Skip to main content

Targeting CHK1 for Cancer Therapy: Rationale, Progress and Prospects

  • Chapter
  • First Online:
Targeting the DNA Damage Response for Anti-Cancer Therapy

Part of the book series: Cancer Drug Discovery and Development ((CDD&D))

  • 939 Accesses

Abstract

During the past 20 years or so the serine-threonine protein kinase CHK1 has emerged as a key regulator of genome stability in vertebrate cells. When cells sustain acute DNA damage, or when DNA replication is impeded, CHK1 is activated to mitigate against the lethal consequences of cell division with damaged or incompletely replicated genomes. To achieve this CHK1 acts to delay cell cycle progression, stimulate DNA repair, and to promote the accurate completion of genome duplication. Collectively, these checkpoint responses are crucial for cell survival under conditions of genotoxic stress, and numerous pre-clinical studies have shown that inhibition of CHK1 can enhance tumour cell killing by radiation and genotoxic chemotherapeutic agents with diverse mechanisms of action. As a result, a number of small-molecule CHK1 inhibitor drugs have been developed, some of which have reached clinical trials in combination with existing chemotherapies. CHK1 inhibitors have also been shown to synergise with non-genotoxic inhibitors targeting other checkpoint regulators, such as Wee1 kinase, whilst other evidence suggests that certain tumour cell types may be inherently sensitive to CHK1 inhibition alone, perhaps reflecting underlying defects in DNA repair or replication processes. Despite these promising advances, rational strategies for the targeted deployment of CHK1 inhibitor drugs remain at a relatively early stage of development, whilst the important issues of therapeutic index and normal tissue toxicity remain to be fully explored.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Akinaga S, Nomura K, Gomi K, Okabe M (1993) Enhancement of antitumor activity of mitomycin C in vitro and in vivo by UCN-01, a selective inhibitor of protein kinase C. Cancer Chemother Pharmacol 32:183–189

    Article  PubMed  CAS  Google Scholar 

  • Al-Ahmadie H, Iyer G, Hohl M, Asthana S, Inagaki A, Schultz N, Hanrahan AJ, Scott SN, Brannon AR, McDermott GC, Pirun M, Ostrovnaya I, Kim P, Socci ND, Viale A, Schwartz GK, Reuter V, Bochner BH, Rosenberg JE, Bajorin DF, Berger MF, Petrini JH, Solit DB, Taylor BS (2014) Synthetic lethality in ATM-deficient RAD50-mutant tumors underlies outlier response to cancer therapy. Cancer Discov 4:1014–1021

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Al-Ejeh F, Pajic M, Shi W, Kalimutho M, Miranda M, Nagrial AM, Chou A, Biankin AV, Grimmond SM, Brown MP, Khanna KK, Australian Pancreatic Cancer Genome Initiative (2014) Gemcitabine and CHK1 inhibition potentiate EGFR-directed radioimmunotherapy against pancreatic ductal adenocarcinoma. Clin Cancer Res 20:3187–3197

    Article  PubMed  CAS  Google Scholar 

  • Aligue R, Akhavan-Niak H, Russell P (1994) A role for Hsp90 in cell cycle control: Wee1 tyrosine kinase activity requires interaction with Hsp90. EMBO J 13:6099–6106

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Al-Kaabi MM, Alshareeda AT, Jerjees DA, Muftah AA, Green AR, Alsubhi NH, Nolan CC, Chan S, Cornford E, Madhusudan S, Ellis IO, Rakha EA (2015) Checkpoint kinase1 (CHK1) is an important biomarker in breast cancer having a role in chemotherapy response. Br J Cancer 112:901–911

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Allen C, Ashley AK, Hromas R, Nickoloff JA (2011) More forks on the road to replication stress recovery. J Mol Cell Biol 3:4–12

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Alsubhi N, Middleton F, Abdel-Fatah TM, Stephens P, Doherty R, Arora A, Moseley PM, Chan SY, Aleskandarany MA, Green AR, Rakha EA, Ellis IO, Martin SG, Curtin NJ, Madhusudan S (2016) Chk1 phosphorylated at serine(345) is a predictor of early local recurrence and radio-resistance in breast cancer. Mol Oncol 10:213–223

    Article  PubMed  CAS  Google Scholar 

  • Arlander SJ, Eapen AK, Vroman BT, McDonald RJ, Toft DO, Karnitz LM (2003) Hsp90 inhibition depletes Chk1 and sensitizes tumor cells to replication stress. J Biol Chem 278:52572–52577

    Article  PubMed  CAS  Google Scholar 

  • Arora S, Bisanz KM, Peralta LA, Basu GD, Choudhary A, Tibes R, Azorsa DO (2010) RNAi screening of the kinome identifies modulators of cisplatin response in ovarian cancer cells. Gynecol Oncol 118:220–227

    Article  PubMed  CAS  Google Scholar 

  • Azorsa DO, Gonzales IM, Basu GD, Choudhary A, Arora S, Bisanz KM, Kiefer JA, Henderson MC, Trent JM, Von Hoff DD, Mousses S (2009) Synthetic lethal RNAi screening identifies sensitizing targets for gemcitabine therapy in pancreatic cancer. J Transl Med 7:43

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Barnard D, Diaz HB, Burke T, Donoho G, Beckmann R, Jones B, Barda D, King C, Marshall M (2016) LY2603618, a selective CHK1 inhibitor, enhances the anti-tumor effect of gemcitabine in xenograft tumor models. Invest New Drugs 34:49–60

    Article  PubMed  CAS  Google Scholar 

  • Bartek J, Lukas J (2003) Chk1 and Chk2 kinases in checkpoint control and cancer. Cancer Cell 3:421–429

    Article  PubMed  CAS  Google Scholar 

  • Bartucci M, Svensson S, Romania P, Dattilo R, Patrizii M, Signore M, Navarra S, Lotti F, Biffoni M, Pilozzi E, Duranti E, Martinelli S, Rinaldo C, Zeuner A, Maugeri-Sacca M, Eramo A, De Maria R (2012) Therapeutic targeting of Chk1 in NSCLC stem cells during chemotherapy. Cell Death Differ 19:768–778

    Article  PubMed  CAS  Google Scholar 

  • Bertoni F, Codegoni AM, Furlan D, Tibiletti MG, Capella C, Broggini M (1999) CHK1 frameshift mutations in genetically unstable colorectal and endometrial cancers. Genes Chromosomes Cancer 26:176–180

    Article  PubMed  CAS  Google Scholar 

  • Blackwood E, Epler J, Yen I, Flagella M, O’Brien T, Evangelista M, Schmidt S, Xiao Y, Choi J, Kowanetz K, Ramiscal J, Wong K, Jakubiak D, Yee S, Cain G, Gazzard L, Williams K, Halladay J, Jackson PK, Malek S (2013) Combination drug scheduling defines a “window of opportunity” for chemopotentiation of gemcitabine by an orally bioavailable, selective ChK1 inhibitor, GNE-900. Mol Cancer Ther 12:1968–1980

    Article  PubMed  CAS  Google Scholar 

  • Blasina A, Hallin J, Chen E, Arango ME, Kraynov E, Register J, Grant S, Ninkovic S, Chen P, Nichols T, O’Connor P, Anderes K (2008) Breaching the DNA damage checkpoint via PF-00477736, a novel small-molecule inhibitor of checkpoint kinase 1. Mol Cancer Ther 7:2394–2404

    Article  PubMed  CAS  Google Scholar 

  • Bridges KA, Hirai H, Buser CA, Brooks C, Liu H, Buchholz TA, Molkentine JM, Mason KA, Meyn RE (2011) MK-1775, a novel Wee1 kinase inhibitor, radiosensitizes p53-defective human tumor cells. Clin Cancer Res 17:5638–5648

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Brooks K, Oakes V, Edwards B, Ranall M, Leo P, Pavey S, Pinder A, Beamish H, Mukhopadhyay P, Lambie D, Gabrielli B (2013) A potent Chk1 inhibitor is selectively cytotoxic in melanomas with high levels of replicative stress. Oncogene 32:788–796

    Article  PubMed  CAS  Google Scholar 

  • Bryant C, Rawlinson R, Massey AJ (2014a) Chk1 inhibition as a novel therapeutic strategy for treating triple-negative breast and ovarian cancers. BMC Cancer 14:570

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bryant C, Scriven K, Massey AJ (2014b) Inhibition of the checkpoint kinase Chk1 induces DNA damage and cell death in human leukemia and lymphoma cells. Mol Cancer 13:147

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Calvo E, Chen VJ, Marshall M, Ohnmacht U, Hynes SM, Kumm E, Diaz HB, Barnard D, Merzoug FF, Huber L, Kays L, Iversen P, Calles A, Voss B, Lin AB, Dickgreber N, Wehler T, Sebastian M (2014) Preclinical analyses and phase I evaluation of LY2603618 administered in combination with pemetrexed and cisplatin in patients with advanced cancer. Invest New Drugs 32:955–968

    Article  PubMed  CAS  Google Scholar 

  • Calvo E, Braiteh F, Von Hoff D, McWilliams R, Becerra C, Galsky MD, Jameson G, Lin J, McKane S, Wickremsinhe ER, Hynes SM, Bence Lin A, Hurt K, Richards D (2016) Phase I study of CHK1 inhibitor LY2603618 in combination with gemcitabine in patients with solid tumors. Oncology 91:251–260

    Article  PubMed  CAS  Google Scholar 

  • Carrassa L, Broggini M, Vikhanskaya F, Damia G (2003) Characterization of the 5’ flanking region of the human Chk1 gene: identification of E2F1 functional sites. Cell Cycle 2:604–609

    Article  PubMed  CAS  Google Scholar 

  • Carrassa L, Sanchez Y, Erba E, Damia G (2009) U2OS cells lacking Chk1 undergo aberrant mitosis and fail to activate the spindle checkpoint. J Cell Mol Med 13:1565–1576

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chaudhuri L, Vincelette ND, Koh BD, Naylor RM, Flatten KS, Peterson KL, McNally A, Gojo I, Karp JE, Mesa RA, Sproat LO, Bogenberger JM, Kaufmann SH, Tibes R (2014) CHK1 and WEE1 inhibition combine synergistically to enhance therapeutic efficacy in acute myeloid leukemia ex vivo. Haematologica 99:688–696

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chen MS, Ryan CE, Piwnica-Worms H (2003) Chk1 kinase negatively regulates mitotic function of Cdc25A phosphatase through 14-3-3 binding. Mol Cell Biol 23:7488–7497

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chila R, Basana A, Lupi M, Guffanti F, Gaudio E, Rinaldi A, Cascione L, Restelli V, Tarantelli C, Bertoni F, Damia G, Carrassa L (2015) Combined inhibition of Chk1 and Wee1 as a new therapeutic strategy for mantle cell lymphoma. Oncotarget 6:3394–3408

    Article  PubMed  Google Scholar 

  • Curman D, Cinel B, Williams DE, Rundle N, Block WD, Goodarzi AA, Hutchins JR, Clarke PR, Zhou BB, Lees-Miller SP, Andersen RJ, Roberge M (2001) Inhibition of the G2 DNA damage checkpoint and of protein kinases Chk1 and Chk2 by the marine sponge alkaloid debromohymenialdisine. J Biol Chem 276:17914–17919

    Article  PubMed  CAS  Google Scholar 

  • Curtin NJ (2005) PARP inhibitors for cancer therapy. Expert Rev Mol Med 7:1–20

    Article  PubMed  Google Scholar 

  • Dai Y, Rahmani M, Pei XY, Khanna P, Han SI, Mitchell C, Dent P, Grant S (2005) Farnesyltransferase inhibitors interact synergistically with the Chk1 inhibitor UCN-01 to induce apoptosis in human leukemia cells through interruption of both Akt and MEK/ERK pathways and activation of SEK1/JNK. Blood 105:1706–1716

    Article  PubMed  CAS  Google Scholar 

  • Daud AI, Ashworth MT, Strosberg J, Goldman JW, Mendelson D, Springett G, Venook AP, Loechner S, Rosen LS, Shanahan F, Parry D, Shumway S, Grabowsky JA, Freshwater T, Sorge C, Kang SP, Isaacs R, Munster PN (2015) Phase I dose-escalation trial of checkpoint kinase 1 inhibitor MK-8776 as monotherapy and in combination with gemcitabine in patients with advanced solid tumors. J Clin Oncol Off J Am Soc Clin Oncol 33:1060–1066

    Article  CAS  Google Scholar 

  • Davies KD, Cable PL, Garrus JE, Sullivan FX, von Carlowitz I, Huerou YL, Wallace E, Woessner RD, Gross S (2011a) Chk1 inhibition and Wee1 inhibition combine synergistically to impede cellular proliferation. Cancer Biol Ther 12:788–796

    Article  PubMed  CAS  Google Scholar 

  • Davies KD, Humphries MJ, Sullivan FX, von Carlowitz I, Le Huerou Y, Mohr PJ, Wang B, Blake JF, Lyon MA, Gunawardana I, Chicarelli M, Wallace E, Gross S (2011b) Single-agent inhibition of Chk1 is antiproliferative in human cancer cell lines in vitro and inhibits tumor xenograft growth in vivo. Oncol Res 19:349–363

    Article  PubMed  CAS  Google Scholar 

  • Derenzini E, Agostinelli C, Imbrogno E, Iacobucci I, Casadei B, Brighenti E, Righi S, Fuligni F, Ghelli Luserna Di Rora A, Ferrari A, Martinelli G, Pileri S, Zinzani PL (2015) Constitutive activation of the DNA damage response pathway as a novel therapeutic target in diffuse large B-cell lymphoma. Oncotarget 6:6553–6569

    Article  PubMed  PubMed Central  Google Scholar 

  • Didier C, Demur C, Grimal F, Jullien D, Manenti S, Ducommun B (2012) Evaluation of checkpoint kinase targeting therapy in acute myeloid leukemia with complex karyotype. Cancer Biol Ther 13:307–313

    Article  PubMed  PubMed Central  Google Scholar 

  • Doi T, Yoshino T, Shitara K, Matsubara N, Fuse N, Naito Y, Uenaka K, Nakamura T, Hynes SM, Lin AB (2015) Phase I study of LY2603618, a CHK1 inhibitor, in combination with gemcitabine in Japanese patients with solid tumors. Anticancer Drugs 26:1043–1053

    Article  PubMed  CAS  Google Scholar 

  • Eastman A, Kohn EA, Brown MK, Rathman J, Livingstone M, Blank DH, Gribble GW (2002) A novel indolocarbazole, ICP-1, abrogates DNA damage-induced cell cycle arrest and enhances cytotoxicity: similarities and differences to the cell cycle checkpoint abrogator UCN-01. Mol Cancer Ther 1:1067–1078

    PubMed  CAS  Google Scholar 

  • Engelke CG, Parsels LA, Qian Y, Zhang Q, Karnak D, Robertson JR, Tanska DM, Wei D, Davis MA, Parsels JD, Zhao L, Greenson JK, Lawrence TS, Maybaum J, Morgan MA (2013) Sensitization of pancreatic cancer to chemoradiation by the Chk1 inhibitor MK8776. Clin Cancer Res 19:4412–4421

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Fang DD, Cao J, Jani JP, Tsaparikos K, Blasina A, Kornmann J, Lira ME, Wang J, Jirout Z, Bingham J, Zhu Z, Gu Y, Los G, Hostomsky Z, Vanarsdale T (2013) Combined gemcitabine and CHK1 inhibitor treatment induces apoptosis resistance in cancer stem cell-like cells enriched with tumor spheroids from a non-small cell lung cancer cell line. Front Med 7:462–476

    Article  PubMed  Google Scholar 

  • Farmer H, McCabe N, Lord CJ, Tutt AN, Johnson DA, Richardson TB, Santarosa M, Dillon KJ, Hickson I, Knights C, Martin NM, Jackson SP, Smith GC, Ashworth A (2005) Targeting the DNA repair defect in BRCA mutant cells as a therapeutic strategy. Nature 434:917–921

    Article  PubMed  CAS  Google Scholar 

  • Ferrao PT, Bukczynska EP, Johnstone RW, McArthur GA (2012) Efficacy of CHK inhibitors as single agents in MYC-driven lymphoma cells. Oncogene 31:1661–1672

    Article  PubMed  CAS  Google Scholar 

  • Forment JV, Blasius M, Guerini I, Jackson SP (2011) Structure-specific DNA endonuclease Mus81/Eme1 generates DNA damage caused by Chk1 inactivation. PLoS One 6:e23517

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Fuse E, Kuwabara T, Sparreboom A, Sausville EA, Figg WD (2005) Review of UCN-01 development: a lesson in the importance of clinical pharmacology. J Clin Pharmacol 45:394–403

    Article  PubMed  CAS  Google Scholar 

  • Gao Q, Zhou J, Huang X, Chen G, Ye F, Lu Y, Li K, Zhuang L, Huang M, Xu G, Wang S, Ma D (2006) Selective targeting of checkpoint kinase 1 in tumor cells with a novel potent oncolytic adenovirus. Mol Ther 13:928–937

    Article  PubMed  CAS  Google Scholar 

  • Garrett MD, Collins I (2011) Anticancer therapy with checkpoint inhibitors: what, where and when? Trends Pharmacol Sci 32:308–316

    Article  PubMed  CAS  Google Scholar 

  • Goto H, Kasahara K, Inagaki M (2015) Novel insights into Chk1 regulation by phosphorylation. Cell Struct Funct 40:43–50

    Article  PubMed  CAS  Google Scholar 

  • Graves PR, Yu L, Schwarz JK, Gales J, Sausville EA, O’Connor PM, Piwnica-Worms H (2000) The Chk1 protein kinase and the Cdc25C regulatory pathways are targets of the anticancer agent UCN-01. J Biol Chem 275:5600–5605

    Article  PubMed  CAS  Google Scholar 

  • Greenow KR, Clarke AR, Williams GT, Jones R (2014) Wnt-driven intestinal tumourigenesis is suppressed by Chk1 deficiency but enhanced by conditional haploinsufficiency. Oncogene 33:4089–4096

    Article  PubMed  CAS  Google Scholar 

  • Guzi TJ, Paruch K, Dwyer MP, Labroli M, Shanahan F, Davis N, Taricani L, Wiswell D, Seghezzi W, Penaflor E, Bhagwat B, Wang W, Gu D, Hsieh Y, Lee S, Liu M, Parry D (2011) Targeting the replication checkpoint using SCH 900776, a potent and functionally selective CHK1 inhibitor identified via high content screening. Mol Cancer Ther 10:591–602

    Article  PubMed  CAS  Google Scholar 

  • Hahn M, Li W, Yu C, Rahmani M, Dent P, Grant S (2005) Rapamycin and UCN-01 synergistically induce apoptosis in human leukemia cells through a process that is regulated by the Raf-1/MEK/ERK, Akt, and JNK signal transduction pathways. Mol Cancer Ther 4:457–470

    PubMed  CAS  Google Scholar 

  • Harper JW, Elledge SJ (2007) The DNA damage response: ten years after. Mol Cell 28:739–745

    Article  PubMed  CAS  Google Scholar 

  • Hills SA, Diffley JF (2014) DNA replication and oncogene-induced replicative stress. Curr Biol 24:R435–R444

    Article  PubMed  CAS  Google Scholar 

  • Hirai H, Iwasawa Y, Okada M, Arai T, Nishibata T, Kobayashi M, Kimura T, Kaneko N, Ohtani J, Yamanaka K, Itadani H, Takahashi-Suzuki I, Fukasawa K, Oki H, Nambu T, Jiang J, Sakai T, Arakawa H, Sakamoto T, Sagara T, Yoshizumi T, Mizuarai S, Kotani H (2009) Small-molecule inhibition of Wee1 kinase by MK-1775 selectively sensitizes p53-deficient tumor cells to DNA-damaging agents. Mol Cancer Ther 8:2992–3000

