia tracer distribution in the normal human heart: comparison with rubidium 82 and copper 62-labeled PTSM. J Nucl Cardiol 1:225–235

    Article  CAS  PubMed  Google Scholar 

  9. Schindler TH, Quercioli A, Valenta I, Ambrosio G, Wahl RL et al (2014) Quantitative assessment of myocardial blood flow – clinical and research applications. Semin Nucl Med 44:274–293

    Article  PubMed  Google Scholar 

  10. Yu M, Guaraldi MT, Mistry M, Kagan M, McDonald JL et al (2007) BMS-747158–02: a novel PET myocardial perfusion imaging agent. J Nucl Cardiol 14:789–798

    Article  CAS  PubMed  Google Scholar 

  11. Husain SS (2007) Myocardial perfusion imaging protocols: is there an ideal protocol? J Nucl Med Technol 35:3–9

    PubMed  Google Scholar 

  12. Brunken RC, Mody FV, Hawkins RA, Nienaber CA, Phelps ME et al (1994a) Persistent twenty-four hour SPECT thallium-201 defects, plasma thallium-201 concentrations and PET metabolic viability. Herz 19:28–41

    PubMed  CAS  Google Scholar 

  13. Alexánderson E, Ricalde A, Romero-Ibarra JL, Meave A (2006) Comparison of 18FDG PET with thallium SPECT in the assessment of myocardial viability. A segmental model analysis. Arch Cardiol Mex 76:9–15

    PubMed  Google Scholar 

  14. Burt RW, Perkins OW, Oppenheim BE, Schauwecker DS, Stein L et al (1995) Direct comparison of fluorine-18-FDG SPECT, fluorine-18-FDG PET and rest thallium-201 SPECT for detection of myocardial viability. J Nucl Med 36:176–179

    PubMed  CAS  Google Scholar 

  15. Manabe O, Oyama-Manabe N, Naya M, Aikawa T, Sakakibara M et al (2016) Pitfalls of (18)F-FDG PET for evaluating myocardial viability. J Nucl Cardiol. [Epub ahead of print] PubMedPMID: 27324346

    Google Scholar 

  16. Yamagishi H, Akioka K, Hirata K, Sakanoue Y, Takeuchi K et al (1999a) A reverse flow-metabolism mismatch pattern on PET is related to multivessel disease in patients with acute myocardial infarction. J Nucl Med 40:1492–1498

    PubMed  CAS  Google Scholar 

  17. Anselm DD, Anselm AH, Renaud J, Atkins HL, de Kemp R et al (2011) Altered myocardial glucose utilization and the reverse mismatch pattern on rubidium-82 perfusion/F-18-FDG PET during the sub-acute phase following reperfusion of acute anterior myocardial infarction. J Nucl Cardiol 18:657–667

    Article  PubMed  Google Scholar 

  18. Fukuoka Y, Nakano A, Uzui H, Amaya N, Ishida K et al (2013) Reverse blood flow-glucose metabolism mismatch indicates preserved oxygen metabolism in patients with revascularised myocardial infarction. Eur J Nucl Med Mol Imaging 40:1155–1162

    Article  CAS  PubMed  Google Scholar 

  19. Zanco P, Desideri A, Mobilia G, Cargnel S, Milan E et al (2000) Effects of left bundle branch block on myocardial FDG PET in patients without significant coronary artery stenoses. J Nucl Med 41:973–977

    PubMed  CAS  Google Scholar 

  20. Rubin PJ, Lee DS, Dávila-Román VG, Geltman EM, Schechtman KB et al (1996a) Superiority of C-11 acetate compared with F-18 fluorodeoxyglucose in predicting myocardial functional recovery by positron emission tomography in patients with acute myocardial infarction. Am J Cardiol 78:1230–1235

    Article  CAS  PubMed  Google Scholar 

  21. Skali H, Schulman AR, Dorbala S (2013) (18)F-FDG PET/CT for the assessment of myocardial sarcoidosis. Curr Cardiol Rep 15:352

    Article  PubMed  PubMed Central  Google Scholar 

  22. Langah R, Spicer K, Gebregziabher M, Gordon L (2009) Effectiveness of prolonged fasting 18F-FDG PET-CT in the detection of cardiac sarcoidosis. J Nucl Cardiol 16:801–810

    Article  PubMed  Google Scholar 

  23. Balink H, Hut E, Pol T, Flokstra FJ, Roef M (2011) Suppression of 18F-FDG myocardial uptake using a fat-allowed, carbohydrate-restricted diet. J Nucl Med Technol 39:185–189

    Article  PubMed  Google Scholar 

  24. Blomberg BA, Thomassen A, Takx RA, Hildebrandt MG, Simonsen JA et al (2014) Delayed 18F-fluorodeoxyglucose PET/CT imaging improves quantitation of atherosclerotic plaque inflammation: results from the CAMONA study. J Nucl Cardiol 21:588–597

    Article  PubMed  Google Scholar 

  25. Liu Y, Ghosh N, Dwivedi G, Chow BJ, deKemp RA et al (2013) Identification of inflamed aortic plaque in conventional fluorodeoxyglucose positron emission tomography myocardial viability studies. Can J Cardiol 29:1069–1075

    Article  PubMed  Google Scholar 

  26. Rudd JH, Warburton EA, Fryer TD, Jones HA, Clark JC et al (2002) Imaging atherosclerotic plaque inflammation with [18F]-fluorodeoxyglucose positron emission tomography. Circulation 105:2708–2711

    Article  CAS  PubMed  Google Scholar 

  27. Newman LS, Rose CS, Maier LA (1997) Sarcoidosis. N Engl J Med 336:1224–1234

    Article  CAS  PubMed  Google Scholar 

  28. Orii M, Imanishi T, Akasaka T (2014) Assessment of cardiac sarcoidosis with advanced imaging modalities. Biomed Res Int 2014:897956. https://doi.org/10.1155/2014/897956

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Berger HJ, Zaret BL (1984a) Radionuclide assessment of cardiovascular performance. In: Freeman L (ed) Freeman and Johnson’s clinical radionuclide imaging. Saunders, Philadelphia

    Google Scholar 

  30. Hambye AS, Vandermeiren R, Vervaet A, Vandevivere J (1995) Failure to label red blood cells adequately in daily practice using an in vivo method: methodological and clinical considerations. Eur J Nucl Med 22:61–67

    Article  CAS  PubMed  Google Scholar 

  31. Elgazzar AH (2006) Basis of cardiac imaging 1. Myocardial contractility and assessment of cardiac function. In: Elgazzar AH (ed) Pathophysiologic basis of nuclear medicine. Springer, Berlin, p 338

    Chapter  Google Scholar 

  32. Daou D, Coaguila C, Benada A (2006) Comparison of interstudy reproducibility of equilibrium electrocardiography-gated SPECT radionuclide angiography versus planar radionuclide angiography for the quantification of global left ventricular function. J Nucl Cardiol 13:233–243

    Article  PubMed  Google Scholar 

  33. Sarikaya I, Patel M, Holder LE (2000) Highly vascular breast cancer detected on a Tc-99m RBC gated cardiac blood pool imaging study. Clin Nucl Med 25:641–642

    Article  CAS  PubMed  Google Scholar 

  34. Friedman JD, Berman DS, Borges-Neto S, Hayes SW, Johnson LL et al (2006) Quality Assurance Committee of the American Society of nuclear cardiology. First-pass radionuclide angiography. J Nucl Cardiol 13:e42–e55

    Article  PubMed  Google Scholar 

  35. Treves ST, Newberger J, Hurwitz R (1985) Radionuclide angiocardiography in children. J Am Coll Cardiol 5:120S–127S

    Article  CAS  PubMed  Google Scholar 

  36. Heiba SI, Cerqueira MD (1994) Evaluation of cardiac function. In: Cerqueira MD (ed) Nuclear cardiology. Blackwell Scientific, Cambridge, pp 53–117

    Google Scholar 

  37. Treves S (1980) Detection and quantitation of cardiovascular shunts with commonly available radiopharmaceuticals. Semin Nucl Med 10:16–26

    Article  CAS  PubMed  Google Scholar 

  38. MacDonald A, Burrell S (2008) Infrequently performed studies in nuclear medicine: part 1. J Nucl Med Technol 36:132–143

    Article  PubMed  Google Scholar 

  39. Treves ST, Blume ED, Armsby L, Newburger JW, Kurac A (2007) Cardiovascular system. In: Treves ST (ed) Pediatric nuclear medicine/PET, 3rd edn. Springer, New York, NY, pp 128–161

    Chapter  Google Scholar 

  40. Gates GF, Orme HW, Dore EK (1974) Cardiac shunt assessment in children with macroaggregated albumin technetium-99m. Radiology 112:649–653

    Article  CAS  PubMed  Google Scholar 

  41. Ito K, Kurihara K, Ishibashi A, Morooka M, Mitsumoto T et al (2011) Cut-off value for normal versus abnormal right-to-left shunt percentages using (99m)Tc-macroaggregated albumin. Nucl Med Commun 32:936–940

    Article  PubMed  Google Scholar 

  42. Nawaz K, Hamad MM, Sadek S, Awdeh M, Eklof B et al (1986) Dynamic lymph flow imaging in lymphedema: normal and abnormal patterns. Clin Nucl Med 11:653–658

    Article  CAS  PubMed  Google Scholar 

  43. McNeil GC, Witte MG, Witte CL, Williams WH, Hall JN et al (1989) Whole-body lymphangioscintigraphy: preferred method for initial assessment of the peripheral lymphatic system. Radiology 172:495–502

    Article  Google Scholar 

  44. Moshiri M, Katz DS, Boris M, Yung E (2002) Using lymphoscintigraphy to evaluate suspected lymphedema of the extremities. AJR Am J Roentgenol 178:405–412

    Article  PubMed  Google Scholar 

  45. O'Mahony S, Rose SL, Chilvers AJ, Ballinger JR, Solanki CK et al (2004) Finding an optimal method for imaging lymphatic vessels of the upper limb. Eur J Nucl Med Mol Imaging 31:555–563

    Article  PubMed  Google Scholar 

  46. Burnand KM, Glass DM, Sundaraiya S, Mortimer PS, Peters AM (2011) Popliteal node visualization during standard pedal lymphoscintigraphy for a swollen limb indicates impaired lymph drainage. AJR Am J Roentgenol 197:1443–1448

    Article  PubMed  Google Scholar 

  47. Flotats A, Bravo PE, Fukushima K, Chaudhry MA, Merrill J (2012) 82RbPET myocardial perfusion imaging is superior to 99mTc-labelled agent SPECT in patients with known or suspected coronary artery disease. Eur J Nucl Med Mol Imaging 39:1233–1239

    Article  PubMed  Google Scholar 

  48. Sampson UK, Dorbala S, Limaye A, Kwong R, Di Carli MF (2007) Diagnostic accuracy of rubidium-82 myocardial perfusion imaging with hybrid positron emission tomography/computed tomography in the detection of coronary artery disease. J Am Coll Cardiol 49:1052–1058

    Article  CAS  PubMed  Google Scholar 

  49. Bateman TM, Heller GV, McGhie AI, Friedman JD, Case JA (2006) Bryngelson JR, et al. Diagnostic accuracy of rest/stress ECG-gated Rb-82 myocardial perfusion PET: comparison with ECG-gated Tc-99m sestamibi SPECT. J Nucl Cardiol 13:24–33

    Article  PubMed  Google Scholar 

  50. McArdle BA, Dowsley TF, deKemp RA, Wells GA, Beanlands RS (2012) Doesrubidium-82 PET have superior accuracy to SPECT perfusion imaging for the diagnosis of obstructive coronary disease?: a systematic review and meta-analysis. J Am Coll Cardiol 60:1828–1837

    Article  Google Scholar 

  51. Mut F, Giubbini R, Vitola J, Lusa L, Sobic-Saranovic D (2014) Detection of post-exercise stunning by early gated SPECT myocardial perfusion imaging: results from the IAEA multi-center study. J Nucl Cardiol 21:1168–1176

    Article  PubMed  Google Scholar 

  52. Weiss AT, Berman DS, Lew AS, Nielsen J, Potkin B et al (1987) Transient ischemic dilation of the left ventricle on stress thallium-201 scintigraphy: a marker of severe and extensive coronary artery disease. J Am Coll Cardiol 9:752–759

    Article  CAS  PubMed  Google Scholar 

  53. Mazzanti M, Germano G, Kiat H, Friedman J, Berman DS (1996) Identification of severe and extensive coronary artery disease by automatic measurement of transient ischemic dilation of the left ventricle in dual-isotope myocardial perfusion SPECT. J Am Coll Cardiol 27:1612–1620

    Article  CAS  PubMed  Google Scholar 

  54. Emmett L, Ng A, Ha L, Russo R, Mansberg R et al (2012) Comparative assessment of rest and post-stress left ventricular volumes and left ventricular ejection fraction on gated myocardial perfusion imaging (MPI) and echocardiography in patients with transient ischaemic dilation on adenosine MPI: myocardial stunning or subendocardial hypoperfusion? J Nucl Cardiol 19:735–742

    Article  PubMed  Google Scholar 

  55. Fragasso G, Chierchia SL, Dosio F, Pizzetti G, Gianolli L et al (1996) Reverse perfusion pattern of Tc-99m MIBI heralding the development of myocardial infarction. Clin Nucl Med 21:519–522

    Article  CAS  PubMed  Google Scholar 

  56. Fragasso G, Chierchia SL, Pizzetti G, Dosio F, Fazio F (1994) Reverse redistribution of thallium-201 heralding the development of myocardial infarction: description of two cases. J Nucl Biol Med 38:515–517

    PubMed  CAS  Google Scholar 

  57. Holman BL, Tanaka TT, Lesch M (1976) Evaluation of radiopharmaceuticals for the detection of acute myocardial infarction in man. Radiology 121:427–430

    Article  CAS  PubMed  Google Scholar 

  58. Parkey RW, Bonte FJ, Buja LM, Stokely EM, Willerson JT (1977) Myocardial infarct imaging with technetium-99m phosphates. Semin Nucl Med 7:15–28

    Article  CAS  PubMed  Google Scholar 

  59. Khaw BA, Yasuda T, Gold HK, Leinbach RC, Johns JA et al (1987) Acute myocardial infarct imaging with indium-111-labeledmonoclonal antimyosin fab. J Nucl Med 28:1671–1678

    PubMed  CAS  Google Scholar 

  60. Lee WW, Marinelli B, van der Laan AM, Sena BF, Gorbatov R et al (2012) PET/MRI of inflammation in myocardial infarction. J Am Coll Cardiol 59:153–163

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Stegger L, Hoffmeier AN, Schäfers KP, Hermann S, SchoberO, et al (2006) Accurate noninvasive measurement of infarct size in mice with high-resolution PET. J Nucl Med 47:1837–1844

    Google Scholar 

  62. Greco A, Petretta MP, Larobina M, Gargiulo S, Panico M et al (2012) Reproducibility and accuracy of non-invasive measurement of infarct size in mice with high resolution PET/CT. J Nucl Cardiol 19:492–499

    Article  PubMed  Google Scholar 

  63. Prato FS, Butler J, Sykes J, Keenliside L, Blackwood KJ et al (2015) Can the inflammatory response be evaluated using 18F-FDG within zones of microvascular obstruction after myocardial infarction? J Nucl Med 56:299–304

    Article  CAS  PubMed  Google Scholar 

  64. Higuchi T, Bengel FM, Seidl S, Watzlowik P, Kessler H et al (2008) Assessment of alphavbeta3 integrin expression after myocardial infarction by positron emission tomography. Cardiovasc Res 78:395–403

    Article  CAS  PubMed  Google Scholar 

  65. Patterson RE, Sigman SR, O’Donnell RE, Eisner RL (2010) Viability assessment with MRI is superior to FDG PET for viability: con. J Nucl Cardiol 17:298–309

    Article  PubMed  Google Scholar 

  66. Yoshida K, Gould KL (1993) Quantitative relation of myocardial infarct size and myocardial viability by positron emission tomography to left ventricular ejection fraction and 3-year mortality with and without revascularization. J Am Coll Cardiol 22:984–997

    Article  CAS  PubMed  Google Scholar 

  67. Tian M, Koyama K, Zhang H, Oriuchi N, Higuchi T et al (2003) Assessment of myocardial viability with a positron coincidence gamma camera using fluorodeoxyglucose in comparison with dedicated PET. Nucl Med Commun 24:367–374

    Article  CAS  PubMed  Google Scholar 

  68. Allman KC, Shaw LJ, Hachamovitch R, Udelson JE (2002) Myocardial viability testing and impact of revascularization on prognosis in patients with coronary artery disease and left ventricular dysfunction: a meta-analysis. J Am Coll Cardiol 39:1151–1158

    Article  PubMed  Google Scholar 

  69. Inaba Y, Chen JA, Bergmann SR (2010) Quantity of viable myocardium required to improve survival with revascularization in patients with ischemic cardiomyopathy: a meta-analysis. J Nucl Cardiol 17:646–654

    Article  PubMed  Google Scholar 

  70. Ling LF, Marwick TH, Flores DR, Jaber WA, Brunken RC et al (2013) Identification of therapeutic benefit from revascularization in patients with left ventricular systolic dysfunction: inducible ischemia versus hibernating myocardium. Circ Cardiovasc Imaging 6:363–372

    Article  PubMed  Google Scholar 

  71. Slart RH, Bax JJ, van Veldhuisen DJ, van derWall EE, Dierckx RA et al (2006) Prediction of functional recovery after revascularization in patients with coronary artery disease and left ventricular dysfunction by gated FDGPET. J Nucl Cardiol 13:210–219

    Article  PubMed  Google Scholar 

  72. Ivancević V, Munz DL (1999) Nuclear medicine imaging of endocarditis. Q J Nucl Med 43:93–99

    PubMed  Google Scholar 

  73. Erba PA, Conti U, Lazzeri E, Sollini M, Doria R et al (2012) Added value of99mTc-HMPAO-labeled leukocyte SPECT/CT in the characterization and management of patients with infectious endocarditis. J Nucl Med 53:1235–1243

    Article  CAS  PubMed  Google Scholar 

  74. Morguet AJ, Munz DL, Ivancević V, Werner GS, Sandrock D et al (1994) Immunoscintigraphy using technetium-99m-labeled anti-NCA-95 antigranulocyte antibodies as an adjunct to echocardiography in subacute infective endocarditis. J Am Coll Cardiol 23:1171–1178

    Article  CAS  PubMed  Google Scholar 

  75. Saby L, Laas O, Habib G, Cammilleri S, Mancini J et al (2013) Positron emission tomography/computed tomography for diagnosis of prosthetic valve endocarditis: increased valvular 18F-fluorodeoxyglucose uptake as a novel major criterion. J Am Coll Cardiol 61:2374–2382

    Article  PubMed  Google Scholar 

  76. Schwartz RG, McKenzie WB, Alexander J, Sager P, D'Souza A et al (1987) Congestive heart failure and left ventricular dysfunction complicating doxorubicin therapy. Seven-year experience using serial radionuclide angiocardiography. Am J Med 82:1109–1118

    Article  CAS  PubMed  Google Scholar 

  77. Druck MN, Gulenchyn KY, Evans WK, Gotlieb A, Srigley JR et al (1984) Radionuclide angiography and endomyocardial biopsy in the assessment of doxorubicin cardiotoxicity. Cancer 53:1667–1674

    Article  CAS  PubMed  Google Scholar 

  78. Warren AG, Brorson H, Borud LJ, Slavin SA (2007) Lymphedema: a comprehensive review. Ann Plast Surg 59:464–472

    Article  CAS  PubMed  Google Scholar 

  79. Tiwari A, Cheng KS, Button M, Myint F, Hamilton G (2003) Differential diagnosis, investigation, and current treatment of lower limb lymphedema. Arch Surg 138:152–161

    Article  PubMed  Google Scholar 

  80. Smeltzer DM, Stickler GB, Schirger A (1985) Primary lymphedema in children and adolescents: a follow-up study and review. Pediatrics 76:206

    PubMed  CAS  Google Scholar 

  81. Ter SE, Alavi A, Kim CK, Merli G (1993) Lymphoscintigraphy. Are liable test for the diagnosis of lymphedema. Clin Nucl Med 18:646–654

    Article  CAS  PubMed  Google Scholar 

  82. Szuba A, Strauss W, Sirsikar SP, Rockson SG (2002) Quantitative radionuclide lymphoscintigraphy predicts outcome of manual lymphatic therapy in breast cancer-related lymphedema of the upper extremity. Nucl Med Commun 23:1171–1175

    Article  CAS  PubMed  Google Scholar 

  83. Vaqueiro M, Gloviczki P, Fisher J, Hollier LH, Schirger A et al (1986) Lymphoscintigraphy in lymphedema: an aid to microsurgery. J Nucl Med 27:1125–1130

    PubMed  CAS  Google Scholar 

  84. Scarsbrook AF, Ganeshan A, Bradley KM (2007) Pearls and pitfalls of radionuclide imaging of the lymphatic system. Part 2: evaluation of extremity lymphoedema. Br J Radiol 80:219–226

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Elgazzar, A.H., Sarikaya, I. (2018). Cardiovascular System. In: Nuclear Medicine Companion. Springer, Cham. https://doi.org/10.1007/978-3-319-76156-5_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-76156-5_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-76155-8

  • Online ISBN: 978-3-319-76156-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics