Skip to main content

Microwave Sintering

  • Chapter
  • First Online:
  • 1303 Accesses

Abstract

In this chapter, the principles and mechanisms of microwave heating and sintering are described. The method of effective medium approximation for the determination of effective microwave dielectric properties is introduced. Principles of self-consistent electromagnetic and thermal modeling are described. Experimental evidence of microwave nonthermal effects and the respective models of microwave nonthermal effects are described. Models of microwave sintering taking into account the influence of ponderomotive forces are explained. Examples of fully coupled electromagnetic–thermal–mechanical finite element modeling of relative density and temperature fields during microwave sintering are presented. Grain growth during microwave sintering is discussed. Selected examples of materials consolidated by microwave sintering are presented.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Zong L, Zhou S, Sgriccia N, Hawley MC, Kempel LC (2003) A review of microwave-assisted polymer chemistry (MAPC). J Microw Power Electromagn Energy 38(1):49–74

    Article  CAS  Google Scholar 

  2. Venkatesh MS, Raghavan GSV (2004) An overview of microwave processing and dielectric properties of agri-food materials. Biosyst Eng 88(1):1–18

    Article  Google Scholar 

  3. Vongpradubchai V, Rattanadecho P (2009) The microwave processing of wood using a continuous microwave belt drier. J Chem Eng Process: Process Intensification 48(5):997–1003

    Article  CAS  Google Scholar 

  4. Clark DE, Folz DC, Folgar CE, Mahmoud MM (eds) (2005) Microwave solutions for ceramic engineers. American Ceramic Society, Westerville

    Google Scholar 

  5. Rao KJ, Vaidhyanathan B, Ganguli M, Ramakrishnan PA (1999) Synthesis of inorganic solids using microwaves. Chem Mater 11(4):882–895

    Article  CAS  Google Scholar 

  6. Makino Y, Ohmae T, Setsuhara Y, Miyake S, Sano S (1999) Sintering of Al2O3 – ZrO2 composites using millimeter-wave radiation. Key Eng Mat 161–163:41–44

    Google Scholar 

  7. Gupta M, Leong EWW (2007) Microwaves and metals. Wiley Asia, Singapore

    Book  Google Scholar 

  8. Mondal A (2011) Microwave sintering of metals. Lambert Academic Publishing, Saarbrücken

    Google Scholar 

  9. Oda SJ (1992) Microwave remediation of hazardous waste: a review. In: Beatty RL, Sutton WH, Iskander MF (eds) Microwave processing of materials III, Materials Research Society Symposium Proceedings, vol 269. Materials Research Society, Pittsburgh, pp 453–464

    Google Scholar 

  10. Zhang SL, Buchta R, Sigurd D (1994) Rapid thermal processing with microwave heating. Thin Solid Films 246(1–2):151–157

    CAS  Google Scholar 

  11. Alford TL, Thompson DC, Mayer JW, David Theodore N (2009) Dopant activation in ion implanted silicon by microwave annealing. J Appl Phys 106:114902

    Article  CAS  Google Scholar 

  12. Janney MA, Kimrey HD, Allen WR, Kiggans JO (1997) Enhanced diffusion in sapphire during microwave heating. J Mater Sci 32:1347–1355

    Article  CAS  Google Scholar 

  13. Whittaker AG (2005) Diffusion in microwave-heated ceramics. Chem Mater 17:3426–3432

    Article  CAS  Google Scholar 

  14. Robb GR, Harrison A, Whittaker AG (2002) Temperature-resolved, in-situ powder X-ray diffraction of silver iodide under microwave irradiation. Phys Chem Comm 5:135–137

    Google Scholar 

  15. Osepchuk JM (1984) A history of microwave heating applications. IEEE Trans Microwave Theory Tech 32(9):1200–1224

    Article  Google Scholar 

  16. Tinga WR, Voss WAG (1968) Microwave power engineering. Academic Press, New York

    Google Scholar 

  17. Berteaud AJ, Badot JC (1976) High temperature microwave heating in refractory materials. J Microw Power 11(4):315–320

    Article  Google Scholar 

  18. Meek TT, Holcombe CE, Dykes N (1987) Microwave sintering of some oxide materials using sintering aids. J Mater Sci Lett 6(8):1060–1062

    Article  CAS  Google Scholar 

  19. Lynn Johnson D (1991) Microwave and plasma sintering of ceramics. Ceram Int 17:295–300

    Article  Google Scholar 

  20. Wang J, Binner JGP, Vaidhyanathan B, Joomun N, Kilner J, Dimitrakis G, Cross TE (2006) Evidence for the microwave effect during hybrid sintering. J Amer Ceram Soc 89(6):1977–1984

    Article  CAS  Google Scholar 

  21. Birnboim A, Gershon D, Calame J, Birman A, Carmel Y, Rodgers J, Levush B, Bykov Y, Eremeev A, Holoptsev V, Semenov V, Dadon D, Martin P, Rosen M, Hutcheon R (1998) Comparative study of microwave sintering of zinc oxide at 2.45, 30 and 83 GHz. J Amer Ceram Soc 81:1493–1501

    Article  CAS  Google Scholar 

  22. Katz JD (1992) Microwave sintering of ceramics. Annu Rev Mater Sci 22:153–170

    Article  CAS  Google Scholar 

  23. Clark D, Sutton WH (1996) Microwave processing of materials. Annu Rev Mater Sci 26:299–331

    Article  CAS  Google Scholar 

  24. Agrawal DK (1998) Microwave processing of ceramics: a review. Curr Opin Solid State Mater Sci 3(5):480–486

    Article  CAS  Google Scholar 

  25. Binner JGP, Vaidhyanathan B (2004) Microwave sintering of ceramics: what does it offer? Key Eng Mater 264–268:725–730

    Article  Google Scholar 

  26. Binner JGP, Annapoorani K, Paul A, Santacruz I, Vaidhyanathan B (2008) Dense nanostructured zirconia by two stage conventional/hybrid microwave sintering. J Eur Ceram Soc 28:973–977

    Article  CAS  Google Scholar 

  27. Chen LW, Wang XH (2000) Sintering dense nanocrystalline oxide without final stage grain growth. Nature 404:168–171

    Article  CAS  Google Scholar 

  28. Willert-Porada M, Borchert R (1997) Microwave sintering of metal-ceramic FGM. In: Shiota I, Miyamoto Y (eds) Functionally graded materials. Elsevier, Amsterdam, pp 349–354

    Google Scholar 

  29. Gerdes T, Willert-Porada M (1994) Microwave sintering of metal-ceramic and ceramic-ceramic composites. In: Iskander MF, Sutton WH, Lauf RJ (eds) Microwave processing of materials IV, Materials Research Society Symposium Proc, vol 347. Materials Research Society, Pittsburgh, pp 531–538

    Google Scholar 

  30. Roy R, Agrawal D, Cheng J, Gedevanishvili S (1999) Full sintering of powdered-metal bodies in a microwave field. Nature 399:668–670

    Article  CAS  Google Scholar 

  31. Rybakov KI, Olevsky EA, Krikun EV (2013) Microwave sintering: fundamentals and modeling. J Amer Ceram Soc 96(4):1003–1020

    Article  CAS  Google Scholar 

  32. Troch PA, Vandersteene F, Su Z, Hoeben R, Wuethrich M (1996) Estimating microwave observation depth in bare soil through multi-frequency scatterometry. Proc 1st EMSL User Workshop. Ispra, Italy, SAI, JRC

    Google Scholar 

  33. Hashin Z, Shtrikman S (1962) A variational approach to the theory of the effective magnetic permeability of multiphase materials. J Appl Phys 33(10):3125–3131

    Article  CAS  Google Scholar 

  34. Ishizaki K, Battabyal M, Pittini YY, Nicula R, Vaucher S (2010) Microwave sintering explored by X-ray microtomography. In: Bordia RK, Olevsky EA (eds) Advances in sintering science and technology, ceramic transactions, vol 209. The American Ceramic Society, Westerville, pp 211–217

    Google Scholar 

  35. Penn SJ, Alford NM, Templeton A, Wang X, Xu M, Reece M, Schrapel K (1997) Effect of porosity and grain size on the microwave dielectric properties of sintered alumina. J Amer Ceram Soc 80(7):1885–1888

    Article  CAS  Google Scholar 

  36. Bruggeman DAG (1935) Berechnung Verschiedener Physikalischer Konstanten von Heterogenen Substanzen, I. Dielektriziätskonstanten und Leitfähigkeitender Mischkörper aus Isotropen Substanzen. Ann Phys-Berlin Series 5(24):636–679

    Article  Google Scholar 

  37. Rybakov KI, Semenov VE, Egorov SV, Eremeev AG, Plotnikov IV, Bykov YV (2006) Microwave heating of conductive powder materials. J Appl Phys 99:023506

    Article  CAS  Google Scholar 

  38. Buchelnikov VD, Louzguine-Luzgin DV, Xie G, Li S, Yoshikawa N, Sato M, Anzulevich AP, Bychkov IV, Inoue A (2008) Heating of metallic powders by microwaves: experiment and theory. J Appl Phys 104:113505

    Article  CAS  Google Scholar 

  39. Cheng J, Roy R, Agrawal D (2002) Radically different effects on materials by separated microwave electric and magnetic fields. Mater Res Innovat 5:170–177

    Article  CAS  Google Scholar 

  40. Bhattacharya M, Basak T (2008) Generalized scaling on forecasting heating patterns for microwave processing. AIChE J 54(1):56–73

    Article  CAS  Google Scholar 

  41. Egorov SV, Rybakov KI, Semenov VE, Bykov YV, Kanygina ON, Kulumbaev EB, Lelevkin VM (2007) Role of convective heat removal and electromagnetic field structure in the microwave heating of materials. J Mater Sci 42:2097–2104

    Article  CAS  Google Scholar 

  42. Birnboim A, Olorunyolemi T, Carmel Y (2001) Calculating the thermal conductivity of heated powder compacts. J Amer Ceram Soc 84(6):1315–1320

    Article  CAS  Google Scholar 

  43. Olorunyolemi T, Birnboim A, Carmel Y, Wilson OC, Lloyd IK (2002) Thermal conductivity of zinc oxide: from green to sintered state. J Amer Ceram Soc 85(5):1249–1253

    Article  CAS  Google Scholar 

  44. Tian YL, Black WM, Sa’adaldin HS, Ahmad I, Silberglitt R (1995) Dynamic model for electromagnetic field and heating patterns in loaded cylindrical cavities. In: Clark DE, Folz DC, Oda SJ, Silberglitt R (eds) Microwaves: theory and application in materials processing III, ceramic transactions, vol 59. The American Ceramic Society, Westerville, pp 261–268

    Google Scholar 

  45. Peng H, Tinga WR, Sundararaj U, Eadie RL (2003) Microwave sintering process model. J Microw Power Electromagn Energy 38(4):243–258

    Article  Google Scholar 

  46. Lasri J, Ramesh PD, Schachter L (2000) Energy conversion during microwave sintering of a multiphase ceramic surrounded by a susceptor. J Amer Ceram Soc 83(6):1465–1468

    Article  CAS  Google Scholar 

  47. Duan Y, Sorescu DC, Johnson JK (2006) Finite element approach to microwave sintering of oxide materials. Proc COMSOL Users Conference, Boston

    Google Scholar 

  48. Santos T, Valente MA, Monteiro J, Sousa J, Costa LC (2011) Electromagnetic and thermal history during microwave heating. Appl Therm Eng 31(16):3255–3261

    Article  CAS  Google Scholar 

  49. Roussy G, Chenot P, Colin P, Thiebaut JM (1980) Control of microwave-heating of granular materials. Thermochim Acta 41(2):225–236 (in French)

    Article  CAS  Google Scholar 

  50. Roussy G, Mercier J (1985) Temperature runaway of microwave heated materials: study and control. J Microw Power 20(1):47–51

    Article  Google Scholar 

  51. Roussy G, Bennani A, Thiebaut JM (1987) Temperature runaway of microwave irradiated materials. J Appl Phys 62(4):1167–1170

    Article  CAS  Google Scholar 

  52. Coleman CJ (1991) On the microwave hotspot problem. J Aust Math Soc Series B-Applied Mathematics 33:1–8

    Article  Google Scholar 

  53. Fliflet AW (2008) Self-consistent electromagnetic-thermal model for calculating the temperature of a ceramic cylinder irradiated by a high-power millimeter-wave beam. IEEE Trans Plasma Sci 36(3):582–590

    Article  Google Scholar 

  54. Parris PE, Kenkre VM (1997) Thermal runaway in ceramics arising from the temperature dependence of the thermal conductivity. Phys Status Solidi B 200(1):39–47

    Article  CAS  Google Scholar 

  55. Alliouat M, Lecluse Y, Massieu J, Mazo L (1990) Control algorithm for microwave sintering in a resonant system. J Microw Power Electromagn Energy 25(1):25–31

    Article  Google Scholar 

  56. Liu B, Marchant TR (2002) The occurrence of limit-cycles during feedback control of microwave heating. Math Comput Model 35(9–10):1095–1118

    Article  Google Scholar 

  57. Beale GO, Arteaga FJ, Black WM (1992) Design and evaluation of a controller for the process of microwave joining of ceramics. IEEE Trans Ind Electron 39(4):301–312

    Article  Google Scholar 

  58. Rybakov KI, Semenov VE (1996) Densification of powder materials in nonuniform temperature fields. Phil Mag A 73(2):295–307

    Article  CAS  Google Scholar 

  59. Zharova NA, Rybakov KI, Semenov VE, Egorov SV (2001) Computer simulation of millimeter-wave sintering of ceramic and composite materials. In: Clark DE, Sutton WH, Lewis DA (eds) Microwaves: theory and application in material processing V, ceramic transactions, vol 111. The American Ceramic Society, Westerville, pp 11–18

    Google Scholar 

  60. Birnboim A, Carmel Y (1999) Simulation of microwave sintering of ceramic bodies with complex geometry. J Amer Ceram Soc 82(11):3024–3030

    Article  CAS  Google Scholar 

  61. Egorov SV, Zharova NA, Bykov YV, Semenov VE (2006) Microwave sintering of large-size ceramic workpieces. In: Willert-Porada M (ed) Advances in microwave and radio frequency processing, Proc 8th Int Conf Microwave and High-Frequency Heating. Springer, Berlin–Heidelberg–New York, pp 577–582

    Chapter  Google Scholar 

  62. Bouvard D, Charmond S, Carry CP (2010) Finite element modelling of microwave sintering. In: Bordia RK, Olevsky EA (eds) Advances in sintering science and technology, ceramic transactions, vol 209. The American Ceramic Society, Westerville, pp 173–180

    Google Scholar 

  63. Su H, Johnson DL (1996) Master sintering curve: a practical approach to sintering. J Amer Ceram Soc 79(12):3211–3217

    Article  CAS  Google Scholar 

  64. Bykov YV, Egorov SV, Eremeev AG, Plotnikov IV, Rybakov KI, Semenov VE, Sorokin AA, Holoptsev VV (2012) Fabrication of metal-ceramic functionally graded materials by microwave sintering. Inorg Mater Appl Res 3(3):261–269

    Article  Google Scholar 

  65. Chatterjee A, Basak T, Ayappa KG (1998) Analysis of microwave sintering of ceramics. AIChE J 44(10):2302–2311

    Article  CAS  Google Scholar 

  66. Darcovich K, Whitfield PS, Amow G, Shinagawa K, Miyahara RY (2005) A microstructure based numerical simulation of microwave sintering of specialized SOFC materials. J Eur Ceram Soc 25:2235–2240

    Article  CAS  Google Scholar 

  67. Riedel R, Svoboda J (2006) Simulation of microwave sintering with advanced sintering models. In: Willert-Porada M (ed) Advances in microwave and radio frequency processing. Springer, Berlin, pp 210–216

    Chapter  Google Scholar 

  68. Rothman SJ (1994) Critical assessment of microwave-enhanced diffusion. In: Iskander MF, Lauf RJ, Sutton WH (eds) Microwave processing of materials IV, Materials Research Society Symposium Proceedings, vol 347. Materials Research Society, Pittsburgh, pp 9–18

    Google Scholar 

  69. Beruto D, Botter R, Searcy AW (1989) Influence of temperature gradients on sintering: experimental tests of a theory. J Amer Ceram Soc 72:232–235

    Article  CAS  Google Scholar 

  70. Young RM, McPherson R (1989) Temperature-gradient-driven diffusion in rapid-rate sintering. J Amer Ceram Soc 72:1080–1081

    Article  CAS  Google Scholar 

  71. Olevsky E, Froyen L (2009) Impact of thermal diffusion on densification during SPS. J Amer Ceram Soc 92S:122–132

    Article  CAS  Google Scholar 

  72. Bykov YV, Eremeev AE, Holoptsev VV (1994) Experimental study of the non-thermal effect in microwave sintering of piezoceramics. In: Iskander MF, Lauf RJ, Sutton WH (eds) Microwave processing of materials IV, Materials Research Society Symposium Proceedings, vol 347. Materials Research Society, Pittsburgh, pp 585–590

    Google Scholar 

  73. Meek TT (1987) Proposed model for the sintering of a dielectric in a microwave field. J Mater Sci Lett 6:638–640

    Article  CAS  Google Scholar 

  74. Johnson DL (1991) Microwave heating of grain boundaries in ceramics. J Amer Ceram Soc 74:849–850

    Article  CAS  Google Scholar 

  75. Endicott MR, Kenkre VM, Kus M (1994) Theory of a confinement effect of dipole rotations resulting in saturation in microwave heating of ceramics. Phys Stat Sol (b) 184(1):99–111

    Article  CAS  Google Scholar 

  76. Stuerga DAC, Gaillard P (1996) Microwave athermal effects in chemistry: a myth’s autopsy. J Microw Power Electromagn Energy 31:87–113

    Article  Google Scholar 

  77. Booske JH, Cooper RF (2006) How the coupling of microwave and RF energy in materials can affect solid state charge and mass transport and result in unique processing effects. In: Willert-Porada M (ed) Advances in microwave & radio frequency processing. Springer, Berlin, pp 461–471

    Chapter  Google Scholar 

  78. Janney MA, Kimrey HD, Schmidt MA, Kiggans JO (1991) Grain growth in microwave-annealed alumina. J Amer Ceram Soc 74(7):1675–1681

    Article  CAS  Google Scholar 

  79. Binner JGP, Hassine NA, Cross TE (1995) The possible role of the pre-exponential factor in explaining the increased reaction rates observed during the microwave synthesis of titanium carbide. J Mater Sci 30:5389–5393

    Article  CAS  Google Scholar 

  80. Eremeev AG, Plotnikov IV, Rybakov KI, Bykov YV, Rachkovskii AI (2007) Comparative study of diffusion rates during lead titanate synthesis under microwave and conventional heating. In: Silaghi AM, Gordan IM (eds) Proc 11th Int Conf Microwave and high frequency heating. Editura Universitatii din Oradea, Oradea, Romania, pp 232–235

    Google Scholar 

  81. Bykov YV, Eremeev AG, Zharova NA, Plotnikov IV, Rybakov KI, Drozdov MN, Drozdov YN, Skupov VD (2003) Diffusion processes in semiconductor structures during microwave annealing. Radiophys Quantum Electron 46(8–9):749–755

    Article  Google Scholar 

  82. Kimura H, Yamazaki Y (2006) Millimeter wave thermo-mechanical processing for bulk nanocrystalline ceramics. In: Proc International Microwave Power Institute’s 40th Annual Symposium, pp 52–55

    Google Scholar 

  83. Egorov SV, Eremeev AG, Plotnikov IV, Sorokin AA, Bykov YV, Chuvil’deev VN, Gryaznov MY, Shotin SV (2008) Plastic deformation of ultrafine alumina ceramics under microwave heating. In: Proc. Global Congress on Microwave energy applications. Japan Society of Electromagnetic Wave Energy Applications, Tokyo, Japan, pp 65–68

    Google Scholar 

  84. Lee JN, Choi YW, Lee BJ, Ahn BT (1997) Microwave-induced low-temperature crystallization of amorphous silicon thin films. J Appl Phys 82:2918–2921

    Article  CAS  Google Scholar 

  85. Rowley AT, Wroe R, Vazquez-Navarro D, Lo W, Cardwell DA (1997) Microwave-assisted oxygenation of melt-processed bulk YBa2Cu3O7-δ ceramics. J Mater Sci 32:4541–4547

    Article  CAS  Google Scholar 

  86. Wilson DA, Lee KY, Case ED (1997) Diffusive crack-healing behavior in polycrystalline alumina: a comparison between microwave annealing and conventional annealing. Mater Res Bull 32:1607–1616

    Article  CAS  Google Scholar 

  87. Get’man OI, Panichkina VV, Radchenko PY, Samelyuk AV, Skorokhod VV, Eremeev AG, Plotnikov IV, Matsokin VP (2008) Effect of microwave heating on diffusion in KCl–KBr single crystals. Powd Metall Metal Ceram 47(11–12):660–668

    Article  CAS  Google Scholar 

  88. Joomun NI, Kilner JA, Wang J, Vaidhyanathan B, Binner JGP (2003) Microwave hybrid annealing and its effect on oxygen diffusion in yttria-stabilized zirconia polycrystals. In: Proc 9th Int Conf on MW & HF Heating, Loughborough, UK, pp 405–408

    Google Scholar 

  89. Bykov Y, Eremeev A, Holoptsev V (1996) Influence of specific absorbed microwave power on activation energy of densification in ceramic materials. In: Iskander MF, Kiggans JO, Bolomey JC (eds) Microwave processing of materials V, Materials Research Society Symposium Proceedings, vol 430. Materials Research Society, Pittsburgh, pp 385–390

    Google Scholar 

  90. Wroe R, Rowley AT (1996) Evidence for a non-thermal microwave effect in the sintering of partially stabilized zirconia. J Mater Sci 31:2019–2026

    Article  CAS  Google Scholar 

  91. Binner J, Vaidhyanathan B, Wang J, Price D, Reading M (2008) Evidence for non-thermal microwave effects using single and multimode hybrid conventional/microwave systems. J Microw Power Electromagn Energy 42(2):47–63

    Article  Google Scholar 

  92. Willert-Porada M (1997) A microstructural approach to the origin of ‘microwave effects’ in sintering of ceramics and composites. In: Clark DE, Sutton WH, Lewis DA (eds) Microwaves: theory and application in materials processing IV, ceramic transactions, vol 80. The American Ceramic Society, Westerville, pp 153–164

    Google Scholar 

  93. Lange FF (1984) Sinterability of agglomerated powders. J Amer Ceram Soc 67(2):83–89

    Article  CAS  Google Scholar 

  94. Willert-Porada M (1996) Microwave effects on spinodal decomposition. In: Iskander MF, Kiggans JO, Bolomey JC (eds) Microwave processing of materials V, Materials Research Society Symposium Proceedings, vol 430. Materials Research Society, Pittsburgh, pp 403–409

    Google Scholar 

  95. Li J, Huang Y, Xie Z (1996) Microwave interaction with ceramics and its application to spinodal decomposition. In: Koumoto K, Sheppard LM, Matsubara H (eds) Mass and charge transport in ceramics, ceramic transactions, vol 71. The American Ceramic Society, Westerville, pp 259–268

    Google Scholar 

  96. Get’man OI, Panichkina VV, Radchenko PY, Skorokhod VV, Andreeva MG, Eremeev AG, Kholoptsev VV (2009) Diffusion processes and structurization in microwave sintering of BaTiO3–SrTiO3 and Al2O3–Cr2O3 powder systems with complete miscibility. Powd Metall Metal Ceram 48(5–6):279–289

    Article  CAS  Google Scholar 

  97. Thakur OP, Prakash C, Agrawal DK (2002) Dielectric behavior of Ba0.95Sr0.05TiO3 ceramics sintered by microwave. J Mater Sci Eng B 96:221–225

    Article  Google Scholar 

  98. Bykov YV, Egorov SV, Eremeev AG, Rybakov KI, Semenov VE, Sorokin AA, Gusev SA (2001) Evidence for microwave enhanced mass transport in the annealing of nanoporous alumina membranes. J Mater Sci 36:131–136

    Article  CAS  Google Scholar 

  99. Egorov SV, Eremeev AG, Rybakov KI, Semenov VE, Sorokin AA, Gusev SA (2004) Microwave intensity-dependent mass transport enhancement in nanostructured alumina membranes. In: Folz DC, Booske JH, Clark DE, Gerling JF (eds) Microwave and radio frequency applications (Proc Third World Congress on Microwave and radio frequency applications). The American Ceramic Society, Westerville, pp 167–174

    Google Scholar 

  100. Link G, Miksch S, Takayama S, Thumm M (2006) Anisotropic sintering in polarized microwave fields – Evidence for non-thermal microwave effects. In: Proc. Joint 31st Int Conf Infrared Millimeter Waves and 14th Int Conf Teraherz Electronics, IRMMW-THz 2006, p 285

    Google Scholar 

  101. Rybakov KI, Semenov VE, Link G, Thumm M (2007) Preferred orientation of pores in ceramics under heating by a linearly polarized microwave field. J Appl Phys 101:084915

    Article  CAS  Google Scholar 

  102. Jones M, Valecillos MC, Hirao K, Brito ME, Toriyama M (2006) Sintering behaviour and mechanical properties of microwave sintered silicon nitride. In: Willert-Porada M (ed) Advances in microwave and radio frequency processing. Springer, Berlin, pp 562–569

    Chapter  Google Scholar 

  103. Jung YM, Kim SW (2008) Effect of magnesium addition on the phase transformation of α-alumina prepared from route of ammonium aluminum carbonate hydroxide. Solid State Phenom 135:139–142

    Article  CAS  Google Scholar 

  104. Vaidhyanathan B, Saremi-Yarahmadi S, Wijayanth KGU (2011) Fabrication of nanostructured α-Fe2O3 films for solar-driven hydrogen generation using hybrid heating. In: Mathur S, Widjaja S, Singh D (eds) Nanostructured materials and nanotechnology V, ceramic engineering and science proceedings, vol 32(7). Wiley, Hoboken, pp 11–22

    Google Scholar 

  105. Rybakov KI, Eremeev AG, Egorov SV, Bykov YV, Pajkic Z, Willert-Porada M (2008) Effect of microwave heating on phase transformations in nanostructured alumina. J Phys D Appl Phys 41:102008

    Article  CAS  Google Scholar 

  106. Roy R, Peelamedu R, Grimes C, Cheng J, Agrawal D (2002) Major phase transformations and magnetic property changes caused by electromagnetic fields at microwave frequencies. J Mater Res 17(12):3008–3011

    Article  CAS  Google Scholar 

  107. Roy R, Fang Y, Cheng J, Agrawal D (2005) Decrystallizing solid crystalline titania, without melting, using microwave magnetic fields. J Amer Ceram Soc 88(6):1640–1642

    Article  CAS  Google Scholar 

  108. Kashcheev VA, Poluektov PP (1991) The use of alternating electric field for the stimulation of diffusion flow of charged impurities. Sov Tech Phys Lett 17:577

    Google Scholar 

  109. Booske JH, Cooper RF, Dobson I (1992) Mechanisms for nonthermal effects on ionic mobility during microwave processing of crystalline solid. J Mater Res 7(2):495–501

    Article  CAS  Google Scholar 

  110. Bokhan YI (1992) Diffusion of charged impurities in high-frequency field. Sov Tech Phys Lett 18:339

    Google Scholar 

  111. Freeman SA, Booske JH, Cooper RF (1995) Microwave field enhancement of charge transport in sodium chloride. Phys Rev Lett 74:2042–2045

    Article  CAS  Google Scholar 

  112. Bokhan YI, Shkrob IA (1994) Synthesis in an RF field of a ceramic material with a structural phase transition. Tech Phys Lett 20(6):439

    Google Scholar 

  113. Hao HS, Xu LH, Huang Y, Zhang XM, Xie ZP (2009) Kinetics mechanism of microwave sintering in ceramic materials. Sci China – Series E Technol Sci 52(9):2727–2731

    Article  CAS  Google Scholar 

  114. Bergese P (2006) Specific heat, polarization and heat conduction in microwave heating systems: a nonequilibrium thermodynamic point of view. Acta Mater 54:1843–1849

    Article  CAS  Google Scholar 

  115. Rybakov KI, Semenov VE, Freeman SA, Booske JH, Cooper RF (1997) Dynamics of microwave-induced currents in ionic crystals. Phys Rev B 55(6):3559–3567

    Article  CAS  Google Scholar 

  116. Kittel C (1996) Introduction to solid state physics, 7th edn. Wiley, New York

    Google Scholar 

  117. Manning JR (1968) Diffusion kinetics for atoms in crystals. Van Nostrand-Reinhold, Princeton

    Google Scholar 

  118. Rybakov KI, Olevsky EA, Semenov VE (2012) The microwave ponderomotive effect on ceramic sintering. Scr Mater 66:1049–1052

    Article  CAS  Google Scholar 

  119. Olevsky EA, Maximenko AL, Grigoryev EG (2013) Ponderomotive effects during contact formation in microwave sintering. Modelling Simul Mater Sci Eng 21:055022

    Article  CAS  Google Scholar 

  120. Rybakov KI, Semenov VE, Link G, Thumm M (2007) Preferred orientations of pores in ceramics under heating by a linearly polarized microwave field. J Appl Phys 101:084915

    Article  CAS  Google Scholar 

  121. Calame JP, Rybakov KI, Carmel Y, Gershon D (1997) Electric field intensification in spherical neck ceramic microstructures during microwave sintering. In: Clark DE et al (eds) Microwaves: theory and application in materials processing IV, ceramic transactions, vol 80. The American Ceramic Society, Westerville, pp 135–142

    Google Scholar 

  122. Booske JH, Cooper RF, Freeman SA, Rybakov KI, Semenov VE (1998) Microwave ponderomotive forces in solid state ionic plasmas. Phys Plasmas 5(5):1664–1670

    Article  CAS  Google Scholar 

  123. Olevsky EA (1998) Theory of sintering: from discrete to continuum. Mater Sci Eng R 23(2):41–100

    Article  Google Scholar 

  124. Olevsky EA, Tikare V, Garino T (2006) Multi-scale study of sintering: a review. J Amer Ceram Soc 89(6):1914–1922

    Article  CAS  Google Scholar 

  125. Olevsky EA, Molinari A (2000) Instability of sintering of porous bodies. Int J Plasticity 16:1–37

    Article  CAS  Google Scholar 

  126. Rybakov KI, Semenov VE (1999) In: Vincenzini P (ed) Ceramics: getting into the 2000’s – part C (Proceedings of the 9th Cimtec – World Ceramic Congress). TechnaSrl, Faenza, pp 397–404

    Google Scholar 

  127. Ding L, Davidchack RL, Pan J (2009) A molecular dynamics study of sintering between nanoparticles. Comput Mater Sci 45:247–256

    Article  CAS  Google Scholar 

  128. Bachvalov NS, Panasenko GP (1989) Homogenization: averaging processes in periodic Media. Kluwer, Dordrecht

    Book  Google Scholar 

  129. Bardzokas DI, Zobnin AI (2005) Mathematical modeling of physical processes in composite materials with periodical structure, Editorial URSS, Moscow, Russia, 336 p

    Google Scholar 

  130. Maximenko A, Olevsky E (2004) Effective diffusion coefficients in solid-state sintering. Acta Mater 52:2953–2963

    Article  CAS  Google Scholar 

  131. Rahaman MN (1995) Ceramic processing and sintering. Marcel Dekker Inc, New York

    Google Scholar 

  132. Hague DC, Mayo MJ (1999) Sinter-forging of nanocrystalline zirconia: II. Simulation J Amer Ceram Soc 82:545–555

    Article  CAS  Google Scholar 

  133. Raj R, Cologna M, Francis JSC (2011) Influence of externally imposed and internally generated electrical fields on grain growth, diffusional creep, sintering and related phenomena in ceramics. J Amer Ceram Soc 94(7):1941–1965

    Article  CAS  Google Scholar 

  134. Holcombe CE, Dykes NL (1990) Importance of “casketing” for microwave sintering of materials. J Mater Sci Lett 9:425–428

    Article  CAS  Google Scholar 

  135. Manière C, Zahrah T, Olevsky EA (2017) Inherent heating instability of direct microwave sintering process: sample analysis for porous 3Y-ZrO2. Scr Mater 128:49–52

    Article  CAS  Google Scholar 

  136. Manière C, Zahrah T, Olevsky EA (2017) Fully coupled electromagnetic-thermal-mechanical comparative simulation of direct vs hybrid microwave sintering of 3Y-ZrO2. J Amer Ceram Soc 100(6):2439–2450

    Article  CAS  Google Scholar 

  137. Charmond S, Carry CP, Bouvard D (2010) Densification and microstructure evolution of Y-Tetragonal Zirconia polycrystal powder during direct and hybrid microwave sintering in a single-mode cavity. J Eur Ceram Soc 30:1211–1221

    Article  CAS  Google Scholar 

  138. Agrawal D (2006) Microwave sintering, brazing and melting of metallic materials, Sohn International Symposium “Advanced processing of metals and materials volume 4 – New, improved and existing technologies: Non-ferrous materials extraction and processing. In: Kongoli F, Reddy RG (eds) TMS (The Minerals, Metals & Materials Society), pp 183–192

    Google Scholar 

  139. Anklekar RM, Bauer K, Agrawal DK, Roy R (2005) Improved mechanical properties and microstructural development of microwave sintered copper and nickel steel PM parts. Powder Metall 48(1):39–46

    Article  CAS  Google Scholar 

  140. Bao R, Yi J (2014) Densification and alloying of microwave sintering, WC–8wt.%Co composites. Int J Refract Met Hard Mater 43:269–275

    Article  CAS  Google Scholar 

  141. Demirskyi D, Agrawal D, Ragulya A (2010) Neck growth kinetics during microwave sintering of copper. Scr Mater 62:552–555

    Article  CAS  Google Scholar 

  142. Schmidt J, Schubert T, Weißgärber T, Kieback B (2004) Microwave assisted sintering of metallic materials, Proc. Euro PM2004

    Google Scholar 

  143. Reddy Matli P, Ubaid F, Abdul Shakoor R, Parande G, Manakari G, Yusuf M, Mohamed Amer Mohamed A, Gupta M (2017) Improved properties of Al–Si3N4 nanocomposites fabricated through a microwave sintering and hot extrusion process. RSC Adv 7:34401–34410

    Article  Google Scholar 

  144. Parande G, Manakari V, Meenashisundaram GK, Gupta M (2016) Enhancing the hardness/compression/damping response of magnesium by reinforcing with biocompatible silica nanoparticulates. Int J Mater Res 107:1091–1099

    Article  CAS  Google Scholar 

  145. Penchal Reddy M, Ubaid F, Shakoor RA, Mohamed AMA, Madhuri W (2016) Structural and mechanical properties of microwave sintered Al-Ni50Ti50 composites. J Science: Adv Mater Devices 1:362–366

    Google Scholar 

  146. Prabhu G, Chakraborty A, Sarma B (2009) Microwave sintering of tungsten. Int J Refract Met Hard Mater 27:545–548

    Article  CAS  Google Scholar 

  147. Fang Y, Cheng J, Agrawal DK (2004) Effect of powder reactivity on microwave sintering of alumina. Mater Lett 58:498–501

    Article  CAS  Google Scholar 

  148. Demirskyi D, Vasylkiv O (2016) Microstructure and mechanical properties of boron suboxide ceramics prepared by pressureless microwave sintering. Ceram Int 42:14282–14286

    Article  CAS  Google Scholar 

  149. Benavente R, Salvador MD, Penaranda-Foix FL, Pallone E, Borrell A (2014) Mechanical properties and microstructural evolution of alumina–zirconia nanocomposites by microwave sintering. Ceram Int 40:11291–11297

    Article  CAS  Google Scholar 

  150. Danielle Sales Cunha Medeiros F, Menezes RR, Neves GA, Navarrode Lima Santana L, Sivini Ferreira H, Silva Guedes de Lima D, Jackson Guedes de Lima S (2015) Microwave-assisted sintering of dental porcelains. Ceram Int 41:7501–7510

    Article  CAS  Google Scholar 

  151. Monaco C, Prete F, Leonelli C, Esposito L, Tucci A (2015) Microstructural study of microwave sintered zirconia for dental applications. Ceram Int 41:1255–1261

    Article  CAS  Google Scholar 

  152. Zhang S, Shu X, Chen S, Yang H, Hou C, Mao X, Chi F, Song M, Lu X (2017) Rapid immobilization of simulated radioactive soil waste by microwave sintering. J Hazard Mater 337:20–26

    Article  CAS  Google Scholar 

  153. Oghbaei M, Mirzaee O (2010) Microwave versus conventional sintering: a review of fundamentals, advantages and applications. J Alloys Compd 494:175–189

    Article  CAS  Google Scholar 

  154. Agrawal D (2006) Microwave sintering of ceramics, composites and metallic materials, and melting of glasses. Trans Indian Ceram Soc 65(3):129–144

    Article  CAS  Google Scholar 

  155. Zhao Y, Chen J (2008) Applications of microwaves in nuclear chemistry and engineering. Prog Nuclear Energy 50:1–6

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Olevsky, E.A., Dudina, D.V. (2018). Microwave Sintering. In: Field-Assisted Sintering. Springer, Cham. https://doi.org/10.1007/978-3-319-76032-2_7

Download citation

Publish with us

Policies and ethics