Skip to main content

ATM: Its Recruitment, Activation, Signalling and Contribution to Tumour Suppression

  • Chapter
  • First Online:
Targeting the DNA Damage Response for Anti-Cancer Therapy

Part of the book series: Cancer Drug Discovery and Development ((CDD&D))

  • 974 Accesses

Abstract

DNA double strand breaks (DSBs) are a critical lesion for cancer etiology. Most cancer cells incur increased DNA breakage to enhance genomic instability. The DSB damage response encompasses pathways of repair and a signal transduction pathway. The ataxia telangiectasia mutated (ATM) kinase lies at the centre of the signalling response. ATM is not essential for the major DSB repair process in mammalian cells but influences DSB repair, including its accuracy, in multiple ways. ATM is activated by DSBs to promote cell cycle checkpoint arrest and apoptosis. There is mounting evidence that ATM is active endogenously and/or that it can be activated by non-DSB routes, including oxidative damage. It plays an important role in regulating cellular redox status. The tumour suppressor functions of ATM are discussed. Paradoxically, since elevated DSBs arise in cancer cells, despite being a tumour suppressor, pharmacological inhibition of ATM is a promising route for cancer therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alagoz M, Katsuki Y, Ogiwara H, Ogi T, Shibata A, Kakarougkas A, Jeggo P (2015) SETDB1, HP1 and SUV39 promote repositioning of 53BP1 to extend resection during homologous recombination in G2 cells. Nucleic Acids Res 43:7931–7944

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Alatwi HE, Downs JA (2015) Removal of H2A.Z by INO80 promotes homologous recombination. EMBO Rep 16:986–994

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Albarakati N, Abdel-Fatah TM, Doherty R, Russell R, Agarwal D, Moseley P, Perry C, Arora A, Alsubhi N, Seedhouse C et al (2015) Targeting BRCA1-BER deficient breast cancer by ATM or DNA-PKcs blockade either alone or in combination with cisplatin for personalized therapy. Mol Oncol 9:204–217

    Article  PubMed  CAS  Google Scholar 

  • Ayrapetov MK, Gursoy-Yuzugullu O, Xu C, Xu Y, Price BD (2014) DNA double-strand breaks promote methylation of histone H3 on lysine 9 and transient formation of repressive chromatin. Proc Natl Acad Sci U S A 111:9169–9174

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bakkenist CJ, Kastan MB (2003) DNA damage activates ATM through intermolecular autophosphorylation and dimer dissociation. Nature 421:499–506

    Article  PubMed  CAS  Google Scholar 

  • Bakkenist CJ, Kastan MB (2015) Chromatin perturbations during the DNA damage response in higher eukaryotes. DNA Repair 36:8–12

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Baldeyron C, Soria G, Roche D, Cook AJ, Almouzni G (2011) HP1alpha recruitment to DNA damage by p150CAF-1 promotes homologous recombination repair. J Cell Biol 193:81–95

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Barazzuol L, Rickett N, Ju L, Jeggo PA (2015) Low levels of endogenous or X-ray-induced DNA double-strand breaks activate apoptosis in adult neural stem cells. J Cell Sci 128:3597–3606

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bartek J, Lukas J (2001) Pathways governing G1/S transition and their response to DNA damage. FEBS Lett 490:117–122

    Article  PubMed  CAS  Google Scholar 

  • Bartek J, Lukas J (2007) DNA damage checkpoints: from initiation to recovery or adaptation. Curr Opin Cell Biol 19:238–245

    Article  PubMed  CAS  Google Scholar 

  • Bartek J, Lukas C, Lukas J (2004) Checking on DNA damage in S phase. Nat Rev Mol Cell Biol 5:792–804

    Article  PubMed  CAS  Google Scholar 

  • Barzilai A, Rotman G, Shiloh Y (2002) ATM deficiency and oxidative stress: a new dimension of defective response to DNA damage. DNA Repair 1:3–25

    Article  PubMed  CAS  Google Scholar 

  • Beamish H, Lavin MF (1994) Radiosensitivity in ataxia-telangiectasia: anomalies in radiation-induced cell cycle delay. Int J Radiat Biol 65:175–184

    Article  PubMed  CAS  Google Scholar 

  • Berkovich E, Monnat RJ Jr, Kastan MB (2007) Roles of ATM and NBS1 in chromatin structure modulation and DNA double-strand break repair. Nat Cell Biol 9:683–690

    Article  PubMed  CAS  Google Scholar 

  • Beucher A, Birraux J, Tchouandong L, Barton O, Shibata A, Conrad S, Goodarzi AA, Krempler A, Jeggo PA, Lobrich M (2009) ATM and Artemis promote homologous recombination of radiation-induced DNA double-strand breaks in G2. EMBO J 28:3413–3427

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bhoumik A, Singha N, O’Connell MJ, Ronai ZA (2008) Regulation of TIP60 by ATF2 modulates ATM activation. J Biol Chem 283:17605–17614

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Biehs R, Steinlage M, Barton O, Juhasz S, Kunzel J, Spies J, Shibata A, Jeggo PA, Lobrich M (2017) DNA double-strand break resection occurs during non-homologous end joining in G1 but is distinct from resection during homologous recombination. Mol Cell 65:671–684.e5

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Burgess RC, Burman B, Kruhlak MJ, Misteli T (2014) Activation of DNA damage response signaling by condensed chromatin. Cell Rep 9:1703–1717

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Celeste A, Petersen S, Romanienko PJ, Fernandez-Capetillo O, Chen HT, Sedelnikova OA, Reina-San-Martin B, Coppola V, Meffre E, Difilippantonio MJ et al (2002) Genomic instability in mice lacking histone H2AX. Science 296:922–927

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Clouaire T, Legube G (2015) DNA double strand break repair pathway choice: a chromatin based decision? Nucleus 6:107–113

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cornforth MN, Bedford JS (1985) On the nature of a defect in cells from individuals with ataxia-telangiectasia. Science 227:1589–1591

    Article  PubMed  CAS  Google Scholar 

  • Cosentino C, Grieco D, Costanzo V (2011) ATM activates the pentose phosphate pathway promoting anti-oxidant defence and DNA repair. EMBO J 30:546–555

    Article  PubMed  CAS  Google Scholar 

  • Daniel JA, Pellegrini M, Lee JH, Paull TT, Feigenbaum L, Nussenzweig A (2008) Multiple autophosphorylation sites are dispensable for murine ATM activation in vivo. J Cell Biol 183:777–783

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Deckbar D, Birraux J, Krempler A, Tchouandong L, Beucher A, Walker S, Stiff T, Jeggo P, Lobrich M (2007) Chromosome breakage after G2 checkpoint release. J Cell Biol 176:749–755

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Deckbar D, Stiff T, Koch B, Reis C, Lobrich M, Jeggo PA (2010) The limitations of the G1-S checkpoint. Cancer Res 70:4412–4421

    Article  PubMed  CAS  Google Scholar 

  • Deckbar D, Jeggo PA, Lobrich M (2011) Understanding the limitations of radiation-induced cell cycle checkpoints. Crit Rev Biochem Mol Biol 46:271–283

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Du F, Zhang M, Li X, Yang C, Meng H, Wang D, Chang S, Xu Y, Price B, Sun Y (2014) Dimer monomer transition and dimer re-formation play important role for ATM cellular function during DNA repair. Biochem Biophys Res Commun 452:1034–1039

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Eaton JS, Lin ZP, Sartorelli AC, Bonawitz ND, Shadel GS (2007) Ataxia-telangiectasia mutated kinase regulates ribonucleotide reductase and mitochondrial homeostasis. J Clin Invest 117:2723–2734

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Falck J, Mailand N, Syljuasen RG, Bartek J, Lukas J (2001) The ATM-Chk2-Cdc25A checkpoint pathway guards against radioresistant DNA synthesis. Nature 410:842–847

    Article  PubMed  CAS  Google Scholar 

  • Falck J, Petrini JH, Williams BR, Lukas J, Bartek J (2002) The DNA damage-dependent intra-S phase checkpoint is regulated by parallel pathways. Nat Genet 30:290–294

    Article  PubMed  Google Scholar 

  • Falck J, Coates J, Jackson SP (2005) Conserved modes of recruitment of ATM, ATR and DNA-PKcs to sites of DNA damage. Nature 434:605–611

    Article  PubMed  CAS  Google Scholar 

  • Fradet-Turcotte A, Canny MD, Escribano-Diaz C, Orthwein A, Leung CC, Huang H, Landry MC, Kitevski-LeBlanc J, Noordermeer SM, Sicheri F et al (2013) 53BP1 is a reader of the DNA-damage-induced H2A Lys 15 ubiquitin mark. Nature 499:50–54

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Fugger K, Mistrik M, Neelsen KJ, Yao Q, Zellweger R, Kousholt AN, Haahr P, Chu WK, Bartek J, Lopes M et al (2015) FBH1 catalyzes regression of stalled replication forks. Cell Rep. https://doi.org/10.1016/j.celrep.2015.02.028

  • Goldberg M, Stucki M, Falck J, D’Amours D, Rahman D, Pappin D, Bartek J, Jackson SP (2003) MDC1 is required for the intra-S-phase DNA damage checkpoint. Nature 421:952–956

    Article  PubMed  CAS  Google Scholar 

  • Grinthal A, Adamovic I, Weiner B, Karplus M, Kleckner N (2010) PR65, the HEAT-repeat scaffold of phosphatase PP2A, is an elastic connector that links force and catalysis. Proc Natl Acad Sci U S A 107:2467–2472

    Article  PubMed  PubMed Central  Google Scholar 

  • Grosjean-Raillard J, Tailler M, Ades L, Perfettini JL, Fabre C, Braun T, De Botton S, Fenaux P, Kroemer G (2009) ATM mediates constitutive NF-kappaB activation in high-risk myelodysplastic syndrome and acute myeloid leukemia. Oncogene 28:1099–1109

    Article  PubMed  CAS  Google Scholar 

  • Guo Z, Kozlov S, Lavin MF, Person MD, Paull TT (2010) ATM activation by oxidative stress. Science 330:517–521

    Article  PubMed  CAS  Google Scholar 

  • Huen MS, Grant R, Manke I, Minn K, Yu X, Yaffe MB, Chen J (2007) RNF8 transduces the DNA-damage signal via histone ubiquitylation and checkpoint protein assembly. Cell 131:901–914

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ijiri K, Potten CS (1986) Radiation-hypersensitive cells in small intestinal crypts; their relationships to clonogenic cells. Br J Cancer Suppl 7:20–22

    PubMed  PubMed Central  CAS  Google Scholar 

  • Insinga A, Cicalese A, Faretta M, Gallo B, Albano L, Ronzoni S, Furia L, Viale A, Pelicci PG (2013) DNA damage in stem cells activates p21, inhibits p53, and induces symmetric self-renewing divisions. Proc Natl Acad Sci U S A 110:3931–3936

    Article  PubMed  PubMed Central  Google Scholar 

  • International Nijmegen Breakage Syndrome Study Group (2000) Nijmegen breakage syndrome. The International Nijmegen Breakage Syndrome Study Group. Arch Dis Child 82:400–406

    Article  Google Scholar 

  • Jasin M, Rothstein R (2013) Repair of strand breaks by homologous recombination. Cold Spring Harb Perspect Biol 5:a012740

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jeggo PA, Downs JA (2014) Roles of chromatin remodellers in DNA double strand break repair. Exp Cell Res 329:69–77

    Article  PubMed  CAS  Google Scholar 

  • Jeggo PA, Lobrich M (2015) How cancer cells hijack DNA double-strand break repair pathways to gain genomic instability. Biochem J 471:1–11

    Article  PubMed  CAS  Google Scholar 

  • Kakarougkas A, Ismail A, Chambers AL, Riballo E, Herbert AD, Kunzel J, Lobrich M, Jeggo PA, Downs JA (2014) Requirement for PBAF in transcriptional repression and repair at DNA breaks in actively transcribed regions of chromatin. Mol Cell 55:723–732

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kamsler A, Daily D, Hochman A, Stern N, Shiloh Y, Rotman G, Barzilai A (2001) Increased oxidative stress in ataxia telangiectasia evidenced by alterations in redox state of brains from Atm-deficient mice. Cancer Res 61:1849–1854

    PubMed  CAS  Google Scholar 

  • Kanu N, Behrens A (2007) ATMIN defines an NBS1-independent pathway of ATM signalling. EMBO J 26:2933–2941

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kastan MB, Zhan Q, el-Deiry WS, Carrier F, Jacks T, Walsh WV, Plunkett BS, Vogelstein B, Fornace AJ Jr (1992) A mammalian cell cycle checkpoint pathway utilizing p53 and GADD45 is defective in ataxia-telangiectasia. Cell 71:587–597

    Article  PubMed  CAS  Google Scholar 

  • Katyal S, Lee Y, Nitiss KC, Downing SM, Li Y, Shimada M, Zhao J, Russell HR, Petrini JH, Nitiss JL et al (2014) Aberrant topoisomerase-1 DNA lesions are pathogenic in neurodegenerative genome instability syndromes. Nat Neurosci 17:813–821

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kennedy RD, Chen CC, Stuckert P, Archila EM, De la Vega MA, Moreau LA, Shimamura A, D’Andrea AD (2007) Fanconi anemia pathway-deficient tumor cells are hypersensitive to inhibition of ataxia telangiectasia mutated. J Clin Invest 117:1440–1449

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Khoronenkova SV, Dianov GL (2015) ATM prevents DSB formation by coordinating SSB repair and cell cycle progression. Proc Natl Acad Sci U S A 112:3997–4002

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kozlov SV, Graham ME, Peng C, Chen P, Robinson PJ, Lavin MF (2006) Involvement of novel autophosphorylation sites in ATM activation. EMBO J 25:3504–3514

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Krueger SA, Wilson GD, Piasentin E, Joiner MC, Marples B (2010) The effects of G2-phase enrichment and checkpoint abrogation on low-dose hyper-radiosensitivity. Int J Radiat Oncol Biol Phys 77:1509–1517

    Article  PubMed  Google Scholar 

  • Kruger A, Ralser M (2011) ATM is a redox sensor linking genome stability and carbon metabolism. Sci Signal 4:pe17. https://doi.org/10.1126/scisignal.2001959

    Article  PubMed  CAS  Google Scholar 

  • Kruhlak MJ, Celeste A, Nussenzweig A (2006) Spatio-temporal dynamics of chromatin containing DNA breaks. Cell Cycle 5:1910–1912

    Article  PubMed  CAS  Google Scholar 

  • Kruhlak M, Crouch EE, Orlov M, Montano C, Gorski SA, Nussenzweig A, Misteli T, Phair RD, Casellas R (2007) The ATM repair pathway inhibits RNA polymerase I transcription in response to chromosome breaks. Nature 447:730–734

    Article  PubMed  CAS  Google Scholar 

  • Lam QL, Lo CK, Zheng BJ, Ko KH, Osmond DG, Wu GE, Rottapel R, Lu L (2007) Impaired V(D)J recombination and increased apoptosis among B cell precursors in the bone marrow of c-Abl-deficient mice. Int Immunol 19:267–276

    Article  PubMed  CAS  Google Scholar 

  • Lavin MF, Khanna KK, Beamish H, Teale B, Hobson K, Watters D (1994) Defect in radiation signal transduction in ataxia-telangiectasia. Int J Radiat Biol 66:S151–S156

    Article  PubMed  CAS  Google Scholar 

  • Lee JH, Paull TT (2005) ATM activation by DNA double-strand breaks through the Mre11-Rad50-Nbs1 complex. Science 308:551–554

    Article  PubMed  CAS  Google Scholar 

  • Lee JH, Goodarzi AA, Jeggo PA, Paull TT (2010) 53BP1 promotes ATM activity through direct interactions with the MRN complex. EMBO J 29:574–585

    Article  PubMed  CAS  Google Scholar 

  • Li S, Ting NS, Zheng L, Chen PL, Ziv Y, Shiloh Y, Lee EY, Lee WH (2000) Functional link of BRCA1 and ataxia telangiectasia gene product in DNA damage response. Nature 406:210–215

    Article  PubMed  CAS  Google Scholar 

  • Lieber MR (2010) The mechanism of double-strand DNA break repair by the nonhomologous DNA end-joining pathway. Annu Rev Biochem 79:181–211

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lin PH, Kuo WH, Huang AC, Lu YS, Lin CH, Kuo SH, Wang MY, Liu CY, Cheng FT, Yeh MH et al (2016) Multiple gene sequencing for risk assessment in patients with early-onset or familial breast cancer. Oncotarget. https://doi.org/10.18632/oncotarget.7027

  • Lobrich M, Shibata A, Beucher A, Fisher A, Ensminger M, Goodarzi AA, Barton O, Jeggo PA (2010) Gamma H2AX foci analysis for monitoring DNA double-strand break repair: strengths, limitations and optimization. Cell Cycle 9:662–669

    Article  PubMed  Google Scholar 

  • Lovejoy CA, Cortez D (2009) Common mechanisms of PIKK regulation. DNA Repair 8:1004–1008

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lukas C, Melander F, Stucki M, Falck J, Bekker-Jensen S, Goldberg M, Lerenthal Y, Jackson SP, Bartek J, Lukas J (2004) Mdc1 couples DNA double-strand break recognition by Nbs1 with its H2AX-dependent chromatin retention. EMBO J 23:2674–2683

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mailand N, Falck J, Lukas C, Syljuasen RG, Welcker M, Bartek J, Lukas J (2000) Rapid destruction of human Cdc25A in response to DNA damage. Science 288:1425–1429

    Article  PubMed  CAS  Google Scholar 

  • Mailand N, Bekker-Jensen S, Faustrup H, Melander F, Bartek J, Lukas C, Lukas J (2007) RNF8 ubiquitylates histones at DNA double-strand breaks and promotes assembly of repair proteins. Cell 131:887–900

    Article  PubMed  CAS  Google Scholar 

  • Mallette FA, Mattiroli F, Cui G, Young LC, Hendzel MJ, Mer G, Sixma TK, Richard S (2012) RNF8- and RNF168-dependent degradation of KDM4A/JMJD2A triggers 53BP1 recruitment to DNA damage sites. EMBO J 31:1865–1878

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Matt S, Hofmann TG (2016) The DNA damage-induced cell death response: a roadmap to kill cancer cells. Cell Mol Life Sci 73(15):2829–2850

    Article  PubMed  CAS  Google Scholar 

  • McKinnon PJ (2012) ATM and the molecular pathogenesis of ataxia telangiectasia. Annu Rev Pathol 7:303–321

    Article  PubMed  CAS  Google Scholar 

  • Nadeu F, Delgado J, Royo C, Baumann T, Stankovic T, Pinyol M, Jares P, Navarro A, Martin-Garcia D, Bea S et al (2016) Clinical impact of clonal and subclonal TP53, SF3B1, BIRC3, NOTCH1 and ATM mutations in chronic lymphocytic leukemia. Blood 127(17):2122–2130

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Noon AT, Shibata A, Rief N, Lobrich M, Stewart GS, Jeggo PA, Goodarzi AA (2010) 53BP1-dependent robust localized KAP-1 phosphorylation is essential for heterochromatic DNA double-strand break repair. Nat Cell Biol 12:177–184

    Article  PubMed  CAS  Google Scholar 

  • Okuno Y, Nakamura-Ishizu A, Otsu K, Suda T, Kubota Y (2012) Pathological neoangiogenesis depends on oxidative stress regulation by ATM. Nat Med 18:1208–1216

    Article  PubMed  CAS  Google Scholar 

  • Painter RB (1981) Radioresistant DNA synthesis: an intrinsic feature of ataxia telangiectasia. Mutat Res 84:183–190

    Article  PubMed  CAS  Google Scholar 

  • Perry J, Kleckner N (2003) The ATRs, ATMs, and TORs are giant HEAT repeat proteins. Cell 112:151–155

    Article  PubMed  CAS  Google Scholar 

  • Petermann E, Helleday T (2010) Pathways of mammalian replication fork restart. Nat Rev Mol Cell Biol 11:683–687

    Article  PubMed  CAS  Google Scholar 

  • Savitsky K, Bar-Shira A, Gilad S, Rotman G, Ziv Y, Vanagaite L, Tagle DA, Smith S, Uziel T, Sfez S et al (1995) A single ataxia telangiectasia gene with a product similar to PI-3 kinase. Science 268:1749–1753

    Article  PubMed  CAS  Google Scholar 

  • Schalch DS, McFarlin DE, Barlow MH (1970) An unusual form of diabetes mellitus in ataxia telangiectasia. N Engl J Med 282:1396–1402

    Article  PubMed  CAS  Google Scholar 

  • Seeber A, Hauer M, Gasser SM (2013) Nucleosome remodelers in double-strand break repair. Curr Opin Genet Dev 23:174–184

    Article  PubMed  CAS  Google Scholar 

  • Shanbhag NM, Rafalska-Metcalf IU, Balane-Bolivar C, Janicki SM, Greenberg RA (2010) ATM-dependent chromatin changes silence transcription in cis to DNA double-strand breaks. Cell 141:970–981

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Shibata A, Conrad S, Birraux J, Geuting V, Barton O, Ismail A, Kakarougkas A, Meek K, Taucher-Scholz G, Lobrich M et al (2011) Factors determining DNA double-strand break repair pathway choice in G2 phase. EMBO J 30:1079–1092

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Shibata A, Moiani D, Arvai AS, Perry J, Harding SM, Genois MM, Maity R, van Rossum-Fikkert S, Kertokalio A, Romoli F et al (2014) DNA double-strand break repair pathway choice is directed by distinct MRE11 nuclease activities. Mol Cell 53:7–18

    Article  PubMed  CAS  Google Scholar 

  • Shigeta T, Takagi M, Delia D, Chessa L, Iwata S, Kanke Y, Asada M, Eguchi M, Mizutani S (1999) Defective control of apoptosis and mitotic spindle checkpoint in heterozygous carriers of ATM mutations. Cancer Res 59:2602–2607

    PubMed  CAS  Google Scholar 

  • Shiotani B, Zou L (2009) Single-stranded DNA orchestrates an ATM-to-ATR switch at DNA breaks. Mol Cell 33:547–558

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Stewart GS, Maser RS, Stankovic T, Bressan DA, Kaplan MI, Jaspers NG, Raams A, Byrd PJ, Petrini JH, Taylor AM (1999) The DNA double-strand break repair gene hMRE11 is mutated in individuals with an ataxia-telangiectasia-like disorder. Cell 99:577–587

    Article  PubMed  CAS  Google Scholar 

  • Stucki M, Clapperton JA, Mohammad D, Yaffe MB, Smerdon SJ, Jackson SP (2005) MDC1 directly binds phosphorylated histone H2AX to regulate cellular responses to DNA double-strand breaks. Cell 123:1213–1226

    Article  PubMed  CAS  Google Scholar 

  • Stumm M, Neubauer S, Keindorff S, Wegner RD, Wieacker P, Sauer R (2001) High frequency of spontaneous translocations revealed by FISH in cells from patients with the cancer-prone syndromes ataxia telangiectasia and Nijmegen breakage syndrome. Cytogenet Cell Genet 92:186–191

    Article  PubMed  CAS  Google Scholar 

  • Sultana R, Abdel-Fatah T, Abbotts R, Hawkes C, Albarakati N, Seedhouse C, Ball G, Chan S, Rakha EA, Ellis IO et al (2013) Targeting XRCC1 deficiency in breast cancer for personalized therapy. Cancer Res 73:1621–1634

    Article  PubMed  CAS  Google Scholar 

  • Sun Y, Xu Y, Roy K, Price BD (2007) DNA damage-induced acetylation of lysine 3016 of ATM activates ATM kinase activity. Mol Cell Biol 27:8502–8509

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sun Y, Jiang X, Price BD (2010) Tip60: connecting chromatin to DNA damage signaling. Cell Cycle 9:930–936

    Article  PubMed  CAS  Google Scholar 

  • Takagi M, Delia D, Chessa L, Iwata S, Shigeta T, Kanke Y, Goi K, Asada M, Eguchi M, Kodama C et al (1998) Defective control of apoptosis, radiosensitivity, and spindle checkpoint in ataxia telangiectasia. Cancer Res 58:4923–4929

    PubMed  CAS  Google Scholar 

  • Takao N, Li Y, Yamamoto K (2000) Protective roles for ATM in cellular response to oxidative stress. FEBS Lett 472:133–136

    Article  PubMed  CAS  Google Scholar 

  • Tavtigian SV, Oefner PJ, Babikyan D, Hartmann A, Healey S, Le Calvez-Kelm F, Lesueur F, Byrnes GB, Chuang SC, Forey N et al (2009) Rare, evolutionarily unlikely missense substitutions in ATM confer increased risk of breast cancer. Am J Hum Genet 85:427–446

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tresini M, Warmerdam DO, Kolovos P, Snijder L, Vrouwe MG, Demmers JA, van IJcken WF, Grosveld FG, Medema RH, Hoeijmakers JH et al (2015) The core spliceosome as target and effector of non-canonical ATM signalling. Nature 523:53–58

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ui A, Nagaura Y, Yasui A (2015) Transcriptional elongation factor ENL phosphorylated by ATM recruits polycomb and switches off transcription for DSB repair. Mol Cell 58:468–482

    Article  PubMed  CAS  Google Scholar 

  • Uziel T, Lerenthal Y, Moyal L, Andegeko Y, Mittelman L, Shiloh Y (2003) Requirement of the MRN complex for ATM activation by DNA damage. EMBO J 22:5612–5621

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wahl GM, Linke SP, Paulson TG, Huang LC (1997) Maintaining genetic stability through TP53 mediated checkpoint control. Cancer Surv 29:183–219

    PubMed  CAS  Google Scholar 

  • Watanabe S, Watanabe K, Akimov V, Bartkova J, Blagoev B, Lukas J, Bartek J (2013) JMJD1C demethylates MDC1 to regulate the RNF8 and BRCA1-mediated chromatin response to DNA breaks. Nat Struct Mol Biol 20:1425–1433

    Article  PubMed  CAS  Google Scholar 

  • Watters D, Kedar P, Spring K, Bjorkman J, Chen P, Gatei M, Birrell G, Garrone B, Srinivasa P, Crane DI et al (1999) Localization of a portion of extranuclear ATM to peroxisomes. J Biol Chem 274:34277–34282

    Article  PubMed  CAS  Google Scholar 

  • Xu B, Kim ST, Lim DS, Kastan MB (2002) Two molecularly distinct G(2)/M checkpoints are induced by ionizing irradiation. Mol Cell Biol 22:1049–1059

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Xu Y, Ayrapetov MK, Xu C, Gursoy-Yuzugullu O, Hu Y, Price BD (2012) Histone H2A.Z controls a critical chromatin remodeling step required for DNA double-strand break repair. Mol Cell 48:723–733

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yang DQ, Kastan MB (2000) Participation of ATM in insulin signalling through phosphorylation of eIF-4E-binding protein 1. Nat Cell Biol 2:893–898

    Article  PubMed  CAS  Google Scholar 

  • Yang C, Tang X, Guo X, Niikura Y, Kitagawa K, Cui K, Wong ST, Fu L, Xu B (2011) Aurora-B mediated ATM serine 1403 phosphorylation is required for mitotic ATM activation and the spindle checkpoint. Mol Cell 44:597–608

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • You Z, Chahwan C, Bailis J, Hunter T, Russell P (2005) ATM activation and its recruitment to damaged DNA require binding to the C terminus of Nbs1. Mol Cell Biol 25:5363–5379

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhang T, Penicud K, Bruhn C, Loizou JI, Kanu N, Wang ZQ, Behrens A (2012) Competition between NBS1 and ATMIN controls ATM signaling pathway choice. Cell Rep 2:1498–1504

    Article  PubMed  CAS  Google Scholar 

  • Ziv Y, Bielopolski D, Galanty Y, Lukas C, Taya Y, Schultz DC, Lukas J, Bekker-Jensen S, Bartek J, Shiloh Y (2006) Chromatin relaxation in response to DNA double-strand breaks is modulated by a novel ATM- and KAP-1 dependent pathway. Nat Cell Biol 8:870–876

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Penny Jeggo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Shibata, A., Jeggo, P. (2018). ATM: Its Recruitment, Activation, Signalling and Contribution to Tumour Suppression. In: Pollard, J., Curtin, N. (eds) Targeting the DNA Damage Response for Anti-Cancer Therapy. Cancer Drug Discovery and Development. Humana Press, Cham. https://doi.org/10.1007/978-3-319-75836-7_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-75836-7_6

  • Published:

  • Publisher Name: Humana Press, Cham

  • Print ISBN: 978-3-319-75834-3

  • Online ISBN: 978-3-319-75836-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics