Skip to main content

Targeting Redox Regulatory Mechanisms for Salinity Stress Tolerance in Crops

  • Chapter
  • First Online:

Abstract

Salinity stress is one of the major abiotic stresses that result in significant losses in agricultural crop production across the globe. Salinity stress results in osmotic stress, ionic stress, and oxidative stress; among these, oxidative stress is considered to be the most detrimental. Oxidative stress induces the production of different reactive oxygen species (ROS) at both intracellular and extracellular locations. Plants possess redox regulatory mechanisms by employing different enzymatic and nonenzymatic antioxidants to scavenge ROS. Different antioxidants have different tissue- and organelle-specific ROS-scavenging effects. However, the causal link between the amount of antioxidants and plant salinity stress tolerance is not as straightforward as one may assume, with controversial reports available in the literature. This chapter addresses those controversies and argues that there is a need for better understanding and development of tools for targeted regulation of plant redox systems in specific cellular compartments and tissues.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

1O2 :

Singlet oxygen

AKR1:

NADPH-dependent aldo-ketoreductase

APX:

Ascorbate peroxidase

ASC:

Ascorbic acid

BADH:

Betaine aldehyde dehydrogenase

CAT:

Catalase

codA:

Choline dehydrogenase gene

DHA:

Dehydroascorbic acid

DHAR:

Dehydroascorbate reductase

GPX:

Glutathione peroxidase

GR:

Glutathione reductase

GSH:

Glutathione

GST:

Glutathione S-transferase

L-ASC:

L-Ascorbic acid

MAPK 1:

Mitogen-activated protein kinase phosphatase

MDA:

Malondialdehyde

MDHA:

Monodehydroascorbic acid

MDHAR:

Monodehydroascorbate reductase

MeOOH:

Methyl hydrogen peroxide

NADP:

Nicotinamide adenine dinucleotide phosphate

NADPH:

Reduced NADP

O2 :

Superoxide radical

OH :

Hydroxyl radical

Orn-δ-OAT:

Ornithine-δ-aminotransferase

P5CR:

Pyrroline-5-carboxylate reductase

P5CS:

Pyrroline-5-carboxylate synthase

POD:

Peroxidase

PSI:

Photosystem I

PSII:

Photosystem II

PUFA:

Polyunsaturated fatty acid

QTL:

Quantitative trait locus

ROS:

Reactive oxygen species

SOD:

Superoxide dismutase

References

  • Agarwal S, Pandey V (2004) Antioxidant enzyme responses to NaCl stress in Cassia angustifolia. Biol Plant 48:555–560

    Article  CAS  Google Scholar 

  • Ahanger MA, Agarwal RM (2017) Salinity stress induced alterations in antioxidant metabolism and nitrogen assimilation in wheat (Triticum aestivum L.) as influenced by potassium supplementation. Plant Physiol Biochem 115:449–460

    Article  CAS  PubMed  Google Scholar 

  • Ali AA, Alqurainy F (2006) Activities of antioxidants in plants under environmental stress. In: Motohasci A (ed) The lutein-prevention and treatment for diseases. Transworld Research Network, New Delhi, pp 187–256

    Google Scholar 

  • Alia P, Saradhi P (1991) Proline accumulation under heavy metal stress. J Plant Physiol 138:554–558

    Article  CAS  Google Scholar 

  • Anjum SA, Tanveer M et al (2015) Cadmium toxicity in maize: consequences on antioxidative systems, reactive oxygen species and cadmium accumulation. Environ Sci Pollut Res 22:17022–17030

    Article  CAS  Google Scholar 

  • Anjum SA, Tanveer M, Hussain S et al (2016a) Osmoregulation and antioxidant production in maize under combined cadmium and arsenic stress. Environ Sci Pollut Res 23:11864–11875

    Article  CAS  Google Scholar 

  • Anjum SA, Tanveer M et al (2016b) Effect of progressive drought stress on growth, leaf gas exchange, and antioxidant production in two maize cultivars. Environ Sci Pollut Res 23:17132–17141

    Article  CAS  Google Scholar 

  • Anjum SA, Ashraf U, Tanveer M, Khan I, Hussain S, Shahzad B, Zohaib A, Abbas F, Saleem MF, Ali I, Wang LC (2017) Drought induced changes in growth, osmolyte accumulation and antioxidant metabolism of three maize hybrids. Front Plant Sci 8:69. https://doi.org/10.3389/fpls.2017.00069

    Article  PubMed  PubMed Central  Google Scholar 

  • Ashraf M, Ali Q (2008) Relative membrane permeability and activities of some antioxidant enzymes as the key determinants of salt tolerance in canola (Brassica napus L.) Environ Exp Bot 63:266–273

    Article  CAS  Google Scholar 

  • Ashraf M, Foolad MR (2007) Roles of glycine betaine and proline in improving plant abiotic stress resistance. Environ Exp Bot 59:206–216

    Article  CAS  Google Scholar 

  • Athar HR, Khan A, Ashraf M (2008) Exogenously applied ascorbic acid alleviates salt-induced oxidative stress in wheat. Environ Exp Bot 63:224–231

    Article  CAS  Google Scholar 

  • Azevedo RA, Alas RM, Smith RJ, Lea PA (1998) Response of antioxidant enzymes to transfer from elevated carbon dioxide to air and ozone fumigation, in leaves and roots of wild-type and catalase-deficient mutant of barley. Physiol Plant 104:280–292

    Article  CAS  Google Scholar 

  • Azpilicueta CE, Benavides MP, Tomaro ML, Gallego SM (2007) Mechanism of CATA3 induction by cadmium in sunflower leaves. Plant Physiol Biochem 45:589–595

    Article  CAS  PubMed  Google Scholar 

  • Bandeoğlu E, Eyidoğan F, Yücel M, Öktem HA (2004) Antioxidant responses of shoots and roots of lentil to NaCl-salinity stress. Plant Growth Regul 42:69–77

    Article  Google Scholar 

  • Blumwald E (2000) Sodium transport and salt tolerance in plants. Curr Opin Cell Biol 12:431–434

    Article  CAS  PubMed  Google Scholar 

  • Bose J, Pottosin I, Shabala SS, Palmgren MG, Shabala S (2011) Calcium efflux systems in stress signaling and adaptation in plants. Front Plant Sci 2:1–17

    Article  Google Scholar 

  • Bose J, Rodrigo-Moreno A, Shabala S (2014) ROS homeostasis in halophytes in the context of salinity stress tolerance. J Exp Bot 65:1241–1257

    Article  CAS  PubMed  Google Scholar 

  • Bowler C, Fluhr R (2000) The role of calcium and activated oxygens as signals for controlling cross-tolerance. Trends Plant Sci 5:241–246

    Article  CAS  PubMed  Google Scholar 

  • Chen C, Dickman MB (2005) Proline suppresses apoptosis in the fungal pathogen Colletotrichum trifolii. PNAS 102:3459–3464

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chutipaijit S, Cha-Um S, Sompornpailin K (2009) Differential accumulations of proline and flavonoids in Indica rice varieties against salinity. Pak J Bot 41:2497–2506

    CAS  Google Scholar 

  • Crawford NM (2006) Mechanisms for nitric oxide synthesis in plants. J Exp Bot 57:471–478

    Article  CAS  PubMed  Google Scholar 

  • Cuin TA, Shabala S (2007) Compatible solutes reduce ROS-induced potassium efflux in Arabidopsis roots. Plant Cell Environ 30:875–885

    Article  CAS  PubMed  Google Scholar 

  • Daneshmand F, Arvin MJ, Kalantari KM (2010) Physiological responses to NaCl stress in three wild species of potato in vitro. Acta Physiol Plant 32:91–101

    Article  CAS  Google Scholar 

  • de Azevedo Neto AD, Prisco JT, Enéas-Filho J, de Abreu CEB, Gomes-Filho E (2006) Effect of salt stress on antioxidative enzymes and lipid peroxidation in leaves and roots of salt-tolerant and salt-sensitive maize genotypes. Environ Exp Bot 56:87–94

    Article  CAS  Google Scholar 

  • de Oliveira VP, Marques EC, de Lacerda CF, Prisco JT, Gomes Filho E (2013) Physiological and biochemical characteristics of Sorghum bicolor and Sorghum sudanense subjected to salt stress in two stages of development. Afr J Agric Res 8:660–670

    Google Scholar 

  • De Pinto MC, Paradiso A, Leonetti P, De Gara L (2006) Hydrogen peroxide, nitric oxide and cytosolic ascorbate peroxidase at the crossroad between defence and cell death. Plant J 48:784–795

    Article  PubMed  CAS  Google Scholar 

  • Demidchik V (2015) Mechanisms of oxidative stress in plants: from classical chemistry to cell biology. Environ Exp Bot 109:212–228

    Article  CAS  Google Scholar 

  • Demiral T, Türkan I (2005) Comparative lipid peroxidation, antioxidant defense systems and proline content in roots of two rice cultivars differing in salt tolerance. Environ Exp Bot 53:247–257

    Article  CAS  Google Scholar 

  • Desingh R, Kanagaraj G (2007) Influence of salinity stress on photosynthesis and antioxidative systems in two cotton varieties. Gen Appl Plant Physiol 33:221–234

    CAS  Google Scholar 

  • Di Martino C, Delfine S, Pizzuto R, Loreto F, Fuggi A (2003) Free amino acids and glycine betaine in leaf osmoregulation of spinach responding to increasing salt stress. New Phytol 158:455–463

    Article  CAS  Google Scholar 

  • Ellouzi H, Ben Hamed K, Cela J, Munne-Bosch S, Abdelly C (2011) Early effects of salt stress on the physiological and oxidative status of Cakile maritima (halophyte) and Arabidopsis thaliana (glycophyte). Physiol Plant 142:128–143

    Article  CAS  PubMed  Google Scholar 

  • Eyidogan F, Oz MT (2005) Effect of salinity on antioxidant responses of chickpea seedlings. Acta Physiol Plant 29:485–493

    Article  CAS  Google Scholar 

  • Fahrenholtz S, Doleiden F, Trozzolo A, Lamola A (1974) On the quenching of singlet oxygen by α-tocopherol. Photochem Photobiol 20:505–509

    Article  CAS  PubMed  Google Scholar 

  • Falk J, Munné-Bosch S (2010) Tocochromanol functions in plants: antioxidation and beyond. J Exp Bot 61:1549–1566

    Article  CAS  PubMed  Google Scholar 

  • Fitzgerald TL, Waters DL, Henry RJ (2009) Betaine aldehyde dehydrogenase in plants. Plant Biol 11(2):119–30

    Google Scholar 

  • Flowers TJ, Colmer TD (2008) Salinity tolerance in halophytes. New Phytol 179:945–963

    Article  CAS  PubMed  Google Scholar 

  • Foreman J, Demidchik V, Bothwell JHF, Mylona P, Miedema H, Torres MA, Linstead P, Costa S, Brownlee C, Jones JDG, Davies JM, Dolan L (2003) Reactive oxygen species produced by NADPH oxidase regulate plant cell growth. Nature 422(6930):442–446

    Google Scholar 

  • Foyer CH, Noctor G (2003) Redox sensing and signaling associated with reactive oxygen in chloroplasts, peroxisomes and mitochondria. Physiol Plant 119:355–364

    Article  CAS  Google Scholar 

  • Foyer CH, Noctor G (2005) Redox homeostasis and antioxidant signaling: a metabolic interface between stress perception and physiological responses. Plant Cell 17:1866–1875

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Frary A, Göl D, Keleş D, Ökmen B, Pınar H et al (2010) Salt tolerance in Solanum pennellii: antioxidant response and related QTL. BMC Plant Biol 10:58–73

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Frugoli JA, Zhong HH, Nuccio ML, McCourt P, McPeek MZ, Thomas TL, McClung CR (1996) Catalase is encoded by a multigene family in Arabidopsis thaliana (L.) Plant Physiol 112:327–336

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fukuzawa K, Tokumura A, Ouchi S, Tsukatani H (1982) Antioxidant activities of tocopherols on Fe2+-ascorbate-induced lipid peroxidation in lecithin liposomes. Lipids 17:511–513

    Article  CAS  PubMed  Google Scholar 

  • Gabbita SP, Robinson KA, Stewart CA, Floyd RA, Hensley K (2000) Redox regulatory mechanisms of cellular signal transduction. Arch Biochem Biophys 376:1–13

    Article  CAS  PubMed  Google Scholar 

  • Garg N, Manchanda G (2009) ROS generation in plants: boon or bane? Plant Biosyst 143:8–96

    Article  Google Scholar 

  • Gengmao Z, Yu H, Xing S, Shihui L, Quanmei S, Changhai W (2015) Salinity stress increases secondary metabolites and enzyme activity in safflower. Ind Crop Prod 64:175–181

    Article  CAS  Google Scholar 

  • Ghoulam C, Foursy A, Fares K (2002) Effects of salt stress on growth, inorganic ions and proline accumulation in relation to osmotic adjustment in five sugar beet cultivars. Environ Exp Bot 47:39–50

    Article  CAS  Google Scholar 

  • Gill SS, Tuteja N (2010) Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem 48:909–930

    Article  CAS  PubMed  Google Scholar 

  • Gossett DR, Millhollon EP, Lucas M (1994) Antioxidant response to NaCl stress in salt-tolerant and salt-sensitive cultivars of cotton. Crop Sci 34:706–714

    Article  CAS  Google Scholar 

  • Grun S, Lindermayr C, Sell S (2006) Nitric oxide and gene regulation in plants. J Exp Bot 57:507–516

    Article  CAS  PubMed  Google Scholar 

  • Hamada AbdElgawad GZ, Hegab MM, Pandey R, Asard H, Abuelsoud W (2016) High salinity induces different oxidative stress and antioxidant responses in maize seedlings organs. Front Plant Sci 7:276–287

    PubMed  PubMed Central  Google Scholar 

  • Hare PD, Cress WA (1997) Metabolic implications of stress-induced proline accumulation in plants. Plant Growth Regul 21:79–102

    Article  CAS  Google Scholar 

  • Hare PD, Cress WA, Van Staden J (1998) Dissecting the roles of osmolyte accumulation during stress. Plant Cell Environ 21:535–553

    Article  CAS  Google Scholar 

  • Hernandez JA, Jimerez A, Mullineaux P, Sevilla F (2000) Tolerance of pea (Pisum sativum) to long term salt stress is associated with induction of antioxidant defences. Plant Cell Biol 23:853–862

    CAS  Google Scholar 

  • Hernandez I, Chacón O, Rodriguez R, Portieles R, López Y, Pujol M, Borrás-Hidalgo O (2009) Black shank resistant tobacco by silencing of glutathione S-transferase. Biochem Biophys Res Commun 387:300–304

    Article  CAS  PubMed  Google Scholar 

  • Hichem H, Mounir D (2009) Differential responses of two maize (Zea mays L.) varieties to salt stress: changes on polyphenols composition of foliage and oxidative damages. Ind Crop Prod 30:144–151

    Article  CAS  Google Scholar 

  • Hsu YT, Kao CH (2007) Heat shock-mediated H2O2 accumulation and protection against Cd toxicity in rice seedlings. Plant Soil 300:137–147

    Article  CAS  Google Scholar 

  • Hu CA, Delauney AJ, Verma DPS (1992) A bifunctional D1-enzymepyrroline-5-carboxylate synthetase catalyzes the first two steps in proline biosynthesis in plants. PNAS 89:9354–9358

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Igamberdiev AU, Hill RD (2004) Nitrate, NO and haemoglobin in plant adaptation to hypoxia: an alternative to classic fermentation pathways. J Exp Bot 55:2473–2482

    Article  CAS  PubMed  Google Scholar 

  • Ismail H, Maksimović JD, Maksimović V, Shabala L, Živanović BD, Tian Y, Jacobsen S, Shabala S (2016) Rutin, a flavonoid with antioxidant activity, improves plant salinity tolerance by regulating K+ retention and Na+ exclusion from leaf mesophyll in quinoa and broad beans. Funct Plant Biol 43(1):75–86

    CAS  Google Scholar 

  • Jaleel CA, Gopi R, Manivannan P, Panneerselvam R (2007a) Responses of antioxidant defense system of Catharanthus roseus (L.) G. Don. to paclobutrazol treatment under salinity. Acta Physiol Plant 29:205–209

    Article  CAS  Google Scholar 

  • Jaleel CA, Gopi R, Sankar B, Manivannan P, Kishorekumar A, Sridharan R, Panneerselvam R (2007b) Studies on germination, seedling vigour, lipid peroxidation and proline metabolism in Catharanthus roseus seedlings under salt stress. S Afr J Bot 73:190–195

    Article  CAS  Google Scholar 

  • Jebara S, Jebara M, Limam F, Aouani ME (2005) Changes in ascorbate peroxidase, catalase, guaiacol peroxidase and superoxide dismutase activities in common bean (Phaseolus vulgaris) nodules under salt stress. J Plant Physiol 162:929–936

    Article  CAS  PubMed  Google Scholar 

  • Jiang P, Wan Z, Wang Z, Li S, Sun Q (2013) Dynamic QTL analysis for activity of antioxidant enzymes and malondialdehyde content in wheat seed during germination. Euphytica 190:75–85

    Article  CAS  Google Scholar 

  • Jiménez A, Hernández JA, Pastori G, del Rıo LA, Sevilla F (1998) Role of the ascorbate–glutathione cycle of mitochondria and peroxisomes in the senescence of pea leaves. Plant Physiol 118:1327–1335

    Article  PubMed  PubMed Central  Google Scholar 

  • Joo JH, Yoo HJ, Hwang I, Lee JS, Nam KH, Bae YS (2005) Auxin-induced reactive oxygen species production requires the activation of phosphatidylinositol 3-kinase. FEBS Lett 579:1243–1248

    Article  CAS  PubMed  Google Scholar 

  • Khan MH, Panda SK (2008) Alterations in root lipid peroxidation and antioxidative responses in two rice cultivars under NaCl-salinity stress. Acta Physiol Plant 30:81–89

    Article  CAS  Google Scholar 

  • Koca H, Bor M, Özdemir F, Türkan I (2007) The effect of salt stress on lipid peroxidation, antioxidative enzymes and proline content of sesame cultivars. Environ Exp Bot 60:344–351

    Article  CAS  Google Scholar 

  • Kravchik M, Bernstein N (2013) Effects of salinity on the transcriptome of growing maize leaf cells point at cell-age specificity in the involvement of the antioxidative response in cell growth restriction. BMC Genomics 14:24. https://doi.org/10.1186/1471-2164-14-24

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kukreja S, Nandval AS, Kumar N, Sharma SK, Sharma SK, Unvi V, Sharma PK (2005) Plant water status, H2O2 scavenging enzymes, ethylene evolution and membrane integrity of Cicer arietinum roots as affected by salinity. Biol Plant 49:305–308

    Article  CAS  Google Scholar 

  • Kumar S, Dhingra A, Daniell H (2004) Plastid-expressed betaine aldehyde dehydrogenase gene in carrot cultured cells, roots, and leaves confers enhanced salt tolerance. Plant Physiol 136:2843–2854

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kwon SY, Jeong YJ, Lee HS, Kim JS, Cho KY, Allen RD, Kwak SS (2002) Enhanced tolerances of transgenic tobacco plants expressing both superoxide dismutase and ascorbate peroxidase in chloroplasts against methyl viologen mediated oxidative stress. Plant Cell Environ 25:873–882

    Article  Google Scholar 

  • Lee DH, Kim YS, Lee CB (2001) The inductive responses of the antioxidant enzymes by salt stress in the rice (Oryza sativa L.) J Plant Physiol 158:737–745

    Article  CAS  Google Scholar 

  • Leisinger U, Rüfenacht K, Fischer B, Pesaro M, Spengler A, Zehnder AJB, Eggen RIL (2001) The glutathione peroxidase homologous gene from Chlamydomonas reinhardtii is transcriptionally up-regulated by singlet oxygen. Plant Mol Biol 46:395–408

    Article  CAS  PubMed  Google Scholar 

  • Light GG, Mahan JR, Roxas VP, Allen RD (2005) Transgenic cotton (Gossypium hirsutum L.) seedlings expressing a tobacco glutathione S-transferase fail to provide improved stress tolerance. Planta 222:346–354

    Article  CAS  PubMed  Google Scholar 

  • Link G (2003) Redox regulation of chloroplast transcription. Antioxid Redox Signal 5:79–87

    Article  CAS  PubMed  Google Scholar 

  • Liu CG, Wang QW, Jin YQ, Pan KW, Wang YJ (2017) Photoprotective and antioxidative mechanisms against oxidative damage in Fargesia rufa subjected to drought and salinity. Funct Plant Biol 44:302–311

    Article  CAS  Google Scholar 

  • López-Gómez M, Hidalgo-Castellanos J, Muñoz-Sánchez JR, Marín-Peña AJ, Lluch C, Herrera-Cervera JA (2017) Polyamines contribute to salinity tolerance in the symbiosis Medicago truncatulaSinorhizobium meliloti by preventing oxidative damage. Plant Physiol Biochem 116:9–17

    Article  PubMed  CAS  Google Scholar 

  • Løvdal T, Olsen KM, Slimestad R, Verheul M, Lillo C (2010) Synergetic effects of nitrogen depletion, temperature, and light on the content of phenolic compounds and gene expression in leaves of tomato. Phytochemistry 71:605–613

    Article  PubMed  CAS  Google Scholar 

  • Lu J, Holmgren A (2014) The thioredoxin antioxidant system. Free Radic Biol Med 66:75–87

    Article  CAS  PubMed  Google Scholar 

  • Lutts S, Kinet JM, Bouharmont J (1996) Effects of salt stress on growth, mineral nutrition and proline accumulation in relation to osmotic adjustment in rice (Oryza sativa L.) cultivars differing in salinity resistance. Plant Growth Regul 19:207–218

    Article  CAS  Google Scholar 

  • Mandhania S, Madan S, Sawhney V (2006) Antioxidant defense mechanism under salt stress in wheat seedlings. Biol Plant 50:227–231

    Article  CAS  Google Scholar 

  • Meloni DA, Gulotta MR, Martínez CA, Oliva MA (2004) The effects of salt stress on growth, nitrate reduction and proline and glycine betaine accumulation in Prosopis alba. Braz J Plant Physiol 16:39–46

    Article  CAS  Google Scholar 

  • Meyer AJ (2008) The integration of glutathione homeostasis and redox signaling. J Plant Physiol 165:1390–1403

    Article  CAS  PubMed  Google Scholar 

  • Mhadhbi H, Fotopoulos V, Mylona PV, Jebara M, Elarbi Aouani M, Polidoros AN (2011) Antioxidant gene–enzyme responses in Medicago truncatula genotypes with different degree of sensitivity to salinity. Physiol Plant 141:201–214

    Article  CAS  PubMed  Google Scholar 

  • Millar AH, Mittova V, Kiddle G, Heazlewood JL, Bartoli CG, Theodoulou FL, Foyer CH (2003) Control of ascorbate synthesis by respiration and its implication for stress responses. Plant Physiol 133:443–447

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miller GAD, Suzuki N, Ciftci-Yilmaz S, Mittler RON (2010) Reactive oxygen species homeostasis and signalling during drought and salinity stresses. Plant Cell Environ 33:453–467

    Article  CAS  PubMed  Google Scholar 

  • Misra N, Gupta AK (2005) Effect of salt stress on proline metabolism in two high yielding genotypes of green gram. Plant Sci 169:331–339

    Article  CAS  Google Scholar 

  • Mittler R, Zilinskas BA (1992) Molecular cloning and characterization of a gene encoding pea cytosolic ascorbate peroxidase. J Biol Chem 267:21802–21807

    CAS  PubMed  Google Scholar 

  • Mittler R, Vanderauwera S, Gollery M, Van Breusegem F (2004) Reactive oxygen gene network of plants. Trends Plant Sci 9:490–498

    Article  CAS  PubMed  Google Scholar 

  • Mittova V, Guy M, Tal M, Volokita M (2004) Salinity up-regulates the antioxidative system in root mitochondria and peroxisomes of the wild salt-tolerant tomato species Lycopersicon pennellii. J Exp Bot 55:1105–1113

    Article  CAS  PubMed  Google Scholar 

  • Mohanty A, Kathuria H, Ferjani A, Sakamoto A, Mohanty P, Murata N, Tyagi AK (2002) Transgenics of an elite Indica rice variety Pusa Basmati 1 harbouring the codA gene are highly tolerant to salt stress. Theor Appl Genet 106:51–57

    Article  CAS  PubMed  Google Scholar 

  • Munne-Bosch S, Alegre L (2002) The function of tocopherols and tocotrienols in plants. Crit Rev Plant Sci 21:31–57

    Article  CAS  Google Scholar 

  • Munns R, James RA, Launchli A (2006) Approaches to increasing the salt tolerance of wheat and other cereals. J Exp Bot 57:1025–1043

    Article  CAS  PubMed  Google Scholar 

  • Nagamiya K, Motohasci T, Nakao K, Prodhan SH, Hattori E, Hirose S, Ozawa K, Ohkawa Y, Takabe T, Takabe T, Komamine A (2007) Enhancement of salt tolerance in transgenic rice expressing an Escherichia coli catalase gene, katE. Plant Biotechnol Rep 1:49–55

    Article  Google Scholar 

  • Noctor G, Foyer CH (1998) A re-evaluation of the ATP:NADPH budget during C3 photosynthesis. A contribution from nitrate assimilation and its associated respiratory activity? J Exp Bot 49:1895–1908

    CAS  Google Scholar 

  • Noctor G, Gomez L, Vanacker H, Foyer CH (2002) Interactions between biosynthesis, compartmentation, and transport in the control of glutathione homeostasis and signaling. J Exp Bot 53:1283–1304

    Article  CAS  PubMed  Google Scholar 

  • Noreen Z, Ashraf M (2009) Assessment of variation in antioxidative defense system in salt-treated pea (Pisum sativum) cultivars and its putative use as salinity tolerance markers. J Plant Physiol 166:1764–1774

    Article  CAS  PubMed  Google Scholar 

  • op den Camp RG, Przybyla D, Ochsenbein C, Laloi C, Kim C, Danon A, Wagner D, Hideg E, Gobel C, Feussner I, Nater M, Apel K (2003) Rapid induction of distinct stress responses after the release of singlet oxygen in Arabidopsis. Plant Cell 15:2320–2332

    Article  CAS  Google Scholar 

  • Pan Y, Wu LJ, Yu ZL (2006) Effect of salt and drought stress on antioxidant enzymes activities and SOD isoenzymes of liquorice (Glycyrrhiza uralensis Fisch). Plant Growth Regul 49:157–165

    Article  CAS  Google Scholar 

  • Papageorgiou GC, Murata N (1995) The unusually strong stabilizing effects of glycine betaine on the structure and function of the oxygen-evolving photosystem-II complex. Photosynth Res 44:243–252

    Article  CAS  PubMed  Google Scholar 

  • Pedreira J, Sanz N, Pena MJ, Sanchez M, Queijeiro E, Revilla G, Zarra I (2004) Role of apoplastic ascorbate and hydrogen peroxide in the control of cell growth in pine hypocotyls. Plant Cell Physiol 45:530–534

    Article  CAS  PubMed  Google Scholar 

  • Pei ZM, Murata Y, Benning G, Thomine S, Klüsener B, Allen GJ, Grill E, Schroeder JI (2000) Hydrogen peroxide-activated Ca2+ channels mediate guard cell abscisic acid signaling. Nature 406:731–734

    Article  CAS  PubMed  Google Scholar 

  • Rhodes D, Hanson AD (1993) Quaternary ammonium and tertiary sulfonium compounds in higher plants. Annu Rev Plant Physiol Plant Mol Biol 44:357–384

    Article  CAS  Google Scholar 

  • Roosens NH, Thu TT, Iskandar HM, Jacobs M (1998) Isolation of the ornithine-δ-aminotransferase cDNA and effect of salt stress on its expression in Arabidopsis thaliana. Plant Physiol 117:263–271

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rouhier N, Vlamis-Gardicas A, Lilling CH (2003) Characerization of redox properties of poplar glutaredoxin. Antioxid Redox Signal 5:15–22

    Article  CAS  PubMed  Google Scholar 

  • Rousseaux MC, Jones CM, Adams D, Chetelat R, Bennett A, Powell A (2005) QTL analysis of fruit antioxidants in tomato using Lycopersicon pennellii introgression lines. Theor Appl Genet 111:1396–1408

    Article  CAS  PubMed  Google Scholar 

  • Roxas VP, Lodhi SA, Garrett DK, Mahan JR, Allen RD (2000) Stress tolerance in transgenic tobacco seedlings that overexpress glutathione S-transferase/glutathione peroxidase. Plant Cell Physiol 41:1229–1234

    Article  CAS  PubMed  Google Scholar 

  • Sagi M, Davydov O, Orazova S, Yesbergenova Z, Ophir R, Stratmann JW, Fluhr R (2004) Plant respiratory burst oxidase homologs impinge on wound responsiveness and development in Lycopersicon esculentum. Plant Cell 16:616–628

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sairam RK, Srivastava GC (2002) Changes in antioxidant activity in sub-cellular fractions of tolerant and susceptible wheat genotypes in response to long term salt stress. Plant Sci 162:897–904

    Article  CAS  Google Scholar 

  • Sairam RK, Rao KV, Srivastava GC (2002) Differential response of wheat genotypes to long term salinity stress in relation to oxidative stress, antioxidant activity and osmolyte concentration. Plant Sci 163:1037–1046

    Article  CAS  Google Scholar 

  • Sairam RK, Srivastava GC, Agarwal S, Meena RC (2005) Differences in antioxidant activity in response to salinity stress in tolerant and susceptible wheat genotypes. Biol Plant 49:85–91

    Article  CAS  Google Scholar 

  • Sakamoto A, Murata N (2002) The role of glycine betaine in the protection of plants from stress: clues from transgenic plants. Plant Cell Environ 25:163–171

    Article  CAS  PubMed  Google Scholar 

  • Salama S, Trivedi S, Busheva M, Arafa AA, Garab G, Erdei L (1994) Effects of NaCl salinity on growth, cation accumulation, chloroplast structure and function in wheat cultivars differing in salt tolerance. J Plant Physiol 144:241–247

    Article  CAS  Google Scholar 

  • Scandalias JG (1990) Response of plant antioxidant defense genes to environmental stress. Adv Genet 28:1–41

    Google Scholar 

  • Schopfer P, Liszkay A, Bechtold M, Frahry G, Wagner A (2002) Evidence that hydroxyl radicals mediate auxin-induced extension growth. Planta 214:821–828

    Article  CAS  PubMed  Google Scholar 

  • Schurmann P (2003) Redox signaling in the chloroplast: the ferredoxin/thioredoxin system. Antioxid Redox Signal 5:69–78

    Article  PubMed  CAS  Google Scholar 

  • Shalata A, Mittova V, Volokita M, Guy M, Tal M (2001) Response of the cultivated tomato and its wild salt-tolerant relative Lycopersicon pennellii to salt-dependent oxidative stress: the root antioxidative system. Physiol Plant 112:487–494

    Article  CAS  PubMed  Google Scholar 

  • Shao HB, Chu LY (2005) Plant molecular biology in China: opportunities and challenges. Plant Mol Biol Report 23:345–358

    Article  CAS  Google Scholar 

  • Shao HB, Jiang SY, Li FM, Chu LY, Zhao CX, Shao MA, Zhao XN, Li F (2007a) Some advances in plant stress physiology and their implications in the systems biology era. Biointerphases 54:33–36

    CAS  Google Scholar 

  • Shao HB, Guo QJ, Chu LY et al (2007b) Understanding molecular mechanism of higher plant plasticity under abiotic stress. Biointerphases 54:37–45

    CAS  Google Scholar 

  • Shi HZ, Ishitani M, Kim CS, Zhu JK (2000) The Arabidopsis thaliana salt tolerance gene SOS1 encodes a putative Na+/H+ antiporter. PNAS 97:6896–6901

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shin R, Schachtman DP (2004) Hydrogen peroxide mediates plant root cell response to nutrient deprivation. PNAS 101:8827–8832

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smirnoff N, Cumbes QJ (1989) Hydroxyl radical scavenging activity of compatible solutes. Phytochemistry 28(4):1057–1060

    Google Scholar 

  • Smirnoff N (2005) Ascorbate, tocopherol and carotenoids: metabolism, pathway engineering and functions. In: Smirnoff N (ed) Antioxidants and reactive oxygen species in plants. Blackwell, Oxford, pp 53–86

    Chapter  Google Scholar 

  • Souza ER, Freire MBGS, Cunha KPV, Nascimento CWA, Ruiz HA et al (2012) Biomass, anatomical changes and osmotic potential in Atriplex nummularia Lindl. cultivated in sodic saline soil under water stress. Environ Exp Bot 82:20–27

    Article  CAS  Google Scholar 

  • Sreenivasulu N, Grimm B, Wobus U, Weschke W (2000) Differential response of antioxidant compounds to salinity stress in salt-tolerant and salt-sensitive seedlings of foxtail millet (Setaria italica). Physiol Plant 109:435–442

    Article  CAS  Google Scholar 

  • Srivastava AK, Bhargava P, Rai LC (2005) Salinity and copper-induced oxidative damage and changes in antioxidative defense system of Anabaena doliolum. Microb Biotechnol 22:1291–1298

    Article  CAS  Google Scholar 

  • Subbarao GV, Nam NH, Chauhan YS, Johansen C (2000) Osmotic adjustment, water relations and carbohydrate remobilization in pigeon pea under water deficits. J Plant Physiol 157:651–659

    Article  CAS  Google Scholar 

  • Sunkar R, Bartels D, Kirch HH (2003) Overexpression of a stress inducible aldehyde dehydrogenase gene from Arabidopsis thaliana in transgenic plants improves stress tolerance. Plant J 35:452–464

    Article  CAS  PubMed  Google Scholar 

  • Suzuki N, Koussevitzky S, Mittler RON, Miller GAD (2012) ROS and redox signaling in the response of plants to abiotic stress. Plant Cell Environ 35:259–270

    Article  CAS  PubMed  Google Scholar 

  • Szabados L, Savouré A (2010) Proline: a multifunctional amino acid. Trends Plant Sci 15:89–97

    Article  CAS  PubMed  Google Scholar 

  • Szarka A, Tomasskovics B, Bánhegyi G (2012) The ascorbate–glutathione–α-tocopherol triad in abiotic stress response. Int J Mol Sci 13:4458–4483

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tanaka Y, Hibin T, HayASCi Y, Tanaka A, Kishitani S, Takabe T, Yokota S, Takabe T (1999) Salt tolerance of transgenic rice overexpressing yeast mitochondrial Mn-SOD in chloroplasts. Plant Sci 148:131–138

    Article  CAS  Google Scholar 

  • Tanveer M, Shah AN (2017) An insight into salt stress tolerance mechanisms of Chenopodium album. Environ Sci Pollut Res 24:16531–16535

    Article  CAS  Google Scholar 

  • Trovato M, Mattioli R, Costantino P (2008) Multiple roles of proline in plant stress tolerance and development. Rend Lincei 19:325–346

    Article  Google Scholar 

  • Tuna AL (2014) Influence of foliarly applied different triazole compounds on growth, nutrition, and antioxidant enzyme activities in tomato (‘Solanum lycopersicum’ L.) under salt stress. Aust J Crop Sci 8:71–79

    Google Scholar 

  • Turan S, Tripathy BC (2013) Salt and genotype impact on antioxidative enzymes and lipid peroxidation in two rice cultivars during de-etiolation. Protoplasma 250:209–222

    Article  CAS  PubMed  Google Scholar 

  • Ushimaru T, Nakagawa T, Fujioka Y, Daicho K, Naito M, Yamauchi Y, Nonaka H, Amako K, Yamawaki K, Murata N (2006) Transgenic Arabidopsis plants expressing the rice dehydroascorbate reductase gene are resistant to salt stress. J Plant Physiol 163:1179–1184

    Article  CAS  PubMed  Google Scholar 

  • Vaidyanathan H, Sivakumar P, Chakrabarty R, Thomas G (2003) Scavenging of reactive oxygen species in NaCl-stressed rice (Oryza sativa L.)—differential response in salt-tolerant and sensitive varieties. Plant Sci 165:1411–1418

    Article  CAS  Google Scholar 

  • Vemanna RS, Babitha KC, Solanki JK, Reddy VA, Sarangi SK, Udayakumar M (2017) Aldo-keto reductase-1 (AKR1) protect cellular enzymes from salt stress by detoxifying reactive cytotoxic compounds. Plant Physiol Biochem 113:177–186

    Article  CAS  PubMed  Google Scholar 

  • Wang P, Song CP (2008) Guard-cell signalling for hydrogen peroxide and abscisic acid. New Phytol 178:703–718

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Ying Y, Chen J, Wang X (2004) Transgenic Arabidopsis overexpressing Mn-SOD enhanced salt-tolerance. Plant Sci 167:671–677

    Article  CAS  Google Scholar 

  • Wang Y, Wisniewski M, Meilan R, Cui M, Webb R, Fuchigami L (2005) Overexpression of cytosolic ascorbate peroxidase in tomato confers tolerance to chilling and salt stress. J Am Soc Hortic Sci 130:167–173

    CAS  Google Scholar 

  • Wang WB, Kim YH, Lee HS, Kim KY, Deng XP, Kwak SS (2009) Analysis of antioxidant enzyme activity during germination of alfalfa under salt and drought stresses. Plant Physiol Biochem 47:570–577

    Article  CAS  PubMed  Google Scholar 

  • Wu YS, Tang KX (2004) MAP kinase cascades responding to environmental stress in plants. Acta Bot Sin 46:127–136

    Google Scholar 

  • Wu G, Wei ZK, Shao HB (2007) The mutual responses of higher plants to environment: physiological and microbiological aspects. Biointerphases 59:113–119

    CAS  Google Scholar 

  • Yan H, Li Q, Park SC, Wang X, Liu YJ, Zhang YG et al (2016) Overexpression of CuZnSOD and APX enhance salt stress tolerance in sweet potato. Plant Physiol Biochem 109:20–27

    Article  CAS  PubMed  Google Scholar 

  • Zaidi I, Ebel C, Belgaroui N, Ghorbel M, Amara I, Hanin M (2016) The wheat MAP kinase phosphatase 1 alleviates salt stress and increases antioxidant activities in Arabidopsis. J Plant Physiol 193:12–21

    Article  CAS  PubMed  Google Scholar 

  • Zhang W, Wang C, Qin C, Wood T, Olafsdottir G, Welti R, Wang X (2003) The oleate-stimulated phospholipase D, PLDδ, and phosphatidic acid decrease H2O2-induced cell death in Arabidopsis. Plant Cell 15:2285–2295

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao X, Tan HJ, Liu YB, Li XR, Chen GX (2009) Effect of salt stress on growth and osmotic regulation in Thellungiella and Arabidopsis callus. Plant Cell Tissue Org Cult 98:97–103

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Australian Research Council and Qatar National Science Foundation (NPRP-8-126-1-024) grants to Sergey Shabala.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergey Shabala .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Tanveer, M., Shabala, S. (2018). Targeting Redox Regulatory Mechanisms for Salinity Stress Tolerance in Crops. In: Kumar, V., Wani, S., Suprasanna, P., Tran, LS. (eds) Salinity Responses and Tolerance in Plants, Volume 1. Springer, Cham. https://doi.org/10.1007/978-3-319-75671-4_8

Download citation

Publish with us

Policies and ethics