    Article  PubMed  CAS  Google Scholar 

  • Hirai H, Arai T, Okada M, Nishibata T, Kobayashi M, Sakai N, Imagaki K, Ohtani J, Sakai T, Yoshizumi T, Mizuarai S, Iwasawa Y, Kotani H (2010) MK-1775, a small molecule Wee1 inhibitor, enhances anti-tumor efficacy of various DNA-damaging agents, including 5-fluorouracil. Cancer Biol Ther 9:514–522

    Article  PubMed  CAS  Google Scholar 

  • Hirose Y, Berger MS, Pieper RO (2001) Abrogation of the Chk1-mediated G(2) checkpoint pathway potentiates temozolomide-induced toxicity in a p53-independent manner in human glioblastoma cells. Cancer Res 61:5843–5849

    PubMed  CAS  Google Scholar 

  • Hoeijmakers JH (2009) DNA damage, aging, and cancer. N Engl J Med 361:1475–1485

    Article  PubMed  CAS  Google Scholar 

  • Hotte SJ, Oza A, Winquist EW, Moore M, Chen EX, Brown S, Pond GR, Dancey JE, Hirte HW (2006) Phase I trial of UCN-01 in combination with topotecan in patients with advanced solid cancers: a Princess Margaret Hospital Phase II Consortium study. Ann Oncol 17:334–340

    Article  PubMed  CAS  Google Scholar 

  • Iacobucci I, Di Rora AG, Falzacappa MV, Agostinelli C, Derenzini E, Ferrari A, Papayannidis C, Lonetti A, Righi S, Imbrogno E, Pomella S, Venturi C, Guadagnuolo V, Cattina F, Ottaviani E, Abbenante MC, Vitale A, Elia L, Russo D, Zinzani PL, Pileri S, Pelicci PG, Martinelli G (2015) In vitro and in vivo single-agent efficacy of checkpoint kinase inhibition in acute lymphoblastic leukemia. J Hematol Oncol 8:125

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Infante JR, Hollebecque A, Postel-Vinay S, Bauer TM, Blackwood EM, Evangelista M, Mahrus S, Peale FV, Lu X, Sahasranaman S, Zhu R, Chen Y, Ding X, Murray ER, Schutzman JL, Lauchle JO, Soria JC, LoRusso PM (2017) Phase I study of GDC-0425, a checkpoint kinase 1 inhibitor, in combination with gemcitabine in patients with refractory solid tumors. Clin Cancer Res 23:2423–2432

    Article  PubMed  CAS  Google Scholar 

  • Itamochi H, Nishimura M, Oumi N, Kato M, Oishi T, Shimada M, Sato S, Naniwa J, Sato S, Kudoh A, Kigawa J, Harada T (2014) Checkpoint kinase inhibitor AZD7762 overcomes cisplatin resistance in clear cell carcinoma of the ovary. Int J Gynecol Cancer 24:61–69

    Article  PubMed  Google Scholar 

  • Jia W, Yu C, Rahmani M, Krystal G, Sausville EA, Dent P, Grant S (2003) Synergistic antileukemic interactions between 17-AAG and UCN-01 involve interruption of RAF/MEK- and AKT-related pathways. Blood 102:1824–1832

    Article  PubMed  CAS  Google Scholar 

  • Jiang X, Zhao B, Britton R, Lim LY, Leong D, Sanghera JS, Zhou BB, Piers E, Andersen RJ, Roberge M (2004) Inhibition of Chk1 by the G2 DNA damage checkpoint inhibitor isogranulatimide. Mol Cancer Ther 3:1221–1227

    PubMed  CAS  Google Scholar 

  • Kaneko YS, Watanabe N, Morisaki H, Akita H, Fujimoto A, Tominaga K, Terasawa M, Tachibana A, Ikeda K, Nakanishi M (1999) Cell-cycle-dependent and ATM-independent expression of human Chk1 kinase. Oncogene 18:3673–3681

    Article  PubMed  CAS  Google Scholar 

  • Karp JE, Thomas BM, Greer JM, Sorge C, Gore SD, Pratz KW, Smith BD, Flatten KS, Peterson K, Schneider P, Mackey K, Freshwater T, Levis MJ, McDevitt MA, Carraway HE, Gladstone DE, Showel MM, Loechner S, Parry DA, Horowitz JA, Isaacs R, Kaufmann SH (2012) Phase I and pharmacologic trial of cytosine arabinoside with the selective checkpoint 1 inhibitor Sch 900776 in refractory acute leukemias. Clin Cancer Res 18:6723–6731

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kim MK, James J, Annunziata CM (2015) Topotecan synergizes with CHEK1 (CHK1) inhibitor to induce apoptosis in ovarian cancer cells. BMC Cancer 15:196

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • King C, Diaz H, Barnard D, Barda D, Clawson D, Blosser W, Cox K, Guo S, Marshall M (2014) Characterization and preclinical development of LY2603618: a selective and potent Chk1 inhibitor. Invest New Drugs 32:213–226

    Article  PubMed  CAS  Google Scholar 

  • King C, Diaz HB, McNeely S, Barnard D, Dempsey J, Blosser W, Beckmann R, Barda D, Marshall MS (2015) LY2606368 causes replication catastrophe and antitumor effects through CHK1-dependent mechanisms. Mol Cancer Ther 14:2004–2013

    Article  PubMed  CAS  Google Scholar 

  • Kohn EA, Yoo CJ, Eastman A (2003) The protein kinase C inhibitor Go6976 is a potent inhibitor of DNA damage-induced S and G2 cell cycle checkpoints. Cancer Res 63:31–35

    PubMed  CAS  Google Scholar 

  • Laquente B, Lopez-Martin J, Richards D, Illerhaus G, Chang DZ, Kim G, Stella P, Richel D, Szcylik C, Cascinu S, Frassineti GL, Ciuleanu T, Hurt K, Hynes S, Lin J, Lin AB, Von Hoff D, Calvo E (2017) A phase II study to evaluate LY2603618 in combination with gemcitabine in pancreatic cancer patients. BMC Cancer 17:137

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lara PN Jr, Mack PC, Synold T, Frankel P, Longmate J, Gumerlock PH, Doroshow JH, Gandara DR (2005) The cyclin-dependent kinase inhibitor UCN-01 plus cisplatin in advanced solid tumors: a California cancer consortium phase I pharmacokinetic and molecular correlative trial. Clin Cancer Res 11:4444–4450

    Article  PubMed  CAS  Google Scholar 

  • Lau CC, Pardee AB (1982) Mechanism by which caffeine potentiates lethality of nitrogen mustard. Proc Natl Acad Sci U S A 79:2942–2946

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lee J, Kumagai A, Dunphy WG (2001) Positive regulation of Wee1 by Chk1 and 14-3-3 proteins. Mol Biol Cell 12:551–563

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lee JH, Choy ML, Ngo L, Venta-Perez G, Marks PA (2011) Role of checkpoint kinase 1 (Chk1) in the mechanisms of resistance to histone deacetylase inhibitors. Proc Natl Acad Sci U S A 108:19629–19634

    Article  PubMed  PubMed Central  Google Scholar 

  • Lindqvist A, Rodriguez-Bravo V, Medema RH (2009) The decision to enter mitosis: feedback and redundancy in the mitotic entry network. J Cell Biol 185:193–202

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Liu Q, Guntuku S, Cui XS, Matsuoka S, Cortez D, Tamai K, Luo G, Carattini-Rivera S, DeMayo F, Bradley A, Donehower LA, Elledge SJ (2000) Chk1 is an essential kinase that is regulated by Atr and required for the G(2)/M DNA damage checkpoint. Genes Dev 14:1448–1459

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lord CJ, Tutt AN, Ashworth A (2015) Synthetic lethality and cancer therapy: lessons learned from the development of PARP inhibitors. Annu Rev Med 66:455–470

    Article  PubMed  CAS  Google Scholar 

  • Ma CX, Ellis MJ, Petroni GR, Guo Z, Cai SR, Ryan CE, Craig Lockhart A, Naughton MJ, Pluard TJ, Brenin CM, Picus J, Creekmore AN, Mwandoro T, Yarde ER, Reed J, Ebbert M, Bernard PS, Watson M, Doyle LA, Dancey J, Piwnica-Worms H, Fracasso PM (2013) A phase II study of UCN-01 in combination with irinotecan in patients with metastatic triple negative breast cancer. Breast Cancer Res Treat 137:483–492

    Article  PubMed  CAS  Google Scholar 

  • MacDougall CA, Byun TS, Van C, Yee MC, Cimprich KA (2007) The structural determinants of checkpoint activation. Genes Dev 21:898–903

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Magnussen GI, Emilsen E, Giller Fleten K, Engesaeter B, Nahse-Kumpf V, Fjaer R, Slipicevic A, Florenes VA (2015) Combined inhibition of the cell cycle related proteins Wee1 and Chk1/2 induces synergistic anti-cancer effect in melanoma. BMC Cancer 15:462

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mailand N, Falck J, Lukas C, Syljuasen RG, Welcker M, Bartek J, Lukas J (2000) Rapid destruction of human Cdc25A in response to DNA damage. Science 288:1425–1429

    Article  PubMed  CAS  Google Scholar 

  • Mak JP, Man WY, Chow JP, Ma HT, Poon RY (2015) Pharmacological inactivation of CHK1 and WEE1 induces mitotic catastrophe in nasopharyngeal carcinoma cells. Oncotarget 6:21074–21084

    PubMed  PubMed Central  Google Scholar 

  • Martincorena I, Roshan A, Gerstung M, Ellis P, Van Loo P, McLaren S, Wedge DC, Fullam A, Alexandrov LB, Tubio JM, Stebbings L, Menzies A, Widaa S, Stratton MR, Jones PH, Campbell PJ (2015) Tumor evolution. High burden and pervasive positive selection of somatic mutations in normal human skin. Science 348:880–886

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Matthews DJ, Yakes FM, Chen J, Tadano M, Bornheim L, Clary DO, Tai A, Wagner JM, Miller N, Kim YD, Robertson S, Murray L, Karnitz LM (2007) Pharmacological abrogation of S-phase checkpoint enhances the anti-tumor activity of gemcitabine in vivo. Cell Cycle 6:104–110

    Article  PubMed  CAS  Google Scholar 

  • McNeely S, Beckmann R, Bence Lin AK (2014) CHEK again: revisiting the development of CHK1 inhibitors for cancer therapy. Pharmacol Ther 142:1–10

    Article  PubMed  CAS  Google Scholar 

  • Mesa RA, Loegering D, Powell HL, Flatten K, Arlander SJ, Dai NT, Heldebrant MP, Vroman BT, Smith BD, Karp JE, Eyck CJ, Erlichman C, Kaufmann SH, Karnitz LM (2005) Heat shock protein 90 inhibition sensitizes acute myelogenous leukemia cells to cytarabine. Blood 106:318–327

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Meuth M (2010) Chk1 suppressed cell death. Cell Div 5:21

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mitchell JB, Choudhuri R, Fabre K, Sowers AL, Citrin D, Zabludoff SD, Cook JA (2010) In vitro and in vivo radiation sensitization of human tumor cells by a novel checkpoint kinase inhibitor, AZD7762. Clin Cancer Res 16:2076–2084

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mitchell C, Hamed HA, Cruickshanks N, Tang Y, Bareford MD, Hubbard N, Tye G, Yacoub A, Dai Y, Grant S, Dent P (2011) Simultaneous exposure of transformed cells to SRC family inhibitors and CHK1 inhibitors causes cell death. Cancer Biol Ther 12:215–228

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Montano R, Chung I, Garner KM, Parry D, Eastman A (2012) Preclinical development of the novel Chk1 inhibitor SCH900776 in combination with DNA-damaging agents and antimetabolites. Mol Cancer Ther 11:427–438

    Article  PubMed  CAS  Google Scholar 

  • Morgan MA, Parsels LA, Zhao L, Parsels JD, Davis MA, Hassan MC, Arumugarajah S, Hylander-Gans L, Morosini D, Simeone DM, Canman CE, Normolle DP, Zabludoff SD, Maybaum J, Lawrence TS (2010) Mechanism of radiosensitization by the Chk1/2 inhibitor AZD7762 involves abrogation of the G2 checkpoint and inhibition of homologous recombinational DNA repair. Cancer Res 70:4972–4981

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Muller PA, Vousden KH (2013) p53 mutations in cancer. Nat Cell Biol 15:2–8

    Article  PubMed  CAS  Google Scholar 

  • Murga M, Campaner S, Lopez-Contreras AJ, Toledo LI, Soria R, Montana MF, D’Artista L, Schleker T, Guerra C, Garcia E, Barbacid M, Hidalgo M, Amati B, Fernandez-Capetillo O (2011) Exploiting oncogene-induced replicative stress for the selective killing of Myc-driven tumors. Nat Struct Mol Biol 18:1331–1335

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • O’Connor MJ (2015) Targeting the DNA damage response in cancer. Mol Cell 60:547–560

    Article  PubMed  CAS  Google Scholar 

  • Paulsen RD, Cimprich KA (2007) The ATR pathway: fine-tuning the fork. DNA Repair 6:953–966

    Article  PubMed  CAS  Google Scholar 

  • Pei XY, Dai Y, Youssefian LE, Chen S, Bodie WW, Takabatake Y, Felthousen J, Almenara JA, Kramer LB, Dent P, Grant S (2011) Cytokinetically quiescent (G0/G1) human multiple myeloma cells are susceptible to simultaneous inhibition of Chk1 and MEK1/2. Blood 118:5189–5200

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Peng CY, Graves PR, Thoma RS, Wu Z, Shaw AS, Piwnica-Worms H (1997) Mitotic and G2 checkpoint control: regulation of 14-3-3 protein binding by phosphorylation of Cdc25C on serine-216. Science 277:1501–1505

    Article  PubMed  CAS  Google Scholar 

  • Perez RP, Lewis LD, Beelen AP, Olszanski AJ, Johnston N, Rhodes CH, Beaulieu B, Ernstoff MS, Eastman A (2006) Modulation of cell cycle progression in human tumors: a pharmacokinetic and tumor molecular pharmacodynamic study of cisplatin plus the Chk1 inhibitor UCN-01 (NSC 638850). Clin Cancer Res 12:7079–7085

    Article  PubMed  CAS  Google Scholar 

  • Puigvert JC, Sanjiv K, Helleday T (2016) Targeting DNA repair, DNA metabolism and replication stress as anti-cancer strategies. FEBS J 283:232–245

    Article  PubMed  CAS  Google Scholar 

  • Qi W, Xie C, Li C, Caldwell JT, Edwards H, Taub JW, Wang Y, Lin H, Ge Y (2014) CHK1 plays a critical role in the anti-leukemic activity of the wee1 inhibitor MK-1775 in acute myeloid leukemia cells. J Hematol Oncol 7:53

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rawlinson R, Massey AJ (2014) gammaH2AX and Chk1 phosphorylation as predictive pharmacodynamic biomarkers of Chk1 inhibitor-chemotherapy combination treatments. BMC cancer 14:483

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ren Q, Liu R, Dicker A, Wang Y (2005) CHK1 affects cell sensitivity to microtubule-targeted drugs. J Cell Physiol 203:273–276

    Article  PubMed  CAS  Google Scholar 

  • Russell MR, Levin K, Rader J, Belcastro L, Li Y, Martinez D, Pawel B, Shumway SD, Maris JM, Cole KA (2013) Combination therapy targeting the Chk1 and Wee1 kinases shows therapeutic efficacy in neuroblastoma. Cancer Res 73:776–784

    Article  PubMed  CAS  Google Scholar 

  • Sakurikar N, Eastman A (2015) Will targeting Chk1 have a role in the future of cancer therapy? J Clin Oncol Off J Am Soc Clin Oncol 33:1075–1077

    Article  CAS  Google Scholar 

  • Sakurikar N, Thompson R, Montano R, Eastman A (2016) A subset of cancer cell lines is acutely sensitive to the Chk1 inhibitor MK-8776 as monotherapy due to CDK2 activation in S phase. Oncotarget 7:1380–1394

    Article  PubMed  Google Scholar 

  • Sampath D, Cortes J, Estrov Z, Du M, Shi Z, Andreeff M, Gandhi V, Plunkett W (2006) Pharmacodynamics of cytarabine alone and in combination with 7-hydroxystaurosporine (UCN-01) in AML blasts in vitro and during a clinical trial. Blood 107:2517–2524

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sanjiv K, Hagenkort A, Calderon-Montano JM, Koolmeister T, Reaper PM, Mortusewicz O, Jacques SA, Kuiper RV, Schultz N, Scobie M, Charlton PA, Pollard JR, Berglund UW, Altun M, Helleday T (2016) Cancer-specific synthetic lethality between ATR and CHK1 kinase activities. Cell Rep 14:298–309

    Article  PubMed  CAS  Google Scholar 

  • Sarcar B, Kahali S, Prabhu AH, Shumway SD, Xu Y, Demuth T, Chinnaiyan P (2011) Targeting radiation-induced G(2) checkpoint activation with the Wee-1 inhibitor MK-1775 in glioblastoma cell lines. Mol Cancer Ther 10:2405–2414

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sausville E, Lorusso P, Carducci M, Carter J, Quinn MF, Malburg L, Azad N, Cosgrove D, Knight R, Barker P, Zabludoff S, Agbo F, Oakes P, Senderowicz A (2014) Phase I dose-escalation study of AZD7762, a checkpoint kinase inhibitor, in combination with gemcitabine in US patients with advanced solid tumors. Cancer Chemother Pharmacol 73:539–549

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Scagliotti G, Kang JH, Smith D, Rosenberg R, Park K, Kim SW, Su WC, Boyd TE, Richards DA, Novello S, Hynes SM, Myrand SP, Lin J, Smyth EN, Wijayawardana S, Lin AB, Pinder-Schenck M (2016) Phase II evaluation of LY2603618, a first-generation CHK1 inhibitor, in combination with pemetrexed in patients with advanced or metastatic non-small cell lung cancer. Invest New Drugs 34:625–635

    Article  PubMed  CAS  Google Scholar 

  • Schenk EL, Koh BD, Flatten KS, Peterson KL, Parry D, Hess AD, Smith BD, Karp JE, Karnitz LM, Kaufmann SH (2012) Effects of selective checkpoint kinase 1 inhibition on cytarabine cytotoxicity in acute myelogenous leukemia cells in vitro. Clin Cancer Res 18:5364–5373

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Seto T, Esaki T, Hirai F, Arita S, Nosaki K, Makiyama A, Kometani T, Fujimoto C, Hamatake M, Takeoka H, Agbo F, Shi X (2013) Phase I, dose-escalation study of AZD7762 alone and in combination with gemcitabine in Japanese patients with advanced solid tumours. Cancer Chemother Pharmacol 72:619–627

    Article  PubMed  CAS  Google Scholar 

  • Shao RG, Cao CX, Pommier Y (2004) Abrogation of Chk1-mediated S/G2 checkpoint by UCN-01 enhances ara-C-induced cytotoxicity in human colon cancer cells. Acta Pharmacol Sin 25:756–762

    PubMed  CAS  Google Scholar 

  • Signore M, Pelacchi F, di Martino S, Runci D, Biffoni M, Giannetti S, Morgante L, De Majo M, Petricoin EF, Stancato L, Larocca LM, De Maria R, Pallini R, Ricci-Vitiani L (2014) Combined PDK1 and CHK1 inhibition is required to kill glioblastoma stem-like cells in vitro and in vivo. Cell Death Dis 5:e1223

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Smith J, Tho LM, Xu N, Gillespie DA (2010) The ATM-Chk2 and ATR-Chk1 pathways in DNA damage signaling and cancer. Adv Cancer Res 108:73–112

    Article  PubMed  CAS  Google Scholar 

  • Smits VA, Gillespie DA (2015) DNA damage control: regulation and functions of checkpoint kinase 1. FEBS J 282:3681–3692

    Article  PubMed  CAS  Google Scholar 

  • Smits VA, Reaper PM, Jackson SP (2006) Rapid PIKK-dependent release of Chk1 from chromatin promotes the DNA-damage checkpoint response. Curr Biol 16:150–159

    Article  PubMed  CAS  Google Scholar 

  • Sorensen CS, Syljuasen RG, Falck J, Schroeder T, Ronnstrand L, Khanna KK, Zhou BB, Bartek J, Lukas J (2003) Chk1 regulates the S phase checkpoint by coupling the physiological turnover and ionizing radiation-induced accelerated proteolysis of Cdc25A. Cancer Cell 3:247–258

    Article  PubMed  CAS  Google Scholar 

  • Sorensen CS, Hansen LT, Dziegielewski J, Syljuasen RG, Lundin C, Bartek J, Helleday T (2005) The cell-cycle checkpoint kinase Chk1 is required for mammalian homologous recombination repair. Nat Cell Biol 7:195–201

    Article  PubMed  CAS  Google Scholar 

  • Syljuasen RG, Sorensen CS, Nylandsted J, Lukas C, Lukas J, Bartek J (2004) Inhibition of Chk1 by CEP-3891 accelerates mitotic nuclear fragmentation in response to ionizing radiation. Cancer Res 64:9035–9040

    Article  PubMed  CAS  Google Scholar 

  • Symington LS, Gautier J (2011) Double-strand break end resection and repair pathway choice. Annu Rev Genet 45:247–271

    Article  PubMed  CAS  Google Scholar 

  • Tang Y, Hamed HA, Poklepovic A, Dai Y, Grant S, Dent P (2012) Poly(ADP-ribose) polymerase 1 modulates the lethality of CHK1 inhibitors in mammary tumors. Mol Pharmacol 82:322–332

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tho LM, Libertini S, Rampling R, Sansom O, Gillespie DA (2012) Chk1 is essential for chemical carcinogen-induced mouse skin tumorigenesis. Oncogene 31:1366–1375

    Article  PubMed  CAS  Google Scholar 

  • Thompson R, Montano R, Eastman A (2012) The Mre11 nuclease is critical for the sensitivity of cells to Chk1 inhibition. PLoS One 7:e44021

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Toledo LI, Altmeyer M, Rask MB, Lukas C, Larsen DH, Povlsen LK, Bekker-Jensen S, Mailand N, Bartek J, Lukas J (2013) ATR prohibits replication catastrophe by preventing global exhaustion of RPA. Cell 155:1088–1103

    Article  PubMed  CAS  Google Scholar 

  • Tse AN, Schwartz GK (2004) Potentiation of cytotoxicity of topoisomerase I poison by concurrent and sequential treatment with the checkpoint inhibitor UCN-01 involves disparate mechanisms resulting in either p53-independent clonogenic suppression or p53-dependent mitotic catastrophe. Cancer Res 64:6635–6644

    Article  PubMed  CAS  Google Scholar 

  • Tse AN, Rendahl KG, Sheikh T, Cheema H, Aardalen K, Embry M, Ma S, Moler EJ, Ni ZJ, Lopes de Menezes DE, Hibner B, Gesner TG, Schwartz GK (2007) CHIR-124, a novel potent inhibitor of Chk1, potentiates the cytotoxicity of topoisomerase I poisons in vitro and in vivo. Clin Cancer Res 13:591–602

    Article  PubMed  CAS  Google Scholar 

  • Tse AN, Sheikh TN, Alan H, Chou TC, Schwartz GK (2009) 90-kDa heat shock protein inhibition abrogates the topoisomerase I poison-induced G2/M checkpoint in p53-null tumor cells by depleting Chk1 and Wee1. Mol Pharmacol 75:124–133

    Article  PubMed  CAS  Google Scholar 

  • Vance S, Liu E, Zhao L, Parsels JD, Parsels LA, Brown JL, Maybaum J, Lawrence TS, Morgan MA (2011) Selective radiosensitization of p53 mutant pancreatic cancer cells by combined inhibition of Chk1 and PARP1. Cell Cycle 10:4321–4329

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Verlinden L, Vanden Bempt I, Eelen G, Drijkoningen M, Verlinden I, Marchal K, De Wolf-Peeters C, Christiaens MR, Michiels L, Bouillon R, Verstuyf A (2007) The E2F-regulated gene Chk1 is highly expressed in triple-negative estrogen receptor/progesterone receptor/HER-2 breast carcinomas. Cancer Res 67:6574–6581

    Article  PubMed  CAS  Google Scholar 

  • Walker M, Black EJ, Oehler V, Gillespie DA, Scott MT (2009) Chk1 C-terminal regulatory phosphorylation mediates checkpoint activation by de-repression of Chk1 catalytic activity. Oncogene 28:2314–2323

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Walton MI, Eve PD, Hayes A, Valenti M, De Haven Brandon A, Box G, Boxall KJ, Aherne GW, Eccles SA, Raynaud FI, Williams DH, Reader JC, Collins I, Garrett MD (2010) The preclinical pharmacology and therapeutic activity of the novel CHK1 inhibitor SAR-020106. Mol Cancer Ther 9:89–100

    Article  PubMed  CAS  Google Scholar 

  • Walton MI, Eve PD, Hayes A, Valenti MR, De Haven Brandon AK, Box G, Hallsworth A, Smith EL, Boxall KJ, Lainchbury M, Matthews TP, Jamin Y, Robinson SP, Aherne GW, Reader JC, Chesler L, Raynaud FI, Eccles SA, Collins I, Garrett MD (2012) CCT244747 is a novel potent and selective CHK1 inhibitor with oral efficacy alone and in combination with genotoxic anticancer drugs. Clin Cancer Res 18:5650–5661

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Walton MI, Eve PD, Hayes A, Henley AT, Valenti MR, De Haven Brandon AK, Box G, Boxall KJ, Tall M, Swales K, Matthews TP, McHardy T, Lainchbury M, Osborne J, Hunter JE, Perkins ND, Aherne GW, Reader JC, Raynaud FI, Eccles SA, Collins I, Garrett MD (2016) The clinical development candidate CCT245737 is an orally active CHK1 inhibitor with preclinical activity in RAS mutant NSCLC and Emicro-MYC driven B-cell lymphoma. Oncotarget 7:2329–2342

    Article  PubMed  Google Scholar 

  • Walworth NC, Bernards R (1996) rad-dependent response of the ChK1-encoded protein kinase at the DNA damage checkpoint. Science 271:353–356

    Article  PubMed  CAS  Google Scholar 

  • Wang FZ, Fei HR, Cui YJ, Sun YK, Li ZM, Wang XY, Yang XY, Zhang JG, Sun BL (2014) The checkpoint 1 kinase inhibitor LY2603618 induces cell cycle arrest, DNA damage response and autophagy in cancer cells. Apoptosis 19:1389–1398

    Article  PubMed  CAS  Google Scholar 

  • Wehler T, Thomas M, Schumann C, Bosch-Barrera J, Vinolas Segarra N, Dickgreber NJ, Dalhoff K, Sebastian M, Corral Jaime J, Alonso M, Hynes SM, Lin J, Hurt K, Bence Lin A, Calvo E, Paz-Ares L (2017) A randomized, phase 2 evaluation of the CHK1 inhibitor, LY2603618, administered in combination with pemetrexed and cisplatin in patients with advanced nonsquamous non-small cell lung cancer. Lung Cancer 108:212–216

    Article  PubMed  Google Scholar 

  • Weiss GJ, Donehower RC, Iyengar T, Ramanathan RK, Lewandowski K, Westin E, Hurt K, Hynes SM, Anthony SP, McKane S (2013) Phase I dose-escalation study to examine the safety and tolerability of LY2603618, a checkpoint 1 kinase inhibitor, administered 1 day after pemetrexed 500 mg/m(2) every 21 days in patients with cancer. Invest New Drugs 31:136–144

    Article  PubMed  CAS  Google Scholar 

  • Wilsker D, Petermann E, Helleday T, Bunz F (2008) Essential function of Chk1 can be uncoupled from DNA damage checkpoint and replication control. Proc Natl Acad Sci U S A 105:20752–20757

    Article  PubMed  PubMed Central  Google Scholar 

  • Xiao Z, Xue J, Semizarov D, Sowin TJ, Rosenberg SH, Zhang H (2005) Novel indication for cancer therapy: Chk1 inhibition sensitizes tumor cells to antimitotics. Int J Cancer 115:528–538

    Article  PubMed  CAS  Google Scholar 

  • Xie C, Drenberg C, Edwards H, Caldwell JT, Chen W, Inaba H, Xu X, Buck SA, Taub JW, Baker SD, Ge Y (2013) Panobinostat enhances cytarabine and daunorubicin sensitivities in AML cells through suppressing the expression of BRCA1, CHK1, and Rad51. PLoS One 8:e79106

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Xu H, Cheung IY, Wei XX, Tran H, Gao X, Cheung NK (2011) Checkpoint kinase inhibitor synergizes with DNA-damaging agents in G1 checkpoint-defective neuroblastoma. Int J Cancer 129:1953–1962

    Article  PubMed  CAS  Google Scholar 

  • Yang H, Yoon SJ, Jin J, Choi SH, Seol HJ, Lee JI, Nam DH, Yoo HY (2011) Inhibition of checkpoint kinase 1 sensitizes lung cancer brain metastases to radiotherapy. Biochem Biophys Res Commun 406:53–58

    Article  PubMed  CAS  Google Scholar 

  • Yao Q, Weigel B, Kersey J (2007) Synergism between etoposide and 17-AAG in leukemia cells: critical roles for Hsp90, FLT3, topoisomerase II, Chk1, and Rad51. Clin Cancer Res 13:1591–1600

    Article  PubMed  CAS  Google Scholar 

  • Yu Q, La Rose J, Zhang H, Takemura H, Kohn KW, Pommier Y (2002a) UCN-01 inhibits p53 up-regulation and abrogates gamma-radiation-induced G(2)-M checkpoint independently of p53 by targeting both of the checkpoint kinases, Chk2 and Chk1. Cancer Res 62:5743–5748

    PubMed  CAS  Google Scholar 

  • Yu C, Dai Y, Dent P, Grant S (2002b) Coadministration of UCN-01 with MEK1/2 inhibitors potently induces apoptosis in BCR/ABL+ leukemia cells sensitive and resistant to ST1571. Cancer Biol Ther 1:674–682

    Article  PubMed  CAS  Google Scholar 

  • Zabludoff SD, Deng C, Grondine MR, Sheehy AM, Ashwell S, Caleb BL, Green S, Haye HR, Horn CL, Janetka JW, Liu D, Mouchet E, Ready S, Rosenthal JL, Queva C, Schwartz GK, Taylor KJ, Tse AN, Walker GE, White AM (2008) AZD7762, a novel checkpoint kinase inhibitor, drives checkpoint abrogation and potentiates DNA-targeted therapies. Mol Cancer Ther 7:2955–2966

    Article  PubMed  CAS  Google Scholar 

  • Zachos G, Rainey MD, Gillespie DA (2003) Chk1-deficient tumour cells are viable but exhibit multiple checkpoint and survival defects. EMBO J 22:713–723

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zachos G, Rainey MD, Gillespie DA (2005) Chk1-dependent S-M checkpoint delay in vertebrate cells is linked to maintenance of viable replication structures. Mol Cell Biol 25:563–574

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zachos G, Black EJ, Walker M, Scott MT, Vagnarelli P, Earnshaw WC, Gillespie DA (2007) Chk1 is required for spindle checkpoint function. Dev Cell 12:247–260

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zeman MK, Cimprich KA (2014) Causes and consequences of replication stress. Nat Cell Biol 16:2–9

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • von Zglinicki T, Saretzki G, Ladhoff J, d’Adda di Fagagna F, Jackson SP (2005) Human cell senescence as a DNA damage response. Mech Ageing Dev 126:111–117

    Article  CAS  Google Scholar 

  • Zhang C, Yan Z, Painter CL, Zhang Q, Chen E, Arango ME, Kuszpit K, Zasadny K, Hallin M, Hallin J, Wong A, Buckman D, Sun G, Qiu M, Anderes K, Christensen JG (2009) PF-00477736 mediates checkpoint kinase 1 signaling pathway and potentiates docetaxel-induced efficacy in xenografts. Clin Cancer Res 15:4630–4640

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

D.A.G. acknowledges the IMBRAIN Project (FP7-REGPOT-2012-CT2012-31637-IMBRAIN: EU FP7 and Gobierno de Canarias) and World Wide Cancer Research Project Grant 12-0149 for financial support.

Conflict of Interest There are no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David A. Gillespie .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gillespie, D.A. (2018). Targeting CHK1 for Cancer Therapy: Rationale, Progress and Prospects. In: Pollard, J., Curtin, N. (eds) Targeting the DNA Damage Response for Anti-Cancer Therapy. Cancer Drug Discovery and Development. Humana Press, Cham. https://doi.org/10.1007/978-3-319-75836-7_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-75836-7_9

  • Published:

  • Publisher Name: Humana Press, Cham

  • Print ISBN: 978-3-319-75834-3

  • Online ISBN: 978-3-319-75836-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics