Skip to main content

Clinical Development of CHK1 Inhibitors

  • Chapter
  • First Online:
Targeting the DNA Damage Response for Anti-Cancer Therapy

Part of the book series: Cancer Drug Discovery and Development ((CDD&D))

  • 928 Accesses

Abstract

Checkpoint kinase 1 (CHK1) is an intracellular multifunctional serine/threonine kinase and an important component in the regulation of the DNA damage response (DDR) (Dai and Grant 2010; Hong et al. 2016). Broadly, its function is to maintain the integrity of cellular DNA from intrinsic or genotoxic agent-induced DNA damage i.e. single- or double-strand breaks and stalled replication forks by interrupting progression of a cell through the cell cycle. The validation of CHK1 as a target in cancer therapeutics has been discussed in previous chapters.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Barker HE, Patel R, McLaughlin M, Schick U, Zaidi S, Nutting CM, Newbold KL, Bhide S, Harrington KJ (2016) CHK1 inhibition radiosensitizes head and neck cancers to paclitaxel-based chemoradiotherapy. Mol Cancer Ther 15:2042–2054

    Article  CAS  PubMed  Google Scholar 

  • Benada J, Macurek L (2015) Targeting the checkpoint to kill cancer cells. Biomol Ther 5:1912–1937

    CAS  Google Scholar 

  • Borst GR, McLaughlin M, Kyula JN, Neijenhuis S, Khan A, Good J, Zaidi S, Powell NG, Meier P, Collins I et al (2013) Targeted radiosensitization by the Chk1 inhibitor SAR-020106. Int J Radiat Oncol Biol Phys 85:1110–1118

    Article  CAS  PubMed  Google Scholar 

  • Brega N, McArthur GA, Britten C, Wong SG, Wang E, Wilner KD, Blasina A, Schwartz GK, Gallo J, Tse AN (2010) Phase I clinical trial of gemcitabine (GEM) in combination with PF-00477736 (PF-736), a selective inhibitor of CHK1 kinase. In: ASCO annual meeting. Chicago, USA. J Clin Oncol 28:15s

    Article  Google Scholar 

  • Bridges KA, Chen X, Liu H, Rock C, Buchholz TA, Shumway SD, Skinner HD, Meyn RE (2016) MK-8776, a novel chk1 kinase inhibitor, radiosensitizes p53-defective human tumor cells. Oncotarget 7(44):71660–71672

    Article  PubMed  PubMed Central  Google Scholar 

  • Bryant C, Scriven K, Massey AJ (2014) Inhibition of the checkpoint kinase Chk1 induces DNA damage and cell death in human leukemia and lymphoma cells. Mol Cancer 13:147

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Calvo E, Chen VJ, Marshall M, Ohnmacht U, Hynes SM, Kumm E, Diaz HB, Barnard D, Merzoug FF, Huber L et al (2014) Preclinical analyses and phase I evaluation of LY2603618 administered in combination with pemetrexed and cisplatin in patients with advanced cancer. Investig New Drugs 32:955–968

    Article  CAS  Google Scholar 

  • Cancer Genome Atlas Research N (2011) Integrated genomic analyses of ovarian carcinoma. Nature 474:609–615

    Article  CAS  Google Scholar 

  • Chaudhuri L, Vincelette ND, Koh BD, Naylor RM, Flatten KS, Peterson KL, McNally A, Gojo I, Karp JE, Mesa RA et al (2014) CHK1 and WEE1 inhibition combine synergistically to enhance therapeutic efficacy in acute myeloid leukemia ex vivo. Haematologica 99:688–696

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • ClincalTrials.Gov (2016a) ClincalTrials.Gov: a CRUK phase I trial of CCT245737 in patients with advanced cancer. https://clinicaltrials.gov/ct2/results?term=NCT02797964&Search=Search

  • ClincalTrials.Gov (2016b) ClinicalTrials.Gov: a CRUK phase I trial of CCT245737 in combination with gemcitabine plus cisplatin or gemcitabine alone in patients with advanced cancer. https://clinicaltrials.gov/ct2/results?term=NCT02797977&Search=Search

  • ClinicalTrials.Gov (2018) A study of GDC-0575 alone and in combination with gemcitabine in patients with refractory solid tumors or lymphoma. https://clinicaltrials.gov/ct2/show/NCT01564251?term=GDC-0575&rank=1:

  • Cole KA, Huggins J, Laquaglia M, Hulderman CE, Russell MR, Bosse K, Diskin SJ, Attiyeh EF, Sennett R, Norris G et al (2011) RNAi screen of the protein kinome identifies checkpoint kinase 1 (CHK1) as a therapeutic target in neuroblastoma. Proc Natl Acad Sci U S A 108:3336–3341

    Article  PubMed  PubMed Central  Google Scholar 

  • Dai Y, Grant S (2010) New insights into checkpoint kinase 1 in the DNA damage response signaling network. Clin Cancer Res 16:376–383

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Daud AI, Ashworth MT, Strosberg J, Goldman JW, Mendelson D, Springett G, Venook AP, Loechner S, Rosen LS, Shanahan F et al (2015) Phase I dose-escalation trial of checkpoint kinase 1 inhibitor MK-8776 as monotherapy and in combination with gemcitabine in patients with advanced solid tumors. J Clin Oncol 33:1060–1066

    Article  CAS  PubMed  Google Scholar 

  • Doi T, Yoshino T, Shitara K, Matsubara N, Fuse N, Naito Y, Uenaka K, Nakamura T, Hynes SM, Lin AB (2015) Phase I study of LY2603618, a CHK1 inhibitor, in combination with gemcitabine in Japanese patients with solid tumors. Anti-Cancer Drugs 26:1043–1053

    Article  CAS  PubMed  Google Scholar 

  • Garrett MD, Collins I (2011) Anticancer therapy with checkpoint inhibitors: what, where and when? Trends Pharmacol Sci 32:308–316

    Article  CAS  PubMed  Google Scholar 

  • Guertin AD, Martin MM, Roberts B, Hurd M, Qu X, Miselis NR, Liu Y, Li J, Feldman I, Benita Y et al (2012) Unique functions of CHK1 and WEE1 underlie synergistic anti-tumor activity upon pharmacologic inhibition. Cancer Cell Int 12:45

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guzi TJ, Paruch K, Dwyer MP, Labroli M, Shanahan F, Davis N, Taricani L, Wiswell D, Seghezzi W, Penaflor E et al (2011) Targeting the replication checkpoint using SCH 900776, a potent and functionally selective CHK1 inhibitor identified via high content screening. Mol Cancer Ther 10:591–602

    Article  CAS  PubMed  Google Scholar 

  • Ho AL, Bendell JC, Cleary JM, Schwartz GK, Burris HA, Oakes P, Agbo F, Barker PN, Senderowicz AM, Shapiro G (2011) Phase I, open-label, dose-escalation study of AZD7762 in combination with irinotecan (irino) in patients (pts) with advanced solid tumors. In: ASCO annual meeting, Chicago. J Clin Oncol 29(Suppl):3033–3033

    Article  Google Scholar 

  • Hong D, Infante J, Janku F, Jones S, Nguyen LM, Burris H, Naing A, Bauer TM, Piha-Paul S, Johnson FM et al (2016) Phase I study of LY2606368, a checkpoint kinase 1 inhibitor, in patients with advanced cancer. J Clin Oncol 34:1764–1771

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Infante JR, Hollebecque A, Postel-Vinay S, Bauer T, Blackwood B, Evangelista M, Mahrus S, Peale F, Lu X, Sahasranaman S et al (2015) Phase I study of GDC-0425, a checkpoint kinase 1 inhibitor, in combination with gemcitabine in patients with refractory solid tumors. In: Proceedings of the 106th annual AACR meeting,18–22 Apr 2015, Philadelphia, PA, USA. Cancer Res 75(15 Suppl):abstract nr CT139

    Article  Google Scholar 

  • Janetka JW, Ashwell S, Zabludoff S, Lyne P (2007) Inhibitors of checkpoint kinases: from discovery to the clinic. Curr Opin Drug Discov Devel 10:473–486

    PubMed  CAS  Google Scholar 

  • Karnitz LM, Flatten KS, Wagner JM, Loegering D, Hackbarth JS, Arlander SJ, Vroman BT, Thomas MB, Baek YU, Hopkins KM et al (2005) Gemcitabine-induced activation of checkpoint signaling pathways that affect tumor cell survival. Mol Pharmacol 68:1636–1644

    PubMed  CAS  Google Scholar 

  • Karp JE, Thomas BM, Greer JM, Sorge C, Gore SD, Pratz KW, Smith BD, Flatten KS, Peterson K, Schneider P et al (2012) Phase I and pharmacologic trial of cytosine arabinoside with the selective checkpoint 1 inhibitor Sch 900776 in refractory acute leukemias. Clin Cancer Res 18:6723–6731

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Karzai F, Zimmer A, Lipkowitz S, Annunziata CM, Parker B, Houston N, Ekwede I, Kohn EC, Lee J-M (2016) A phase II study of the cell cycle checkpoint kinases 1 and 2 (CHK1/2) inhibitor (LY2606368); prexasertib in sporadic triple negative breast cancer (TNBC). In: ESMO congress, Copenhagen, Denmark. Ann Oncol 27(Suppl 6):296–312

    Google Scholar 

  • Kim MK, James J, Annunziata CM (2015) Topotecan synergizes with CHEK1 (CHK1) inhibitor to induce apoptosis in ovarian cancer cells. BMC Cancer 15:196

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kobayashi H, Shigetomi H, Yoshimoto C (2015) Checkpoint kinase 1 inhibitors as targeted molecular agents for clear cell carcinoma of the ovary. Oncol Lett 10:571–576

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kulkarni A, Natarajan SK, Chandrasekar V, Pandey PR, Sengupta S (2016) Combining immune checkpoint inhibitors and kinase-inhibiting supramolecular therapeutics for enhanced anticancer efficacy. ACS Nano 10(10): 9227–9242

    Article  CAS  Google Scholar 

  • Laquente B, Lopez-Martin J, Richards D, Illerhaus G, Chang DZ, Kim G, Stella P, Richel D, Szcylik C, Cascinu S et al (2017) A phase II study to evaluate LY2603618 in combination with gemcitabine in pancreatic cancer patients. BMC Cancer 17:137

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee J-M, Karzai FH, Zimmer A, Annunziata CM, Lipkowitz S, Parker B, Houston N, Ekwede I, Kohn EC (2016) A phase II study of the cell cycle checkpoint kinases 1 and 2 inhibitor (LY2606368; Prexasertib monomestylate monohydrate) in sporadic high-grade serous ovarian cancer (gBRCAm+ OvCa). In: ESMO congress 2016. Copenhagen, Denmark. Ann Oncol 27(Suppl 6):296–312

    Google Scholar 

  • Leijen S, Schellens JH, Shapiro G, Pavlick AC, Tibes R, Demuth T, Viscusi J, Cheng JD, Xu Y, Oza AM (2010) A phase I pharmacological and pharmacodynamic study of MK-1775, a Weel tyrosine kinase inhibitor, in monotherapy and combination with gemcitabine, cisplatin, or carboplatin in patients with advanced solid tumors. J Clin Oncol 28:3067–3067

    Article  Google Scholar 

  • Lu HR, Wang X, Wang Y (2006) A stronger DNA damage-induced G2 checkpoint due to over-activated CHK1 in the absence of PARP-1. Cell Cycle 5:2364–2370

    Article  CAS  PubMed  Google Scholar 

  • Ma CX, Janetka JW, Piwnica-Worms H (2011) Death by releasing the breaks: CHK1 inhibitors as cancer therapeutics. Trends Mol Med 17:88–96

    Article  CAS  PubMed  Google Scholar 

  • Montano R, Chung I, Garner KM, Parry D, Eastman A (2012) Preclinical development of the novel Chk1 inhibitor SCH900776 in combination with DNA-damaging agents and antimetabolites. Mol Cancer Ther 11:427–438

    Article  CAS  PubMed  Google Scholar 

  • Morgan MA, Parsels LA, Maybaum J, Lawrence TS (2008) Improving gemcitabine-mediated radiosensitization using molecularly targeted therapy: a review. Clin Cancer Res 14:6744–6750

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oza AM, Cibula D, Benzaquen AO, Poole C, Mathijssen RH, Sonke GS, Colombo N, Spacek J, Vuylsteke P, Hirte H et al (2015) Olaparib combined with chemotherapy for recurrent platinum-sensitive ovarian cancer: a randomised phase 2 trial. Lancet Oncol 16:87–97

    Article  CAS  PubMed  Google Scholar 

  • Sanjiv K, Hagenkort A, Calderon-Montano JM, Koolmeister T, Reaper PM, Mortusewicz O, Jacques SA, Kuiper RV, Schultz N, Scobie M et al (2016) Cancer-specific synthetic lethality between ATR and CHK1 kinase activities. Cell Rep 14:298–309

    Article  CAS  PubMed  Google Scholar 

  • Sausville E, Lorusso P, Carducci M, Carter J, Quinn MF, Malburg L, Azad N, Cosgrove D, Knight R, Barker P et al (2014) Phase I dose-escalation study of AZD7762, a checkpoint kinase inhibitor, in combination with gemcitabine in US patients with advanced solid tumors. Cancer Chemother Pharmacol 73:539–549

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scagliotti G, Kang JH, Smith D, Rosenberg R, Park K, Kim SW, Su WC, Boyd TE, Richards DA, Novello S et al (2016) Phase II evaluation of LY2603618, a first-generation CHK1 inhibitor, in combination with pemetrexed in patients with advanced or metastatic non-small cell lung cancer. Investig New Drugs 34:625–635

    Article  CAS  Google Scholar 

  • Seto T, Esaki T, Hirai F, Arita S, Nosaki K, Makiyama A, Kometani T, Fujimoto C, Hamatake M, Takeoka H et al (2013) Phase I, dose-escalation study of AZD7762 alone and in combination with gemcitabine in Japanese patients with advanced solid tumours. Cancer Chemother Pharmacol 72:619–627

    Article  CAS  PubMed  Google Scholar 

  • Tao Y, Leteur C, Yang C, Zhang P, Castedo M, Pierre A, Golsteyn RM, Bourhis J, Kroemer G, Deutsch E (2009) Radiosensitization by Chir-124, a selective CHK1 inhibitor: effects of p53 and cell cycle checkpoints. Cell Cycle 8:1196–1205

    Article  CAS  PubMed  Google Scholar 

  • Venkatesha VA, Parsels LA, Parsels JD, Zhao L, Zabludoff SD, Simeone DM, Maybaum J, Lawrence TS, Morgan MA (2012) Sensitization of pancreatic cancer stem cells to gemcitabine by Chk1 inhibition. Neoplasia 14:519–525

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Walton MI, Eve PD, Hayes A, Valenti MR, De Haven Brandon AK, Box G, Hallsworth A, Smith EL, Boxall KJ, Lainchbury M et al (2012) CCT244747 is a novel potent and selective CHK1 inhibitor with oral efficacy alone and in combination with genotoxic anticancer drugs. Clin Cancer Res 18:5650–5661

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Walton MI, Eve PD, Hayes A, Henley AT, Valenti MR, De Haven Brandon AK, Box G, Boxall KJ, Tall M, Swales K et al (2016) The clinical development candidate CCT245737 is an orally active CHK1 inhibitor with preclinical activity in RAS mutant NSCLC and Emicro-MYC driven B-cell lymphoma. Oncotarget 7:2329–2342

    Article  PubMed  Google Scholar 

  • Wehler T, Thomas M, Schumann C, Bosch-Barrera J, Vinolas Segarra N, Dickgreber NJ, Dalhoff K, Sebastian M, Corral Jaime J, Alonso M et al (2017) A randomized, phase 2 evaluation of the CHK1 inhibitor, LY2603618, administered in combination with pemetrexed and cisplatin in patients with advanced nonsquamous non-small cell lung cancer. Lung Cancer 108:212–216

    Article  PubMed  Google Scholar 

  • Weiss GJ, Donehower RC, Iyengar T, Ramanathan RK, Lewandowski K, Westin E, Hurt K, Hynes SM, Anthony SP, McKane S (2013) Phase I dose-escalation study to examine the safety and tolerability of LY2603618, a checkpoint 1 kinase inhibitor, administered 1 day after pemetrexed 500 mg/m(2) every 21 days in patients with cancer. Investig New Drugs 31:136–144

    Article  CAS  Google Scholar 

  • Yang E, William W, Fayette J, Zhang W, Fink A, Lin AB, Deutsch E (2016) Phase Ib trial of LY2606368 in combination with chemoradiation in patients with locally advanced head and neck squamous cell cancer. In: ESMO congress 2016. Ann Oncol 27(Suppl 6):1019TiP

    Google Scholar 

  • Zabludoff SD, Deng C, Grondine MR, Sheehy AM, Ashwell S, Caleb BL, Green S, Haye HR, Horn CL, Janetka JW et al (2008) AZD7762, a novel checkpoint kinase inhibitor, drives checkpoint abrogation and potentiates DNA-targeted therapies. Mol Cancer Ther 7:2955–2966

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Udai Banerji .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ingles Garces, A., Banerji, U. (2018). Clinical Development of CHK1 Inhibitors. In: Pollard, J., Curtin, N. (eds) Targeting the DNA Damage Response for Anti-Cancer Therapy. Cancer Drug Discovery and Development. Humana Press, Cham. https://doi.org/10.1007/978-3-319-75836-7_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-75836-7_11

  • Published:

  • Publisher Name: Humana Press, Cham

  • Print ISBN: 978-3-319-75834-3

  • Online ISBN: 978-3-319-75836-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics