Skip to main content

Plant Hormones: Potent Targets for Engineering Salinity Tolerance in Plants

  • Chapter
  • First Online:
Salinity Responses and Tolerance in Plants, Volume 1

Abstract

Climate change has intensified the frequency and severity of many abiotic stresses. Soil salinity is a major abiotic stress affecting crop productivity worldwide. This leads to significant yield reductions, which have been reported in major cereal species such as wheat, maize, and barley. Meanwhile, the global human population is expected to rise above 9 billion by 2050. Average living standards are also increasing, with impacts on food consumption. Thus, there is an urgent need to further increase crop productivity. To meet these goals, it is imperative to develop new crops that have improved resistance to salt stress. Many plant scientists now believe that modern biotechnological approaches such as molecular breeding and genetic engineering offer the possibility to achieve these goals. Plant hormones play an important physiological role in regulating plant growth and development, and in coordinating plant responses to environmental conditions. These hormones—including abscisic acid, gibberellins, auxins, cytokinins, ethylene, brassinosteroids, and jasmonates—are very important for providing adaptive responses under salt stress. Plant hormones may prove to be important metabolic engineering targets for producing abiotic stress–tolerant crop plants. This chapter discusses the physiological roles of plant hormones in salinity responses and recent success in engineering plant hormones for salinity tolerance in plants.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

12-OPDA:

12-Oxo phytodienoic acid

13-HPOT:

13-Hydroperoxy-9,11,15-octadecatrienoic acid

α-LeA:

α-Linolenic acid

AAO:

Abscisic acid–aldehyde oxidase

ABA:

Abscisic acid

ACC:

Aminocyclopropane-1-carboxylic acid

ACO:

Aminocyclopropane-1-carboxylic acid oxidase

ACS:

Aminocyclopropane-1-carboxylic acid synthase

ADP:

Adenosine diphosphate

AHK:

Arabidopsis histidine kinases receptor

AHP:

Histidine-containing phospho-transfer protein

AO:

Allene oxide

AOC:

Allene oxide cyclase

AOS:

Allene oxide synthase

APX:

Ascorbate peroxidase

ARR:

Arabidopsis response regulator

ATP:

Adenosine triphosphate

BIN2:

Brassinosteroid-insensitive 2

BL:

Brassinolide

BR:

Brassinosteroid

BZR1:

Brassinazole-resistant 1

CAT:

Catalase

CK:

Cytokinin

CKX:

Cytokinin oxidase/dehydrogenase

CRF:

Cytokinin response factor

cZ:

Cis-zeatin

EBR:

24-Epibrassinolide (EBL)

ECe:

Electrical conductivity of a saturated soil extract

ERF:

Ethylene response factor

ET:

ethylene

FMO:

Flavin monooxygenase

GA:

Gibberellin

HSD:

11-b-Hydroxysteroid dehydrogenase

IAA:

Indole-3-acetic acid.

IAM:

Indole-3-acetamide

IAOx:

Indole-3-acetaldoxime

iPA:

Isopentenyl adenine

IPA:

Indole-3-pyruvic acid

IPP:

Isopentyl diphosphate

IPT:

Adenosine phosphate isopentenyl transferase

JA:

Jasmonate/jasmonic acid

JA-ACC:

Jasmonoyl aminocyclopropane-1-carboxylic acid

JA-Ile:

Jasmonoyl isoleucine

LOX:

13-Lipoxygenase

MAPK:

Mitogen-activated protein kinase

MCSU:

Molybdenum cofactor sulfurase

MDA:

Malondialdehyde

MeJA:

Methyl jasmonate

NCED:

9-Cis-epoxycarotenoid dioxygenase

NR:

Nitrate reductase

RES:

Reactive electrophile species

ROS:

Reactive oxygen species

SA:

Salicylic acid

S-AdoMet:

S-adenosyl-methionine

SnRK2.4 :

Serine/threonine protein kinase gene

SOD:

Superoxide dismutase

TAM:

Tryptamine

tZ:

Trans-zeatin

Z:

Zeatin

ZEO:

Zeaxanthin oxidase

ZEP:

Zeaxanthin epoxidase

ZR:

Zeatin riboside

References

  • Abeles S, Morgan PW, Saltveit ME (1992) Ethylene in plant biology. Academic Press, San Diego

    Google Scholar 

  • Achard P, Genschik P (2009) Releasing the brakes of plant growth: how GAs shutdown DELLA proteins. J Exp Bot 60:1085–1092

    Google Scholar 

  • Achard P, Cheng H, De Grauwe L et al (2006) Integration of plant responses to environmentally activated phytohormonal signals. Science 311:91–94

    Google Scholar 

  • Ahammed GJ, Xia XJ, Li X et al (2015) Role of brassinosteroid in plant adaptation to abiotic stresses and its interplay with other hormones. Curr Protein Pept Sci 16:462–473

    Google Scholar 

  • Ahmad P, Rasool S, Gul A et al (2016) Jasmonates: multifunctional roles in stress tolerance. Front Plant Sci 7:813. https://doi.org/10.3389/fpls.2016.00813

  • Ali-Rachedi S, Bouinot D, Wagner MH et al (2004) Changes in endogenous abscisic acid levels during dormancy release and maintenance of mature seeds: studies with the Cape Verde Islands ecotype, the dormant model of Arabidopsis thaliana. Planta 219:479–488

    Google Scholar 

  • Anuradha S, Rao SSR (2001) Effect of brassinosteroids on salinity stress induced inhibition of germination and seedling growth of rice (Oryza sativa L.) Plant Growth Regul 33:151–153

    Google Scholar 

  • Argueso CT, Ferreira JF, Kieber JJ (2009) Environmental perception avenues: the interaction of cytokinin and environmental response pathways. Plant Cell Environ 32:1147–1160

    Google Scholar 

  • Ashraf M, Foolad MR (2005) Pre-sowing seed treatment—a shotgun approach to improving germination, plant growth and crop yield under saline and non-saline conditions. Adv Agron 88:223–271

    Google Scholar 

  • Atia A, Debez A, Barhoumi Z et al (2009) ABA, GA3, and nitrate may control seed germination of Crithmum maritimum (Apiaceae) under saline conditions. C R Biol 332:704–710

    Google Scholar 

  • Avanci NC, Luche DD, Goldman GH et al (2010) Jasmonates are plant hormones with multiple functions, including plant defense and reproduction. Genet Mol Res 9:484–505. https://doi.org/10.4238/vol9-1gmr754

  • Basu S, Rabara R (2017) Abscisic acid—an enigma in the abiotic stress tolerance of crop plants. Plant Gene. https://doi.org/10.1016/j.plgene.2017.04.008

  • Cao WH, Liu J, Zhou QY et al (2006) Expression of tobacco ethylene receptor NTHK1 alters plant responses to salt stress. Plant Cell Environ 29:1210–1219

    Google Scholar 

  • Chen D, Ma X, Li C et al (2014) A wheat aminocyclopropane-1-carboxylate oxidase gene, TaACO1, negatively regulates salinity stress in Arabidopsis thaliana. Plant Cell Rep 33:1815–1827. https://doi.org/10.1007/s00299-014-1659-7

  • Cheng MC, Liao PM, Kuo WW et al (2013) The Arabidopsis ETHYLENE RESPONSE FACTOR1 regulates abiotic stress-responsive gene expression by binding to different cis-acting elements in response to different stress signals. Plant Physiol 162:1566–1582. https://doi.org/10.1104/pp.113.221911

  • Choe S, Dilkes BP, Fujioka S et al (1998) The DWF4 gene of Arabidopsis encodes a cytochrome P450 that mediates multiple 22alpha-hydroxylation steps in brassinosteroid biosynthesis. Plant Cell 10:231–243

    Google Scholar 

  • Coba de la Peña T, Cárcamo CB, Almonacid L et al (2008) A salt stress-responsive cytokinin receptor homologue isolated from Medicago sativa nodules. Planta 227:769–779

    Google Scholar 

  • Colebrook EH, Thomas SG, Phillips AL et al (2014) The role of gibberellin signalling in plant responses to abiotic stress. J Exp Biol 217:67–75

    Google Scholar 

  • Cominelli E, Tonelli C (2010) Transgenic crops coping with water scarcity. New Biotechnol. https://doi.org/10.1016/j.nbt.2010.08.005

  • Cominelli E, Conti L, Tonelli C et al (2012) Challenges and perspectives to improve crop drought and salinity tolerance. New Biotechnol. https://doi.org/10.1016/j.nbt.2012.11.001

  • Davière JM, Achard P (2016) A pivotal role of DELLAs in regulating multiple hormone signals. Mol Plant 9:10–20. https://doi.org/10.1016/j.molp.2015.09.011

  • Divi, U.K. and Krishna, P. (2009) Brassinosteroids confer stress tolerance. In Plant Stress Biology (Hirt, H., ed.), Wiley–VCH Verlag GmbH & Co. KGaA, Weinheim pp. 119–135

    Google Scholar 

  • Divi UK, Krishna P (2009a) Brassinosteroid: a biotechnological target for enhancing crop yield and stress tolerance. New Biotechnol 26:131–136

    Google Scholar 

  • Divi UK, Krishna P (2009b) Brassinosteroids confer stress tolerance. In Plant Stress Biology (Hirt H, ed.), Wiley–VCH Verlag GmbH & Co. KGaA, Weinheim pp. 119–135

    Google Scholar 

  • Divi UK, Rahman T, Krishna P (2010) Brassinosteroid-mediated stress tolerance in Arabidopsis shows interactions with abscisic acid, ethylene and salicylic acid pathways. BMC Plant Biol 10:151

    Google Scholar 

  • Dong W, Wang M, Xu F et al (2013) Wheat oxophytodienoate reductase gene TaOPR1 confers salinity tolerance via enhancement of abscisic acid signaling and reactive oxygen species scavenging. Plant Physiol 161:1217–1228

    Google Scholar 

  • Fahad S, Hussain S, Bano A et al (2014a) Potential role of plant hormones and plant growth–promoting rhizobacteria in abiotic stresses: consequences for changing environment. Environ Sci Pollut Res. https://doi.org/10.1007/s11356-014-3754-2

  • Fahad S, Hussain S, Matloob A et al (2014b) Plant hormones and plant responses to salinity stress: a review. Plant Growth Regul. https://doi.org/10.1007/s10725-014-0013-y

  • Farmer EE, Mueller MJ (2013) ROS-mediated lipid peroxidation and RES-activated signaling. Annu Rev Plant Biol 64:429–450

    Google Scholar 

  • Finkelstein RR, Gampala SSL, Rock CD (2002) Abscisic acid signaling in seeds and seedlings. Plant Cell 14:S15–S45

    Google Scholar 

  • Flowers TJ, Galal HK, Bromham L (2010) Evolution of halophytes: multiple origins of salt tolerance in land plants. Funct Plant Biol 37:604–612

    Google Scholar 

  • Fukuda A, Tanaka Y (2006) Effects of ABA, auxin, and gibberellin on the expression of genes for vacuolar H+-inorganic pyrophosphatase, H+-ATPase subunit A, and Na+/H+ antiporter in barley. Plant Physiol Biochem 44(5–6):351–358

    Google Scholar 

  • Grove MD, Spencer GF, Rohwedder WK et al (1979) Brassinolide, a plant growth promoting steroid isolated from Brassica napus pollen. Nature 281:216–217

    Google Scholar 

  • Gupta B, Huang B (2014) Mechanism of salinity tolerance in plants: physiological, biochemical, and molecular characterization. Inter J Genomics. https://doi.org/10.1155/2014/701596

  • Gurmani AR, Bano A, Khan SU et al (2011) Alleviation of salt stress by seed treatment with abscisic acid (ABA), 6-benzylaminopurine (BA) and chlormequat chloride (CCC) optimizes ion and organic matter accumulation and increases yield of rice (Oryza sativa L.) Aus J Crop Sci 5(10):1278–1285

    Google Scholar 

  • Ha S, Vankova R, Yamaguchi-Shinozaki K et al (2012) Cytokinins: metabolism and function in plant adaptation to environmental stresses. Trends Plant Sci. https://doi.org/10.1016/j.tplants.2011.12.005

  • Hazman M, Hause B, Eiche E et al (2015) Increased tolerance to salt stress in OPDA-deficient rice ALLENE OXIDE CYCLASE mutants is linked with an increased ROS-scavenging activity. J Exp Bot 66:3339–3352. https://doi.org/10.1093/jxb/erv142

  • Hwang I, Sheen J, Müller B (2012) Cytokinin signaling networks. Annu Rev Plant Biol 63:353–380

    Google Scholar 

  • Ismail A, Seo M, Takebayashi Y et al (2014) Salt adaptation requires efficient fine-tuning of jasmonate signaling. Protoplasma 251:881–898. https://doi.org/10.1007/s00709-013-0591-y

  • Jalalpour Z, Shabani L, Khoraskani LA et al (2014) Stimulatory effect of methyl jasmonate and squalestatin on phenolic metabolism through induction of LOX activity in cell suspension culture of yew. Turk J Biol 38:76–82. https://doi.org/10.3906/biy-1306-91

  • Javid MG, Sorooshzadeh A, Moradi F et al (2011) The role of plant hormones in alleviating salt stress in crop plants. Aust J Crop Sci 5:726–734

    Google Scholar 

  • Jewell MC, Bradley C, Campbell IDG (2010) Transgenic plants for abiotic stress resistance. In: Kole C et al (eds) Transgenic crop plants. https://doi.org/10.1007/978-3-642-04812-8_2

  • Jiang M, Zhang J (2002) Role of abscisic acid in water stress–induced antioxidant defence in leaves of maize seedlings. Free Radic Res 36:1001–1015. https://doi.org/10.1080/1071576021000006563

  • Jung JH, Park CM (2011) Auxin modulation of salt stress signaling in Arabidopsis seed germination. Plant Signal Behav 6:1198–1200

    Google Scholar 

  • Kagale S, Divi UK, Krochko JE, Keller WA, Krishna P (2006) Brassinosteroid confers tolerance in Arabidopsis thaliana and Brassica napus to a range of abiotic stresses. Planta 225(2):353–364

    Google Scholar 

  • Kang DJ, Seo YJ, Lee JD et al (2005) Jasmonic acid differentially affects growth, ion uptake and abscisic acid concentration in salt-tolerant and salt-sensitive rice cultivars. J Agron Crop Sci 191:273–282. https://doi.org/10.1111/j.1439-037X.2005.00153.x

  • Kaya C, Tuna AL, Yokas I (2009) The role of plant hormones in plants under salinity stress. In: Ashraf M, Ozturk M, Athar HR (eds) Salinity and water stress: improving crop efficiency. Springer, Berlin, pp 45–50

    Google Scholar 

  • Kazan K, Lyons R (2014) Intervention of phytohormone pathways by pathogen effectors. Plant Cell 26(6):2285–2309

    Google Scholar 

  • Kazan K (2015) Diverse roles of jasmonates and ethylene in abiotic stress tolerance. Trends Plant Sci. https://doi.org/10.1016/j.tplants.2015.02.001

  • Ke Q, Wang Z, Ji C et al (2015) Transgenic poplar expressing Arabidopsis YUCCA6 exhibits auxinoverproduction phenotypes and increased tolerance to abiotic stress. Plant Physiol Biochem 94:19–27. https://doi.org/10.1016/j.plaphy.2015.05.003

  • Kim DH, Yamaguchi S, Lim S et al (2008) SOMNUS, a CCCH-type zinc finger protein in Arabidopsis, negatively regulates light-dependent seed germination downstream of PIL5. Plant Cell 20:1260–1277

    Google Scholar 

  • Kim JI, Baek D, Park HC et al (2013) Overexpression of Arabidopsis YUCCA6 in potato results in high-auxin developmental phenotypes and enhanced resistance to water deficit. Mol Plant 6(2):337–349

    Google Scholar 

  • Klay I, Pirrello J, Riahi L et al (2014) Ethylene response factors Sl-ERFB3 is responsive to abiotic stresses and mediates salt and cold stress response regulation in tomato. Sci World J. https://doi.org/10.1155/2014/167681

  • Kuiper D, Schuit J, Kuiper PJC (1990) Actual cytokinin concentrations in plant tissue as an indicator for salt resistance in cereals. Plant Soil 123:243–250

    Google Scholar 

  • Kulaeva ON, Burkhanova EA, Fedina AB et al (1991) Effect of brassinosteroids on protein synthesis and plant cell ultrastructure under stress conditions. In: Cutler HG, Yokota T, Adam G (eds) Brassinosteroids chemistry, bioactivity and application, ACS Symp Ser, vol 474. Am Chem Soc, Washington, pp 141–155

    Google Scholar 

  • Kumar V, Sah SK, Khare T et al (2016) Engineering plant hormones for abiotic stress tolerance in crop plants. In: Ahammed GJ, Yu JQ (eds) Plant hormones under challenging environmental factors. https://doi.org/10.1007/978-94-017-7758-2_10

  • Kurotani K, Hayashi K, Hatanaka S et al (2015) Elevated levels of CYP94 family gene expression alleviate the jasmonate response and enhance salt tolerance in rice. Plant Cell Physiol 56:779–789

    Google Scholar 

  • Lee JT, Prasad V, Yang PT et al (2003) Expression of Arabidopsis CBF1 regulated by an ABA/stress inducible promoter in transgenic tomato confers stress tolerance without affecting yield. Plant Cell Environ 26:1181–1190

    Google Scholar 

  • Lei G, Shen M, Li ZG et al (2011) EIN2 regulates salt stress response and interacts with a MA3 domain-containing protein ECIP1 in Arabidopsis. Plant Cell Environ 34:1678–1692

    Google Scholar 

  • Li J, Chory J (1997) A putative leucine-rich repeat receptor kinase involved in brassinosteroid signal transduction. Cell 90:929–938

    Google Scholar 

  • Li F, Asami T, Wu X et al (2007) A putative hydroxysteroid dehydrogenase involved in regulating plant growth and development. Plant Physiol 145:87–97

    Google Scholar 

  • Lim S, Park J, Lee N et al (2013) ABA-insensitive3, ABA-insensitive5, and DELLAs interact to activate the expression of SOMNUS and other high-temperature-inducible genes in imbibed seeds in Arabidopsis. Plant Cell 25:4863–4878

    Google Scholar 

  • Lin Z, Zhong S, Grierson D (2009) Recent advances in ethylene research. J Exp Bot 60:3311–3336. https://doi.org/10.1093/jxb/erp204

  • Lin Y, Yang L, Chen D et al (2013) A role for Ethylene-Insensitive3 in the regulation of hydrogen peroxide production during seed germination under high salinity in Arabidopsis. Acta Physiol Plant 35:1701–1706. https://doi.org/10.1007/s11738-012-1176-7

  • Liu Y, Zhang S (2004) Phosphorylation of 1-aminocyclopropane-1-carboxylic acid synthase by MPK6, a stress responsive mitogen-activated protein kinase, induces ethylene biosynthesis in Arabidopsis. Plant Cell 16:3386–3399. https://doi.org/10.1105/tpc.104.026609

  • Lopez-Gomez M, Hidalgo-Castellanos J, Lluch C, Herrera-Cervera JA (2016) 24-Epibrassinolide ameliorates salt stress effects in the symbiosis Medicago truncatula-Sinorhizobium meliloti and regulates the nodulation in cross-talk with polyamines. Plant Physiol Biochem 108:212–221

    Google Scholar 

  • Maggio A, Barbieri G, Raimondi G et al (2010) Contrasting effects of GA3 treatments on tomato plants exposed to increasing salinity. J Plant Growth Regul 29:63–72

    Google Scholar 

  • Mao X, Zhang H, Tian S et al (2010) TaSnRK2.4, an SNF1-type serine/threonine protein kinase of wheat (Triticum aestivum L.), confers enhanced multistress tolerance in Arabidopsis. J Exp Bot 61:683–696

    Google Scholar 

  • Mason MG, Jha D, Salt DE et al (2010) Type-B response regulators ARR1 and ARR12 regulate expression of AtHKT1;1 and accumulation of sodium in Arabidopsis shoots. Plant J 64:753–763

    Google Scholar 

  • Miyawaki K, Tarkowski P, Matsumoto-Kitano M et al (2006) Roles of Arabidopsis ATP/ADP isopentenyltransferases and tRNA isopentenyltransferases in cytokinin biosynthesis. Proc Natl Acad Sci U S A 103(44):16598–16603

    Google Scholar 

  • Moons A, Prinsen E, Bauw G et al (1997) Antagonistic effects of abscisic acid and jasmonates on salt stress-inducible transcripts in rice roots. Plant Cell 9:2243–2259. https://doi.org/10.1105/tpc.9.12.2243

  • Munns R, Tester M (2008) Mechanisms of salinity tolerance. Annu Rev Plant Biol 59:651–681

    Google Scholar 

  • Neljubow D (1901) Ueber die horizontale Nutation der Stengel von Pisum sativum and einiger anderen Pflanzen. Beih Bot Zentralbl 10:128–139

    Google Scholar 

  • Nishiyama R, Watanabe Y, Fujita Y et al (2011) Analysis of cytokinin mutants and regulation of cytokinin metabolic genes reveals important regulatory roles of cytokinins in drought, salt and abscisic acid responses, and abscisic acid biosynthesis. Plant Cell 23:2169–2183. https://doi.org/10.1105/tpc.111.087395

  • Nishiyama R, Le DT, Watanabe Y et al (2012) Transcriptome analyses of a salt-tolerantcytokinin-deficient mutant reveal differential regulation of salt stress response by cytokinin deficiency. PLoS One 7:e32124

    Google Scholar 

  • Park HY, Seok HY, Park BK et al (2008) Overexpression of Arabidopsis ZEP enhances tolerance to osmotic stress. Biochem Biophys Res Commun 375:80–85

    Google Scholar 

  • Park SW, Li W, Viehhauser A et al (2013) Cyclophilin 20-3 relays a 12-oxo-phytodienoic acid signal during stress responsive regulation of cellular redox homeostasis. Proc Natl Acad Sci U S A 110(23):9559–9564. https://doi.org/10.1073/pnas.1218872110

  • Pedranzani H, Sierra-de-Grado R, Vigliocco A et al (2007) Cold and water stresses produce changes in endogenous jasmonates in two population of Pinus pinaster Ait. Plant Growth Regul 52:111–116. https://doi.org/10.1007/s10725-007-9166-2

  • Peng J, Li Z, Wen X et al (2014) Salt-induced stabilization of EIN3/EIL1 confers salinity tolerance by deterring ROS accumulation in Arabidopsis. PLoS Genet. https://doi.org/10.1371/journal.pgen.1004664

  • Pirbalouti AG, Mirbagheri H, Hamedi B et al (2014) Antibacterial activity of the essential oils of myrtle leaves against Erysipelothrix rhusiopathiae. Asian Pac J Trop Biomed 4:505–509. https://doi.org/10.12980/APJTB.4.2014B1168

  • Pons R, Cornejo JM, Sanz A (2013) Is ABA involved in tolerance responses to salinity by affecting cytoplasm ion homeostasis in rice cell lines? Plant Physiol Biochem 62(2013):88–94

    Google Scholar 

  • Qiu ZB, Guo JL, Zhu AJ et al (2014) Exogenous jasmonic acid can enhance tolerance of wheat seedlings to salt stress. Ecotoxicol Environ Saf 104:202–208

    Google Scholar 

  • Raghavendra AS, Gonugunta VK, Christmann A et al (2010) ABA perception and signalling. Trends Plant Sci 15:395–401

    Google Scholar 

  • Raja V, Majeed U, Kang H, Andrabi KI, John R (2017) Abiotic stress: interplay between ROS, hormones and MAPKs. Environ Exp Bot. https://doi.org/10.1016/j.envexpbot.2017.02.010

  • Rashotte AM, Mason MG, Hutchison CE et al (2006) A subset of Arabidopsis AP2 transcription factors mediates cytokinin responses in concert with a two-component pathway. Proc Natl Acad Sci U S A 103:11081–11085. https://doi.org/10.1073/pnas.0602038103

  • Rengasamy P (2006) World salinization with emphasis on Australia. J Exp Bot 57:1017–1023

    Google Scholar 

  • Ruan CJ, Da Silva JAT, Mopper S et al (2010) Halophyte improvement for a salinized world. Crit Rev Plant Sci 29:329–359

    Google Scholar 

  • Ruy H, Chao Y (2015) Plant hormones in salt stress tolerance. J Plant Biol 58:147–155. https://doi.org/10.1007/s12374-015-0103-z

  • Sakakibara H (2006) Cytokinins: activity, biosynthesis and translocation. Annu Rev Plant Biol 57:431–449

    Google Scholar 

  • Sasse JM, Smith R, Hudson I (1995) Effects of 24-epibrassinolide on germination of seed of Eucalyptus camaldulensis in saline conditions. Proc Plant Growth Regul Soc Am 22:136–141

    Google Scholar 

  • Sharma I, Ching E, Saini S et al (2013) Exogenous application of brassinosteroid offers tolerance to salinity by altering stress responses in rice variety Pusa Basmati-1. Plant Physiol Biochem 69:17–26

    Google Scholar 

  • Shen X, Wang Z, Song X et al (2014) Transcriptomic profiling revealed an important role of cell wall remodeling and ethylene signaling pathway during salt acclimation in Arabidopsis. Plant Mol Biol 86:303–317. https://doi.org/10.1007/s11103-014-0230-9

  • Shimada Y, Fujioka S, Miyauchi N et al (2001) Brassinosteroid-6-oxidases from Arabidopsis and tomato catalyze multiple C-6 oxidations in brassinosteroid biosynthesis. Plant Physiol 126:770–779

    Google Scholar 

  • Sylva P, Petre ID, Alena G, Petr H, Petr S, Vojtech K, Radomira V (2017) Hormonal dynamics during salt stress responses of salt-sensitive Arabidopsis thaliana and salt-tolerant Thellungiella salsuginea. Plant Sci. https://doi.org/10.1016/j.plantsci.2017.07.020

  • Szekeres M, Nemeth K, Koncz-Kalman Z et al (1996) Brassinosteroids rescue the deficiency of CYP90, a cytochrome P450, controlling cell elongation and de-etiolation in Arabidopsis. Cell 85:171–182

    Google Scholar 

  • Takei K, Yamaya T, Sakakibara H (2004) Arabidopsis CYP735A1 and CYP735A2 encode cytokinin hydroxylases that catalyze the biosynthesis of trans-zeatin. J Biol Chem 279(40):41866–41872

    Google Scholar 

  • Tao JJ, Chen HW, Ma B et al (2015) The role of ethylene in plants under salinity stress. Front Plant Sci 6:1059. https://doi.org/10.3389/fpls.2015.01059

  • To JPC, Kieber JJ (2008) Cytokinin signaling: two-components and more. Trends Plant Sci 13:85–92. https://doi.org/10.1016/j.tplants.2007.11.005

  • Tsuchisaka A, Yu G, Jin H et al (2009) A combinatorial interplay among the 1-aminocyclopropane-1-carboxylate isoforms regulates ethylene biosynthesis in Arabidopsis thaliana. Genetics 183:979–1003

    Google Scholar 

  • Tsukada K, Takahashi K, Nabeta K (2010) Biosynthesis of jasmonic acid in a plant pathogenic fungus, Lasiodiplodia theobromae. Phytochemistry 71:2019–2023. https://doi.org/10.1016/j.phytochem.2010.09.013

  • Tuteja N (2007) Mechanisms of high salinity tolerance in plants. Methods Enzymol 428:419–438

    Google Scholar 

  • Ueguchi-Tanaka M, Ashikari M, Nakajima M et al (2005) GIBBERELLIN INSENSITIVE DWARF1 encodes a soluble receptor for gibberellin. Nature 437:693–698

    Google Scholar 

  • Valenzuela CE, Acevedo-Acevedo O, Miranda GS et al (2016) Salt stress response triggers activation of the jasmonate signaling pathway leading to inhibition of cell elongation in Arabidopsis primary root. J Exp Bot 67(14):4209–4220. https://doi.org/10.1093/jxb/erw202

  • Vandenbussche F, Vaseva I, Vissenberg K et al (2012) Ethylene in vegetative development: a tale with a riddle. New Phytol 194:895–909. https://doi.org/10.1111/j.1469-8137.2012.04100.x

  • Vert G, Chory J (2006) Downstream nuclear events in brassinosteroid signalling. Nature 441:96–100

    Google Scholar 

  • Vishwakarma K, Upadhyay N, Kumar N et al (2017) Abscisic acid signaling and abiotic stress tolerance in plants: a review on current knowledge and future prospects. Front Plant Sci 8:161. https://doi.org/10.3389/fpls.2017.00161

  • Wang W, Liu B, Xu M et al (2015) ABA-induced CCCH tandem zinc finger protein OsC3H47 decreases ABA sensitivity and promotes drought tolerance in Oryza sativa. Biochem Biophys Res Commun 464:33–37

    Google Scholar 

  • Wani SH, Kumar V, Shriram V et al (2016) Plant hormones and their metabolic engineering for abiotic stress tolerance in crop plants. Crops J 4:162–176

    Google Scholar 

  • Wani SH, Dutta T, Neelapu RRN, Surekha C (2017) Transgenic approaches to enhance salt and drought tolerance in plants. Plant Gene. https://doi.org/10.1016/j.plgene.2017.05.006

  • Wasternack C, Hause B (2013) Jasmonates: biosynthesis, perception, signal transduction and action in plant stress response, growth and development. An update to the 2007 review. Ann Bot 111:1021–1058. https://doi.org/10.1093/aob/mct067

  • Wasternack C, Kombrink E (2010) Jasmonates: structural requirements for lipid-derived signals active in plant stress responses and development. ACS Chem Biol 5:63–77

    Google Scholar 

  • Wasternack C, Strnad M (2015) Jasmonate signaling in plant stress responses and development—active and inactive compounds. New Biotechnol. https://doi.org/10.1016/j.nbt.2015.11.001

  • Werner T, Schmülling T (2009) Cytokinin action in plant development. Curr Opin Plant Biol 12:527–538

    Google Scholar 

  • Yabuta T, Sumiki Y (1938) On the crystal of gibberellin, a substance to promote plant growth. J Agric Chem Soc Japan 14:1526

    Google Scholar 

  • Yamaguchi S (2008) Gibberellin metabolism and its regulation. Annu Rev Plant Physiol 59:225–251

    Google Scholar 

  • Yang R, Yang T, Zhang H et al (2014) Hormone profiling and transcription analysis reveal a major role of ABA in tomato salt tolerance. Plant Physiol Biochem 77:23–34

    Google Scholar 

  • Yoon JY, Hamayun M, Lee S-K, Lee I-J (2009) Methyl jasmonate alleviated salinity stress in soybean. J Crop Sci Biotech 12(2):63–68

    Google Scholar 

  • Zahir ZA, Asghar HN, Arshad M (2001) Cytokinin and its precursors for improving growth and yield of rice. Soil Biol Biochem 33:405–408

    Google Scholar 

  • Zalabák D, Pospíšilová H, Šmehilová M et al (2013) Genetic engineering of cytokinin metabolism: prospective way to improve agricultural traits of crop plants. Biotechnol Adv 31:97–117

    Google Scholar 

  • Zhang Y, Yang J, Lu S et al (2008) Overexpressing SgNCED1 in tobacco increases ABA level, antioxidant enzyme activities, and stress tolerance. J Plant Growth Regul 27:151–158. https://doi.org/10.1007/s00344-008-9041-z

  • Zhang W, Yang H, You S et al (2015) MhNCED3, a gene encoding 9-cis-epoxycarotenoid dioxygenase in Malus hupehensis Rehd., enhances plant tolerance to Cle stress by reducing Cl accumulation. Plant Physiol Biochem 89:85–91

    Google Scholar 

  • Zhang J, Yu H, Zhang Y et al (2016) Increased abscisic acid levels in transgenic maize overexpressing AtLOS5 mediated root ion fluxes and leaf water status under salt stress. J Exp Bot 67(5):1339–1355

    Google Scholar 

  • Zhao Y (2010) Auxin biosynthesis and its role in plant development. Annu Rev Plant Biol 61:49–64. https://doi.org/10.1146/annurev-arplant-042809-112308

  • Zhao Y (2012) Auxin biosynthesis: a simple two-step pathway converts tryptophan to indole-3-acetic acid in plants. Mol Plant 5:334–338

    Google Scholar 

  • Zhao Y, Dong W, Zhang N et al (2014) A wheat allene oxide cyclase gene enhances salinity tolerance via jasmonate signaling. Plant Physiol 164:1068–1076

    Google Scholar 

  • Žižková E, Dobrev PI, Muhovski Y et al (2015) Tomato (Solanum lycopersicum L.) SlIPT3 and SlIPT4 isopentenyltransferases mediate salt stress response in tomato. BMC Plant Biol 15:85. https://doi.org/10.1186/s12870-015-0415-7

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Atia, A. et al. (2018). Plant Hormones: Potent Targets for Engineering Salinity Tolerance in Plants. In: Kumar, V., Wani, S., Suprasanna, P., Tran, LS. (eds) Salinity Responses and Tolerance in Plants, Volume 1. Springer, Cham. https://doi.org/10.1007/978-3-319-75671-4_6

Download citation

Publish with us

Policies and ethics