Skip to main content

Biogas and Biomethane Technologies: An AHP Model to Support the Policy Maker in Incentive Design in Italy

  • Conference paper
  • First Online:
Smart and Sustainable Planning for Cities and Regions (SSPCR 2017)

Abstract

Over the past six years, biogas production in Italy has experienced an economic boom: investments of more than 4.5 billion euros and production of about 2 billion normal m2 of natural gas equivalent. By contrast, biomethane production in Italy is not widespread. This limited spread substantially results from the lack of effective government incentives for biomethane production. In the near future, the Italian government is expected to fix new feed-in tariff (FIT) schemes for energy production from renewable energy sources (RES). In this context, it is fundamental for the policy maker to determine whether it will be preferable to introduce more generous FITs to support biogas production for electric-power generation or biomethane production through biogas upgrading. In this paper, we propose a multicriteria decision model to support the policy maker in the definition of sustainable development policies for biogas and biomethane production. Specifically we provide an Analytic Hierarchy Process (AHP) model to multicriteria prioritization of incentives paid to biogas versus biomethane. In accord with group decision-making approaches, we selected a pool of experts that structured the decision problem and disaggregated it into a hierarchy by identifying quantitative and qualitative criteria and subcriteria to evaluate each technology. The model results reveal that biomethane production plants are preferred to biogas production plants, independently of their size, whereas larger biomethane installations are ranked higher than smaller ones. Under stringent public budget constraints, it might be de facto inefficient and not cost-effective to introduce incentive mechanisms for biogas-production plants.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Auer, J., Resch, G., Haas, R., Held, A., & Ragwitz, M. (2009). Regulatory instruments to deliver the full potential of renewable energy sources of efficiently. European Review of Energy Markets, 3(2), 91–124.

    Google Scholar 

  • Bana e Costa, C., & Vansnick, J. (2008). A critical analysis of the eigenvalue method used to derive priorities in AHP. European Journal of Operational Research, 187(3), 1422–1428.

    Article  MathSciNet  Google Scholar 

  • Banzato, D. (2015). The incentive system for the production of electricity and thermal energy from anaerobic digestion in Italy and Europe: A comparison. Valori e Valutazioni, 15, 43–53.

    Google Scholar 

  • Banzato, D. (2016). The use of the digestate from anaerobic digestion: A comparison with the EU countries. Valori e Valutazioni, 17, 73–80.

    Google Scholar 

  • Belton, V., & Stewart, T. (2002). Multiple criteria decision analysis: An integrated approach. Dordrecht: Kluwer Academic Publisher.

    Book  Google Scholar 

  • Billig, E., & Thrän, D. (2016). Evaluation of biomethane technologies in Europe—Technical concepts under the scope of a delphi-survey embedded in a multi-criteria analysis. Energy, 114, 1176–1186.

    Article  Google Scholar 

  • Canesi, R., D’Alpaos, C., & Marella, G. (2016a). Forced sale values vs. market values in Italy. Journal of Real Estate Literature, 24(2), 377–401.

    Google Scholar 

  • Canesi, R., D’Alpaos, C., & Marella, G. (2016b). Foreclosed homes market in Italy: Bases of value. International Journal for Housing Science and Its Applications, 40(3), 201–209.

    Google Scholar 

  • Cavallaro, F., & Ciraolo, L. (2005). A multicriteria approach to evaluate wind energy plants on an Italian island. Energy Policy, 33(2), 235–244.

    Article  Google Scholar 

  • CIB. (2016). Piattaforma Biometano. Documento programmatico. Accessed at April 18, 2017, from http://www.snam.it/export/sites/snam-rp/repository/media/energy-morning/allegati_energy_morning/20161110_1.pdf.

  • Couture, T. D., Cory, K., Kreycik, C., & Williams, E. (2010). Policymaker’s guide to feed-in tariff policy design (No. NREL/TP-6A2-44849). Golden, CO: National Renewable Energy Laboratory (NREL).

    Google Scholar 

  • Couture, T., & Gagnon, Y. (2010). An analysis of feed-in tariff remuneration models: Implications for renewable energy investment. Energy Policy, 38(2), 955–965.

    Article  Google Scholar 

  • D’Alpaos C., & Canesi R. (2014). MCDM approaches in property investments: An AHP model for risk assessment. In Proceedings of the International Symposium of the Analytic Hierarchy Process (ISAHP), June 29–July 2, 2014. Washington DC, USA.

    Google Scholar 

  • De Felice, F., & Petrillo, A. (2013). Absolute measurement with analytic hierarchy process: A case study for Italian racecourse. International Journal of Applied Decision Sciences, 6(3), 209–227.

    Article  Google Scholar 

  • Dinca, C., Badea, A., Rousseaux, P., & Apostol, T. (2007). A multi-criteria approach to evaluate the natural gas energy systems. Energy Policy, 35(11), 5754–5765.

    Article  Google Scholar 

  • EBA. (2016). Statistical report 2016: Annual statistical report of the European biogas association. Brussels: EBA. Accessed at: April 18, 2017, from http://www.european-biogas.eu.

  • Energy & Strategy Group. (2016). Renewable energy report. Politecnico di Milano, Milano. Accessed at: April 18, 2017, from http://www.energystrategy.it/report.html.

  • FaĂşndez, P. (2008). Renewable energy in a market-based economy: How to estimate its potential and choose the right incentives. Renewable Energy, 33(8), 1768–1774.

    Article  Google Scholar 

  • Ferreira, F. A., Santos, S. P., & Dias, V. M. (2014). An AHP-based approach to credit risk evaluation of mortgage loans. International Journal of Strategic Property Management, 18(1), 38–55.

    Article  Google Scholar 

  • Fouquet, D., & Johansson, T. B. (2008). European renewable energy policy at crossroads: Focus on electricity support mechanisms. Energy Policy, 36(11), 4079–4092.

    Article  Google Scholar 

  • Georgiou, D., Mohammed, E. S., & Rozakis, S. (2015). Multi-criteria decision making on the energy supply configuration of autonomous desalination units. Renewable Energy, 75, 459–467.

    Article  Google Scholar 

  • Grafakos, S., Flamos, A., & Enseñado, E. M. (2015). Preferences matter: A constructive approach to incorporating local stakeholders’ preferences in the sustainability evaluation of energy technologies. Sustainability, 7(8), 10922–10960.

    Article  Google Scholar 

  • Grošelj, P., & Zadnik Stirn, L. (2012). Acceptable consistency of aggregated comparison matrices in analytic hierarchy process. European Journal of Operational Research, 223(2), 417–4201.

    Article  MathSciNet  Google Scholar 

  • GSE. (2017). Rapporto statistico, Energia e fonti rinnovabili in Italia Anno 2015. Accessed at: April 18, 2017, from http://www.gse.it/it/Statistiche/RapportiStatistici/Pagine/default.aspx.

  • Guerrero-Liquet, G. C., Sánchez-Lozano, J. M., GarcĂ­a-Cascales, M. S., Lamata, M. T., & Verdegay, J. L. (2016). Decision-making for risk management in sustainable renewable energy facilities: A case study in the Dominican Republic. Sustainability, 8(5), 455.

    Article  Google Scholar 

  • Haas, R., Resch, G., Panzer, C., Busch, S., Ragwitz, M., & Held, A. (2011). Efficiency and effectiveness of promotion systems for electricity generation from renewable energy sources—Lessons from EU countries. Energy, 36(4), 2186–2193.

    Article  Google Scholar 

  • IEA. (2008). Deploying renewables: Principles for effective policies. Paris: IEA Publications. ISBN 978-92-64-04220-9. Accessed at: April 18, 2017, from https://www.iea.org/publications/freepublications/publication/DeployingRenewables2008.pdf.

  • Jacobsson, S., Bergek, A., Finon, D., Lauber, V., Mitchell, C., Toke, D., et al. (2009). EU renewable energy support policy: Faith or facts? Energy policy, 37(6), 2143–2146.

    Article  Google Scholar 

  • Jankowski, J., Michalski, R., BrĂłdka, P., Kazienko, P., & Utz, S. (2015). Knowledge acquisition from social platforms based on network distributions fitting. Computers in Human Behavior, 51, 685–693.

    Article  Google Scholar 

  • Klessmann, C., Held, A., Rathman, M., & Ragwitz, M. (2011). Status and perspectives of renewable energy policy and deployment in the European Union—What is needed to reach the 2020 targets? Energy Policy, 39(12), 7637–7657.

    Article  Google Scholar 

  • Laffont, J. J., & Martimort, D. (2002). The theory of incentives: The principal-agent model. Princeton NJ: Princeton University Press.

    Google Scholar 

  • Mardani, A., Jusoh, A., Zavadskas, E. K., Cavallaro, F., & Khalifah, Z. (2015). Sustainable and renewable energy: An overview of the application of multiple criteria decision making techniques and approaches. Sustainability, 7(10), 13947–13984.

    Article  Google Scholar 

  • Maskin, E., Laffont, J. J., & Hildenbrand, W. (1982). The theory of incentives: An overview. In: Advances in economic theory (invited lectures from the 4th World Congress of the Econometric Society) (pp. 31–94). Cambridge: Cambridge University Press.

    Google Scholar 

  • Ministero dello Sviluppo Economico. (2013). Strategia Energetica Nazionale: per un’energia piĂą competitiva e sostenibile. Accessed at: April 18, 2017, from http://www.sviluppoeconomico.gov.it/images/stories/normativa/20130314_Strategia_Energetica_Nazionale.pdf.

  • Nigim, K., Munier, N., & Green, J. (2004). Pre-feasibility MCDM tools to aid communities in prioritizing local viable renewable energy sources. Renewable Energy, 29(11), 1775–1791.

    Article  Google Scholar 

  • Peniwati, K. (2006). Criteria for evaluating group decision-making methods. International Series in Operations Research and Management Science, 95, 251–273.

    Article  Google Scholar 

  • Ragwitz, M., Held, A., Resch, G., Faber, T., Haas, R., Huber, C., et al. (2007). Assessment and optimisation of renewable energy support schemes in the European electricity market. Germany: Fraunhofer IRB Verlag.

    Google Scholar 

  • Rao, B., Mane, A., Rao, A. B., & Sardeshpande, V. (2014). Multi-criteria analysis of alternative biogas technologies. Energy Procedia, 54, 292–301.

    Article  Google Scholar 

  • Reiche, D., & Bechberger, M. (2004). Policy differences in the promotion of renewable energies in the EU member states. Energy policy, 32(7), 843–849.

    Article  Google Scholar 

  • REN21. (2006). Renewables global status report: 2006 update. Paris, Washington, DC: REN21 Secretariat and Worldwatch Institute. Accessed at: April 18, 2017, from http://www.ren21.net/Portals/0/documents/activities/gsr/RE2007_Global_Status_Report.pdf.

  • REN21. (2016). Renewables global status report: 2016. Paris, Washington, DC: REN21 Secretariat and Worldwatch Institute. Accessed at: April 18, 2017, from http://www.ren21.net/wp-content/uploads/2016/10/REN21_GSR2016_FullReport_en_11.pdf.

  • Rickerson, W., & Grace, R. C. (2007). The debate over fixed price incentives for renewable electricity in Europe and the United States: Fallout and future directions. A white paper prepared for the Heinrich Böll Foundation. Accessed at: April 18, 2017, from http://www.folkecenter.net/mediafiles/folkecenter/pdf/the_debate_over_fixed.pdf.

  • Saaty, T. (1980). The analytic hierarchy process: Planning, priority setting, resource allocation. New York: McGraw-Hill.

    MATH  Google Scholar 

  • Saaty, T. L. (2000). Fundamentals of decision making and priority theory with the analytic hierarchy process (Vol. 6). Pittsburgh: RWS Publications.

    Google Scholar 

  • Saaty, T. L., & Peniwati, K. (2012). Group decision making: Drawing out and reconciling differences. Pittsburgh: RWS Publications.

    Google Scholar 

  • Scannapieco, D., Naddeo, V., & Belgiorno, V. (2014). Sustainable power plants: A support tool for the analysis of alternatives. Land Use Policy, 36, 478–484.

    Article  Google Scholar 

  • Senge, P. M. (2006). The fifth discipline: The art & practice of the learning organization. New York: Currency Doubleday.

    Google Scholar 

  • Sindhu, S., Nehra, V., & Luthra, S. (2017). Investigation of feasibility study of solar farms deployment using hybrid AHP-TOPSIS analysis: Case study of India. Renewable and Sustainable Energy Reviews, 73, 496–511.

    Article  Google Scholar 

  • Spyridaki, N., Banaka, S., & Flamos, A. (2016). Evaluating public policy instruments in the greek building sector. Energy Policy, 88, 528–543.

    Article  Google Scholar 

  • Toke, D. (2008). The EU Renewables Directive—What is the fuss about trading? Energy Policy, 36(8), 3001–3008.

    Article  Google Scholar 

  • Väisänen, S., Mikkilä, M., Havukainen, J., Sokka, L., Luoranen, M., & Horttanainen, M. (2016). Using a multi-method approach for decision-making about a sustainable local distributed energy system: A case study from Finland. Journal of Cleaner Production, 137, 1330–1338.

    Article  Google Scholar 

  • WÄ…trĂłbski, J., & SaĹ‚abun, W. (2016a). Green supplier selection framework based on multi-criteria decision-analysis approach. In R. Setchi, R. Howlett, Y. Liu, & P. Theobald (Eds.), Sustainable design and manufacturing 2016 (pp. 361–371). Cham: Springer.

    Chapter  Google Scholar 

  • WÄ…trĂłbski, J., & SaĹ‚abun, W. (2016b). The characteristic objects method: A new intelligent decision support tool for sustainable manufacturing. In R. Setchi, R. Howlett, Y. Liu, & P. Theobald (Eds.), Sustainable design and manufacturing 2016 (pp. 349–359). Cham: Springer.

    Chapter  Google Scholar 

  • WÄ…trĂłbski, J., Ziemba, P., Jankowski, J., & ZioĹ‚o, M. (2016). Green energy for a green city—A multi-perspective model approach. Sustainability, 8(8), 702.

    Article  Google Scholar 

  • Xu, Z. (2000). On consistency of the weighted geometric mean complex judgement matrix in AHP. European Journal of Operational Research, 126(3), 683–687.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rubina Canesi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Banzato, D., Canesi, R., D’Alpaos, C. (2018). Biogas and Biomethane Technologies: An AHP Model to Support the Policy Maker in Incentive Design in Italy. In: Bisello, A., Vettorato, D., Laconte, P., Costa, S. (eds) Smart and Sustainable Planning for Cities and Regions. SSPCR 2017. Green Energy and Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-75774-2_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-75774-2_22

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-75773-5

  • Online ISBN: 978-3-319-75774-2

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics