Skip to main content

Seasonality and Stratification: Neotropical Saproxylic Beetles Respond to a Heat and Moisture Continuum with Conservatism and Plasticity

  • Chapter
  • First Online:

Part of the book series: Zoological Monographs ((ZM,volume 1))

Abstract

Insect niche breadth informs community assembly and impacts the resilience of populations, species, and ecosystems. Niches are poorly known for most tropical insects, especially concealed feeders associated with tall trees. This chapter synthesizes data regarding seasonality and stratification in the early colonists of moribund wood, Cerambycidae and saproxylic Curculionidae. These data, from five rearing experiments conducted at four Neotropical moist forest sites over two decades, are of particular value because they can be used to generate predictions in an unpredictable time. Beetle species currently associated with warmer, drier, microhabitats (in the subfamily Cerambycinae and some Curculionidae) might withstand drier conditions, but not necessarily higher temperatures. Those currently associated with relatively cool, moist microhabitats (most Curculionidae) may be more vulnerable to changes in the length and severity of the dry season. Rather than characterizing tropical saproxylic insects by their periods of adult activity or flight height, which can be variable, it would be useful to conceptualize them with preferences along a continuum, from warm and dry to cool and moist.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Addo-Bediako A, Chown SL, Gaston KJ (2001) Revisiting water loss in insects: a large scale view. J Insect Physiol 47:1377–1388

    Article  CAS  PubMed  Google Scholar 

  • Basset Y, Hammond PM, Barrios H, Holloway JD, Miller SE (2003) Vertical stratification of arthropod assemblages. In: Basset Y, Novotný V, Miller SE, Kitching RL (eds) Arthropods of tropical forests: spatio-temporal dynamics and resource use in the canopy. Cambridge University Press, Cambridge, pp 17–27

    Google Scholar 

  • Berkov A (2002) The impact of redefined species limits in Palame (Coleoptera, Cerambycidae, Lamiinae, Acanthocinini) on assessments of host, seasonal, and stratum specificity. Biol J Linn Soc 76:195–209

    Article  Google Scholar 

  • Berkov A, Tavakilian G (1999) Host utilization of the Brazil nut family (Lecythidaceae) by sympatric wood-boring species of Palame (Coleoptera, Cerambycidae, Lamiinae, Acanthocinini). Biol J Linn Soc 67:181–198

    Article  Google Scholar 

  • Betts RA, Malhi Y, Roberts JT (2008) The future of the Amazon: new perspectives from climate, ecosystem and social sciences. Philos Trans R Soc Lond Ser B Biol Sci 363:1729–1735

    Article  Google Scholar 

  • Bonal D, Burban B, Stahl C, Wagner F, Hérault B (2016) The response of tropical rainforests to drought—lessons from recent research and future prospects. Ann For Sci 73:27–44

    Article  PubMed  Google Scholar 

  • Bouget C, Brin A, Brustel H (2011) Exploring the “last biotic frontier”: are temperate forest canopies special for saproxylic beetles? For Ecol Manag 261:211–220

    Article  Google Scholar 

  • Bujan J, Yanoviak SP, Kaspari M (2016) Desiccation resistance in tropical insects: causes and mechanisms underlying variability in a Panama ant community. Ecol Evol 6:6282–6291

    Article  PubMed  PubMed Central  Google Scholar 

  • Buse J (2012) “Ghosts of the past”: flightless saproxylic weevils (Coleoptera: Curculionidae) are relict species in ancient woodlands. J Insect Conserv 16:93–102

    Article  Google Scholar 

  • Chown SL, Sørensen JG, Terblanche JS (2011) Water loss in insects: an environmental change perspective. J Insect Physiol 57:1070–1084

    Article  CAS  PubMed  Google Scholar 

  • Christoffersen BO, Restrepo-Coupe N, Arain MA et al (2014) Mechanisms of water supply and vegetation demand govern the seasonality and magnitude of evapotranspiration in Amazonia and Cerrado. Agric For Meteorol 191:33–50

    Article  Google Scholar 

  • CICRA (Centro de Investigación y Capacitación del Río Los Amigos) (2004) Unpublished weather data 2000–2004

    Google Scholar 

  • Colwell RK (2013) Estimates: statistical estimation of species richness and shared species from samples, Version 9.1.0. Persistent URL: purl.oclc.org/estimates

  • Comita LS, Engelbrecht BMJ (2009) Seasonal and spatial variation in water availability drive habitat associations in a tropical forest. Ecology 90:2755–2765

    Article  PubMed  Google Scholar 

  • D’Angelo SA, Andrade ACS, Laurance SG, Laurance WF, Mesquita RCG (2004) Inferred causes of tree mortality in fragmented and intact Amazonian forests. J Trop Ecol 20:243–246

    Article  Google Scholar 

  • Das AJ, Stephenson NL, Davis KP (2016) Why do trees die? Characterizing the drivers of background tree mortality. Ecology 97:2616–2627

    Article  PubMed  Google Scholar 

  • Denlinger DL (1986) Dormancy in tropical insects. Annu Rev Entomol 31:239–264

    Article  CAS  PubMed  Google Scholar 

  • Deutsch CA, Tewksbury JJ, Huey RB, Sheldon KS, Ghalambor CK, Haak DC, Martin PR (2008) Impacts of climate warming on terrestrial ectotherms across latitude. Proc Natl Acad Sci USA 105:6668–6672

    Article  PubMed  PubMed Central  Google Scholar 

  • Fassbender J (2013) Diversity, resource partitioning, and species turnover in Neotropical saproxylic beetles (Coleoptera: Cerambycidae, Curculionidae) associated with trees in the Brazil nut family (Lecythidaceae). PhD dissertation, City University of New York

    Google Scholar 

  • Fassbender J, Baxt A, Berkov A (2014) Niches of saproxylic weevils (Coleoptera: Curculionidae) in French Guiana. Coleopt Bull 68:689–699

    Article  Google Scholar 

  • García-Robledo C, Kuprewicz EK, Staines CL, Erwin TL, Kress WJ (2016) Limited tolerance by insects to high temperatures across tropical elevational gradients and the implications of global warming for extinction. Proc Natl Acad Sci USA 113:680–685

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gillespie MAK, Birkemoe T, Sverdrup-Thygeson A (2017) Interactions between body size, abundance, seasonality, and phenology in forest beetles. Ecol Evol 7:1091–1100. https://doi.org/10.1002/ece3.2732

    Article  PubMed  PubMed Central  Google Scholar 

  • Gonzalez-Akre E, Meakem V, Eng C-Y et al (2016) Patterns of tree mortality in a temperate deciduous forest derived from a large forest dynamics plot. Ecosphere 7(12). https://doi.org/10.1002/ecs2.1595

    Article  Google Scholar 

  • Grimbacher PS, Stork NE (2009) Seasonality of a diverse beetle assemblage inhabiting lowland tropical rain forest in Australia. Biotropica 41:328–337

    Article  Google Scholar 

  • Grove SJ (2002) Saproxylic insect ecology and the sustainable management of forests. Annu Rev Ecol Syst 33:1–23

    Article  Google Scholar 

  • Hanks LM, Reagel PF, Mitchell RF et al (2014) Seasonal phenology of the cerambycid beetles of east-central Illinois. Ann Entomol Soc Am 107:211–226

    Article  PubMed  Google Scholar 

  • Hillebrand H (2004) On the generality of the latitudinal diversity gradient. Am Nat 163:192–211

    Article  PubMed  Google Scholar 

  • Hoffman AA, Hallas RJ, Dean JA, Schiffer M (2003) Low potential for climatic stress adaptation in a rainforest Drosophila species. Science 301:100–102

    Article  CAS  Google Scholar 

  • Jaworski T, Hilszczanski J (2013) The effect of temperature and humidity changes on insect development and their impact on forest ecosystems in the context of expected climate change. For Res Pap 74:345–355

    Google Scholar 

  • Jiménez-Muñoz JC, Mattar C, Barichivich J et al (2016) Record-breaking warming and extreme drought in the Amazon rainforest during the course of el Niño 2015–2016. Sci Rep 6:33130. https://doi.org/10.1038/srep33130

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kaspari M, Clay NA, Lucas J, Yanoviak SP (2015) Thermal adaptation generates a diversity of thermal limits in a rainforest ant community. Glob Chang Biol 21:1092–1102

    Article  PubMed  Google Scholar 

  • Keenan RJ, Reams GA, Achard F et al (2015) Dynamics of global Forest area: results from the FAO global forest resources assessment 2015. For Ecol Manag 352:9–20

    Article  Google Scholar 

  • Kelber A, Warrant EJ, Pfaff M et al (2006) Light intensity limits foraging activity in nocturnal and crepuscular bees. Behav Ecol 17:63–72

    Article  Google Scholar 

  • Kirkendall LR, Biedermann PHW, Jordal BH (2015) Evolution and diversity of bark and ambrosia beetles. In: Vega FE, Hofstetter RW (eds) Bark beetles: biology and ecology of native and invasive species. Elsevier, London, pp 85–156

    Chapter  Google Scholar 

  • Kishimoto-Yamata K, Itioka T (2015) How much have we learned about seasonality in tropical insect abundance since Wolda (1988)? Entomol Sci 18:407–419

    Article  Google Scholar 

  • Kotiaho JS, Kaitala V, Komonen A, Päivinen J (2005) Predicting the risk of extinction from shared ecological characteristics. Proc Natl Acad Sci USA 102:1963–1967

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee C, Baxt A, Castillo S, Berkov A (2014) Stratification in French Guiana: Cerambycid beetles go up when rains come down. Biotropica 46:302–311

    Article  Google Scholar 

  • Li L, Aguilar R, Berkov A (2017) What shapes cerambycid beetle communities in a tropical forest mosaic? Assessing the effects of host tree identity, forest structure, and vertical stratification. Biotropica 49:675–684

    Article  CAS  Google Scholar 

  • Lugo AE, Scatena FN (1996) Background and catastrophic tree mortality in tropical moist, wet, and rain forests. Biotropica 28:585–599

    Article  Google Scholar 

  • Maass JM, Martínez-Yrízar A, Patiño C, Sarukhán J (2002) Distribution and annual net accumulation of above-ground dead phytomass and its influence on throughfall quality in a Mexican tropical deciduous forest ecosystem. J Trop Ecol 18:821–834

    Article  Google Scholar 

  • Macedo-Reis LE, Antunes de Novais SM, Monteiro GF et al (2016) Spatio-temporal distribution of bark and ambrosia beetles in a Brazilian tropical dry forest. J Insect Sci 16:1–9

    Article  Google Scholar 

  • Maguire DY, Robert K, Brochu K et al (2014) Vertical stratification of beetles (Coleoptera) and flies (Diptera) in temperate forest canopies. Environ Entomol 43:9–17

    Article  PubMed  Google Scholar 

  • Marengo JA, Espinoza JC (2016) Extreme seasonal droughts and floods in Amazonia: causes, trends and impacts. Int J Climatol 36:1033–1050

    Article  Google Scholar 

  • Miles L, Grainger A, Phillips O (2004) The impact of global climate change on tropical forest biodiversity in Amazonia. Glob Ecol Biogeogr 13:553–565

    Article  Google Scholar 

  • Mittelback GG, Schemske DW, Cornell HV et al (2007) Evolution and the latitudinal diversity gradient: speciation, extinction, and biogeography. Ecol Lett 10:315–331

    Article  Google Scholar 

  • Monné ML, Monné MA, Mermudes JRM (2009) Inventory of the Cerambycinae species (Insecta, Coleoptera, Cerambycidae) of the Parque Nacional do Itatiaia, RJ, Brazil. Biota Neotrop 9(3):283–312

    Article  Google Scholar 

  • Monné ML, Monné MA, Quintino HY et al (2012) Inventory of the Lamiinae species (Insecta, Coleoptera, Cerambycidae) of the Parque Nacional do Itatiaia, RJ, Brazil. Biota Neotrop 12(1):39–76

    Article  Google Scholar 

  • Mora C, Frazier AG, Longman RJ et al (2013) The projected timing of climate departure from recent variability. Nature 502:183–187

    Article  CAS  PubMed  Google Scholar 

  • Morillo J (2017) Are weevils picky eaters? Community structure and host specificity of Neotropical saproxylic beetles (Coleoptera: Curculionidae). Masters dissertation, City College of New York

    Google Scholar 

  • Negrón-Juárez RI, Chambers JQ, Guimaraes G et al (2010) Widespread Amazon forest tree mortality from a single cross-basin squall line event. Geophys Res Lett 37. https://doi.org/10.1029/2010GL043733

  • Nieto A, Alexander KNA (2010) European red list of saproxylic beetles. Publications Office of the European Union, Luxembourg

    Google Scholar 

  • Noguera FA, Ortega-Huerta MA, Zaragoza-Caballero S, González-Soriano E, Ramírez-García E (2017) Species richness and abundance of Cerambycidae (Coleoptera) in Huatulco, Oaxaca, Mexico; relationships with phenological changes in the tropical dry forest. Neotrop Entomol. https://doi.org/10.1007/s13744-017-0534-y

  • Noguera FA, Zaragoza-Caballero S, Chemsak JA et al (2002) Diversity of the family Cerambycidae (Coleoptera) of the tropical dry forest of Mexico, I. Sierra de Huautla, Morelos. Ann Entomol Soc Am 95:617–627

    Article  Google Scholar 

  • Ødegaard F (2006) Host specificity, alpha- and beta-diversity of phytophagous beetles in two tropical forests in Panama. Biodivers Conserv 15:83–105

    Article  Google Scholar 

  • Paine CET, Harms KE, Ramos J (2009) Supplemental irrigation increases seedling performance and diversity in a tropical forest. J Trop Ecol 25:171–180. https://doi.org/10.1017/S0266467408005798

    Article  Google Scholar 

  • Pitman N (2008) An overview of the Los Amigos watershed, Madre de Dios, Southeastern Peru. Unpublished report for the Amazon Conservation Association

    Google Scholar 

  • Piyaphongkul J, Pritchard J, Bale J (2012) Can tropical insects stand the heat? A case study with the brown planthopper Nilaparvata lugens (Stål). PLoS One 7. https://doi.org/10.1371/journal.pone.0029409

  • Rehm EM, Feeley KJ (2015) Freezing temperatures as a limit to forest recruitment above tropical Andean treelines. Ecology 96:1856–1865

    Article  PubMed  Google Scholar 

  • Ringard J, Becker M, Seyler F, Linguet L (2015) Temporal and spatial assessment of four satellite rainfall estimates over French Guiana and north Brazil. Remote Sens 7:16441–16459. https://doi.org/10.3390/rs71215831

    Article  Google Scholar 

  • Scheffers BR, Edwards DP, Macdonald SL et al (2017) Extreme thermal heterogeneity in structurally complex tropical rain forests. Biotropica 49:35–44

    Article  Google Scholar 

  • Schemske DW, Mittelbach GG (2017) “Latitudinal gradients in species diversity”: reflections on Pianka’s 1966 article and a look forward. Am Nat 189:599–603

    Article  PubMed  Google Scholar 

  • Schoeller EN, Allison JD (2013) Flight phenologies of the southeastern Ips species (Coleoptera: Curculionidae: Scolytinae) and some associated Coleoptera in central and southern Louisiana. Environ Entomol 42:1226–1239

    Article  PubMed  Google Scholar 

  • Somero GN (2010) The physiology of climate change: how potentials for acclimatization and genetic adaptation will determine ‘winners’ and ‘losers’. J Exp Biol 213:912–920

    Article  CAS  PubMed  Google Scholar 

  • Spicer ME, Stark AY, Adams BJ et al (2017) Thermal constraints on foraging of canopy ants. Oecologia 183:1007–1017

    Article  PubMed  Google Scholar 

  • Stokland JN (2012) The saproxylic food web. In: Stokland JN, Siitonen J, Gunnar Jonsson B (eds) Biodiversity in dead wood. Cambridge University Press, Cambridge, pp 29–57

    Chapter  Google Scholar 

  • Stokland JN, Siitonen J (2012) Mortality factors and decay succession. In: Stokland JN, Siitonen J, Gunnar Jonsson B (eds) Biodiversity in dead wood. Cambridge University Press, Cambridge, pp 110–149

    Chapter  Google Scholar 

  • Stork NE, Grimbacher PS (2006) Beetle assemblages from an Australian tropical rainforest show that the canopy and the ground strata contribute equally to biodiversity. Proc R Soc Biol Sci Ser B 273:1969–1975

    Article  Google Scholar 

  • Stork NE, Stone M, Sam L (2016) Vertical stratification of beetles in tropical rainforests as sampled by light traps in North Queensland, Australia. Aust Ecol 41:168–178

    Article  Google Scholar 

  • Švácha P, Lawrence JF (2014) 2.4. Cerambycidae Latreille, 1802. In: Leschen RAB, Beutel RG (eds) Handbook of zoology, arthropoda: insecta; coleoptera, beetles, volume 3: morphology and systematics (Phytophaga). Walter de Gruyter, Berlin/Boston, pp 77–177

    Google Scholar 

  • Svensson M, Dahlberg A, Ranius T, Thor G (2014) Dead branches on living trees constitute a large part of the dead wood in managed boreal forests, but are not important for wood-dependent lichens. J Veg Sci 25:819–828

    Article  Google Scholar 

  • Tavakilian G, Berkov A, Meurer-Grimes B, Mori S (1997) Neotropical tree species and their faunas of xylophagous longicorns (Coleoptera, Cerambycidae) in French Guiana. Bot Rev 63:303–355

    Article  Google Scholar 

  • Taylor P, Asner G, Dahlin K et al (2015) Landscape-scale controls on aboveground forest carbon stocks on the Osa Peninsula, Costa Rica. PLoS One 10. https://doi.org/10.1371/journal.pone.0126748

  • ter Steege H, Pitman NCA, Sabatier D et al (2013) Hyperdominance in the Amazonian tree flora. Science 342. https://doi.org/10.1126/science.1243092

  • Tochen S, Woltz JM, Dalton DT et al (2016) Humidity affects populations of Drosophila suzukii (Diptera: Drosophilidae) in blueberry. J Appl Entomol 140:47–57

    Article  Google Scholar 

  • Tuomisto H, Zuquim G, Cárdenas G (2014) Species richness and diversity along edaphic and climatic gradients in Amazonia. Ecography 37:1–13

    Article  Google Scholar 

  • Ulyshen MD (2011) Arthropod vertical stratification in temperate deciduous forests: implications for conservation-oriented management. For Ecol Manag 261:1479–1489

    Article  Google Scholar 

  • Ulyshen MD, Hanula JL (2009) Habitat associations of saproxylic beetles in the southeastern United States: a comparison of forest types, tree species and wood postures. For Ecol Manag 257:653–664

    Article  Google Scholar 

  • Ulyshen MD, Sheehan TN (2017) Trap height considerations for detecting two economically important forest beetle guilds in southeastern US forests. J Pest Sci. https://doi.org/10.1007/s10340-017-0883-7

  • Vodka Š, Cizek L (2013) The effects of edge-interior and understorey-canopy gradients on the distribution of saproxylic beetles in a temperate lowland forest. For Ecol Manag 304:33–41

    Article  Google Scholar 

  • Wardhaugh CW (2014) The spatial and temporal distributions of arthropods in forest canopies: uniting disparate patterns with hypotheses for specialisation. Biol Rev 89:1021–1041

    Article  PubMed  Google Scholar 

  • Wardhaugh CW, Stork NE, Edwards W (2012) Feeding guild structure of beetles on Australian tropical rainforest trees reflects microhabitat resource availability. J Anim Ecol 2012:1086–1094

    Article  Google Scholar 

  • Warrant E (1999) Seeing better at night: life style, eye design and the optimum strategy of spatial and temporal summation. Vis Res 39:1611–1630

    Article  CAS  PubMed  Google Scholar 

  • Weiss M, Procházka J, Schlaghamerský J, Cizek L (2016) Fine-scale vertical stratification and guild composition of saproxylic beetles in lowland and montane forests: similar patterns despite low faunal overlap. PLoS One 11. https://doi.org/10.1371/journal.pone.0149506

  • Wolda H (1988) Insect seasonality: why? Annu Rev Ecol Syst 19:1–19

    Article  Google Scholar 

  • Wolda H, O’Brien CW, Stockwell HP (1998) Weevil diversity and seasonality in tropical Panama as deduced from light-trap catches (Coleoptera: Curculionoidea). Smithson Contrib Zool (590):1–79

    Google Scholar 

  • Wright JS, Fu R, Worden JR et al (2017) A rainforest-initiated wet season onset over the southern Amazon. Proc Natl Acad Sci USA. https://doi.org/10.1073/pnas.1621516114

  • Zhu R (2016) Judging a beetle by its cover: Correlated evolution of body color and compound eye phenotype (Coleoptera: Cerambycidae). Masters dissertation, City College of New York

    Google Scholar 

Download references

Acknowledgments

I am grateful to the various project funders: the American Philosophical Society, the National Science Foundation, the Fund for Neotropical Plant Research of The New York Botanical Garden, the PSC-CUNY Research Foundation, and an anonymous donor. Thanks to the following for their assistance with always-daunting logistics: Hector Barrios (University of Panama), Hortensia Broce (Autoridad del Canal de Panamá), Lil Camacho (Smithsonian Tropical Research Institute), Juan Carlos Cruz Díaz and Dennis Vasquez (Osa Conservation, Costa Rica), Giovana Espino and Nigel Pitman (Amazon Conservation Association), Gerardo Lamas and Juan Grados (Museo de Historia Natural, Peru), Melania Muñoz (CONAGEBIO, Costa Rica), and Karina Ramirez (INRENA, Peru). Many thanks to the following for locating and identifying host trees: Reinaldo Aguilar (Los Charcos de Osa, Costa Rica), Pedro Centeno (Amazon Conservation Association), Andrez Hernandez (Smithsonian Tropical Research Institute), and Scott Mori (New York Botanical Garden). Thanks to the following for field assistance: Alec Baxt and Chris Roddick (Brooklyn Botanic Garden), Hugette and Gérald Dumas (Saül, French Guiana), Marvin Lopéz (Osa Conservation), Sara Pinzon (Smithsonian Tropical Research Institute), Eulogio Quispe (Amazon Conservation Association), Marleny Rivera (University of Panama), and Bob Weber (Highlands, NC). Thanks to previous City College and City University of New York students who sorted many thousands of beetle specimens: Timmy Eng, Joyce Fassbender, Julie Feinstein, Lin Li, and Jhunior Morillo. The following specialists very graciously assisted with beetle identification: Thomas Atkinson (University of Texas), Larry Bezark (Sacramento, CA, USA), Lawrence Kirkendall (University of Bergen, Bergen, Norway), Miguel Monné (Museu Nacional, Rio de Janeiro, Brazil), Charles O’Brien (Green Valley, AZ, USA), Sarah M. Smith (Michigan State University, East Lansing, USA), Gérard Tavakilian (Muséum National d'Histoire Naturelle, Paris, France).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amy Berkov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 This is a U.S. government work and its text is not subject to copyright protection in the United States; however, its text may be subject to foreign copyright protection.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Berkov, A. (2018). Seasonality and Stratification: Neotropical Saproxylic Beetles Respond to a Heat and Moisture Continuum with Conservatism and Plasticity. In: Ulyshen, M. (eds) Saproxylic Insects. Zoological Monographs, vol 1. Springer, Cham. https://doi.org/10.1007/978-3-319-75937-1_16

Download citation

Publish with us

Policies and ethics