Skip to main content

Single-Gene Versus Multigene Transfer Approaches for Crop Salt Tolerance

  • Chapter
  • First Online:
Salinity Responses and Tolerance in Plants, Volume 1

Abstract

Plants face many challenges during biotic and abiotic stresses during their lifetime. Salinity stress is the most typical abiotic stress and combines water stress and ionic stress. It affects plants in many aspects at the molecular, cellular, and morphological levels. In response and adaptation to salt stress, plant gene regulation is modulated at the transcriptional or post-transcriptional level. Efforts have been made to overcome salinity by traditional approaches such as breeding, priming, and modern techniques of genetic engineering. However, because salt tolerance depends on multigenic properties, it is hard to control this problem simply by a single gene transfer. Although the response and signaling mechanisms of plants under salt stress have not been completely elucidated, thorough understanding of the salt stress response in plants has enabled scientists to make transgenic plants showing salt tolerance, mostly by a single transfer but also by multigene transfer. In addition to a purely gene-based approach, epigenetics and noncoding RNA have been found to play roles in salt stress/tolerance in plants. This chapter provides a brief introduction to salt stress responses and strategies for salt tolerance in plants. Moreover, single-gene versus multigene transfer and/or regulation of salt tolerance in plants are described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ABA:

Abscisic acid

APX:

Ascorbate peroxidase

ATP:

Adenosine triphosphate

BADH:

Betaine aldehyde dehydrogenase

CDPK:

Calcium-dependent protein kinase

CIPK:

Calcineurin B–like protein interacting kinase

CRISPER:

Clustered regularly interspaced short tandem repeats

ER:

Endoplasmic reticulum

GORK:

Guard cell outward-rectifying potassium channel

GST:

Glutathione-S-transferase

Hsp31:

Heat shock protein 31

IAA:

Indole-3-acetic acid

MAPK:

Mitogen-activated protein kinase

miRNA:

MicroRNA

NSSC:

Nonselective cation channel

NUE:

Nitrogen use efficiency

PDH45:

Pea DNA helicase 45

QTL:

Quantitative trait locus

ROS:

Reactive oxygen species

SAHA:

Suberoylanilide hydroxamic acid

SALT:

Salt stress-induced plant protein

sHSP:

Small heat shock protein

siRNA:

Small interfering RNA

SOD:

Superoxide dismutase

SOS:

Salt Overly Sensitive

TALEN:

Transcription activator–like nuclease

WUE:

Water use efficiency

ZFN:

Zinc finger nuclease

References

  • Abdula SE, Lee HJ, Ryu H, Kang KK, Nou I, Sorrells ME, Cho YG (2016) Over expression of BrCIPK1 gene enhances abiotic stress tolerance by increasing proline biosynthesis in rice. Plant MolBiol Rep 34:501

    Article  CAS  Google Scholar 

  • Adams E, Shin R (2014) Transport, signaling, and homeostasis of potassium and sodium in plants. J Integr Plant Biol 56:231–249

    Article  CAS  PubMed  Google Scholar 

  • Agarwal P, Dabi M, Sapara KK, Joshi PS, Agarwal PK (2016) Ectopic expression of JcWRKY transcription factor confers salinity tolerance via salicylic acid signaling. Front Plant Sci 7:1541

    PubMed  PubMed Central  Google Scholar 

  • Ahmad P, Rasool S, Gul A, Sheikh SA, Akram NA, Ashraf M, Kazi AM, Gucel S (2016) Jasmonates: multifunctional roles in stress tolerance. Front Plant Sci 7:813

    PubMed  PubMed Central  Google Scholar 

  • Almeida DM, Oliveira MM, Saibo NJ (2017) Regulation of Na+ and K+ homeostasis in plants: towards improved salt stress tolerance in crop plants. Genet Mol Biol 40:326–345

    Google Scholar 

  • Ashraf M, Akram NA, Arteca RN, Foolad MR (2010) The physiological, biochemical and molecular roles of brassinosteroids and salicylic acid in plant processes and salt tolerance. Crit Rev Plant Sci 29:162–190

    Article  CAS  Google Scholar 

  • Assaha DVM, Ueda A, Saneoka H, Al-Yahyai R, Yaish MW (2017) The role of Na+ and K+ transporters in salt stress adaptation in glycophytes. Front Physiol 8:509

    Article  PubMed  PubMed Central  Google Scholar 

  • Augustine SM, Ashwin Narayan J, Syamaladevi DP, Appunu C, Chakravarthi M, Ravichandran V, Tuteja N, Subramonian N (2015) Overexpression of EaDREB2 and pyramiding of EaDREB2 with the pea DNA helicase gene (PDH45) enhance drought and salinity tolerance in sugarcane (Saccharum spp. hybrid). Plant Cell Rep 34:247–263

    Google Scholar 

  • Beebe S, Ramirez J, Jarvis A, Rao I, Mosquera G, Bueno G et al (2011) Genetic improvement of common beans and the challenges of climate change. In: Yadav SS, Redden RJ, Hatfield JL, Lotze-Campen H, Hall AE (eds) Crop adaptation of climate change., 1st edn. Wiley, New York, pp 356–369

    Chapter  Google Scholar 

  • Bekh-Ochir D, Shimada S, Yamagami A, Kanda S, Ogawa K, Nakazawa M, Matsui M, Sakuta M, Osada H, Asami T, Nakano T (2013) A novel mitochondrial DnaJ/Hsp40 family protein BIL2 promotes plant growth and resistance against environmental stress in brassinosteroid signaling. Planta 237:1509–1525

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ben Romdhane W, Ben-Saad R, Meynard D, Verdeil JL, Azaza J, Zouari N, Fki L, Guiderdoni E, Al-Doss A, Hassairi A (2017) Ectopic expression of Aeluropus littoralis plasma membrane protein gene AlTMP1 confers abiotic stress tolerance in transgenic tobacco by improving water status and cation homeostasis. Int J Mol Sci 18:pii: E692

    Article  Google Scholar 

  • Cabello JV, Lodeyro AF, Zurbriggen MD (2014) Novel perspectives for the engineering of abiotic stress tolerance in plants. Curr Opin Biotechnol 26:62–70

    Article  CAS  PubMed  Google Scholar 

  • Chen J, Xiong DY, Wang WH, Hu WJ, Simon M, Xiao Q, Chen J, Liu TW, Liu X, Zheng HL (2013) Nitric oxide mediates root K+/Na+ balance in a mangrove plant, Kandelia obovata, by enhancing the expression of AKT1-type K+ channel and Na+/H+ antiporter under high salinity. PLoS One 8:e71543

    Google Scholar 

  • Chen X, Lu X, Shu N, Wang D, Wang S, Wang J, Guo L, Guo X, Fan W, Lin Z, Ye W (2017) GhSOS1, a plasma membrane Na+/H+ antiporter gene from upland cotton, enhances salt tolerance in transgenic Arabidopsis thaliana. PLoS One 12:e0181450

    Google Scholar 

  • Cheng NH, Pittman JK, Zhu JK, Hirschi KD (2004) The protein kinase SOS2 activates the Arabidopsis H+/Ca2+ antiporter CAX1 to integrate calcium transport and salt tolerance. J Biol Chem 279:2922–2926

    Article  CAS  PubMed  Google Scholar 

  • Cheong M, Yun D-J (2007) Salt-stress signaling. J Plant Biol 50:148–155

    Google Scholar 

  • Chowdhury S, Basu A, Kundu S (2017) Overexpression of a new osmotin-like protein gene (SindOLP) confers tolerance against biotic and abiotic stresses in sesame. Front Plant Sci 8:410

    PubMed  PubMed Central  Google Scholar 

  • Deng X, Hu W, Wei S, Zhou S, Zhang F, Han J, Chen L, Li Y, Feng J, Fang B, Luo Q, Li S, Liu Y, Yang G, He G (2013) TaCIPK29, a CBL-interacting protein kinase gene from wheat, confers salt stress tolerance in transgenic tobacco. PLoS One 8:e69881

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ding H, Lai J, Wu Q, Zhang S, Chen L, Dai YS, Wang C, Du J, Xiao S, Yang C (2016) Jasmonate complements the function of Arabidopsis lipoxygenase 3 in salinity stress response. Plant Sci 244:1–7

    Article  CAS  PubMed  Google Scholar 

  • Dong W, Song Y, Zhao Z, Qiu NW, Liu X, Guo W (2017) The Medicago truncatula R2R3-MYB transcription factor gene MtMYBS1 enhances salinity tolerance when constitutively expressed in Arabidopsis thaliana. Biochem Biophys Res Commun 490:225–230

    Article  CAS  PubMed  Google Scholar 

  • Fu C, Liu XX, Yang WW, Zhao CM, Liu J (2016) Enhanced salt tolerance in tomato plants constitutively expressing heat-shock protein in the endoplasmic reticulum. Genet Mol Res 15 https://doi.org/10.4238/gmr.15028301

  • Garg B, Gill SS, Biswas DK, Sahoo RK, Kunchge NS, Tuteja R, Tuteja N (2017) Simultaneous expression of PDH45 with EPSPS gene improves salinity and herbicide tolerance in transgenic tobacco plants. Front Plant Sci 8:364

    PubMed  PubMed Central  Google Scholar 

  • Gariga M, Raddatz N, Véry AA, Sentenac H, Rubio-Meléndez ME, González W, Dreyer I (2017) Cloning and functional characterization of HKT1 and AKT1 genes of Fragaria spp. Relationship to plant response to salt stress. J Plant Physiol 210:9–17

    Article  Google Scholar 

  • Ghosh A, Pareek A, Sopory SK, Singla-Pareek SL (2014) A glutathione responsive rice glyoxalase II, OsGLYII-2, functions in salinity adaptation by maintaining better photosynthesis efficiency and anti-oxidant pool. Plant J 80:93–105

    Google Scholar 

  • Grewal HS (2010) Water uptake, water use efficiency, plant growth and ionic balance of wheat, barley, canola and chickpea plants on a sodic vertosol with variable subsoil NaCl salinity. Agric Water Manag 97:148–156

    Article  Google Scholar 

  • Gupta B, Haung B (2014) Mechanism of salinity tolerance in plants: physiological, biochemical, and molecular characterization. Int J Genomics. https://doi.org/10.1155/2014/701596

  • Gupta BK, Sahoo KK, Ghosh A, Tripathi AK, Anwar K, Das P, Singh AK, Pareek A, Sopory SK, Singla-Pareek SL (2017) Manipulation of glyoxalase pathway confers tolerance to multiple stresses in rice. Plant Cell Environ. https://doi.org/10.1111/pce.12968. [Epub ahead of print]

  • Ha S, Vankova R, Yamaguchi-Shinozaki K, Shinozaki K, Tran L-SP (2012) Cytokinins: metabolism and function in plant adaptation to environmental stresses. Trends Plant Sci 17:172–179

    Article  CAS  PubMed  Google Scholar 

  • Hamayun M, Khan SA, Khan AL, Shin JH, Ahmad B, Shin DH, Lee IJ (2010) Exogenous gibberellic acid reprograms soybean to higher growth and salt stress tolerance. J Agric Food Chem 58:7226–7232

    Article  CAS  PubMed  Google Scholar 

  • Hanin M, Ebel C, Ngom M, Laplaze L, Masmoudi K (2016) New insights on plant salt tolerance mechanisms and their potential use for breeding. Front Plant Sci 7:1787

    Article  PubMed  PubMed Central  Google Scholar 

  • Hichri I, Muhovski Y, Žižková E, Dobrev PI, Gharbi E, Franco-Zorrilla JM, Lopez-Vidriero I, Solano R, Clippe A, Errachid A, Motyka V, Lutts S (2017) The Solanum lycopersicum WRKY3 transcription factor SlWRKY3 is involved in salt stress tolerance in tomato. Front Plant Sci 8:1343

    Article  PubMed  PubMed Central  Google Scholar 

  • Hossain MS, El Sayed AI, Moore M, Dietz KJ (2017) Redox and reactive oxygen species network in acclimation for salinity tolerance in sugar beet. J Exp Bot 68:1283–1298

    Article  PubMed  PubMed Central  Google Scholar 

  • Huang Q, Wang Y, Li B, Chang J, Chen M, Li K, Yang G, He G (2015) TaNAC29, a NAC transcription factor from wheat, enhances salt and drought tolerance in transgenic Arabidopsis. BMC Plant Biol 15:268

    Article  PubMed  PubMed Central  Google Scholar 

  • James RA, Blake C, Byrt CS, Munns R (2011) Major genes for Na+ exclusion, Nax1 and Nax2 (wheat HKT1;4 and HKT1;5), decrease Na+ accumulation in bread wheat leaves under saline and waterlogged conditions. J Exp Bot 62:2939–2947

    Article  CAS  PubMed  Google Scholar 

  • Jia H, Hao L, Guo X, Liu S, Yan Y, Guo X (2016) A Raf-like MAPKKK gene, GhRaf19, negatively regulates tolerance to drought and salt and positively regulates resistance to cold stress by modulating reactive oxygen species in cotton. Plant Sci 252:267–281

    Article  CAS  PubMed  Google Scholar 

  • Jiang C, Xu J, Zhang H, Zhang X, Shi J, Li M, Ming F (2009) A cytosolic class I small heat shock protein, RcHSP17.8, of Rosa chinensis confers resistance to a variety of stresses to Escherichia coli, yeast and Arabidopsis thaliana. Plant Cell Environ 32:1046–1059

    Article  CAS  PubMed  Google Scholar 

  • Kaur N, Kirat K, Saini S, Sharma I, Gantet P, Pati PK (2016) Reactive oxygen species generating system and brassinosteroids are linked to salt stress adaptation mechanisms in rice. Plant Signal Behav 11:e1247136

    Article  PubMed  PubMed Central  Google Scholar 

  • Khan MN, Siddiqui MH, Mohammad F, Naeem M, Masroor M, Khan K (2010) Calcium chloride and gibberellic acid protect linseed (Linum usitatissimum L.) from NaCl stress by inducing antioxidative defence system and osmoprotectant accumulation. ActaPhysiol Plant 32:121–132

    Google Scholar 

  • Kissoudis C, Seifi A, Yan Z, Islam AT, van der Schoot H, van de Wiel CC, Visser RG, van der Linden CG, Bai Y (2017) Ethylene and abscisic acid signaling pathways differentially influence tomato resistance to combined powdery mildew and salt stress. Front Plant Sci 7:2009

    Article  PubMed  PubMed Central  Google Scholar 

  • Kong X, Pan J, Zhang M, Xing X, Zhou Y, Liu Y, Li D, Li D (2011) ZmMKK4, a novel group C mitogen-activated protein kinase kinase in maize (Zea mays), confers salt and cold tolerance in transgenic Arabidopsis. Plant Cell Environ 34:1291–1303

    Article  CAS  PubMed  Google Scholar 

  • Kumar S, Beena AS, Awana M, Singh A (2017) Salt-induced tissue-specific cytosine methylation downregulates expression of HKT genes in contrasting wheat (Triticum aestivum L.) genotypes. DNA Cell Biol 36:283–294

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lai SJ, Lai MC, Lee RJ, Chen YH, Yen HE (2014) Transgenic Arabidopsis expressing osmolyte glycine betaine synthesizing enzymes from halophilic methanogen promote tolerance to drought and salt stress. Plant Mol Biol 85:429–441

    Google Scholar 

  • Lestari R, Rio M, Martin F, Leclercq J, Woraathasin N, Roques S, Dessailly F, Clément-Vidal A, Sanier C, Fabre D, Melliti S, Suharsono S, Montoro P (2018) Overexpression of Hevea brasiliensis ethylene response factor HbERF-IXc5 enhances growth, tolerance to abiotic stress and affects laticifer differentiation. Plant Biotechnol J 16:322–336

    Google Scholar 

  • Linh LH, Linh TH, Xuan TD, Ham LH, Ismail AM, Khanh TD (2012) Molecular breeding to improve salt tolerance of rice (Oryza sativa L.) in the Red River Delta of Vietnam. Int J Plant Genom 2012:949038

    Google Scholar 

  • Liu Y, Sun J, Wu Y (2016) Arabidopsis ATAF1 enhances the tolerance to salt stress and ABA in transgenic rice. J Plant Res 129:955–962

    Article  CAS  PubMed  Google Scholar 

  • Liu Z, Liu P, Qi D, Peng X, Liu G (2017) Enhancement of cold and salt tolerance of Arabidopsis by transgenic expression of the S-adenosylmethionine decarboxylase gene from Leymus chinensis. J Plant Physiol 211:90–99

    Article  CAS  PubMed  Google Scholar 

  • Luo X, Wu J, Li Y, Nan Z, Guo X, Wang Y, Zhang A, Wang Z, Xia G, Tian Y (2013) Synergistic effects of GhSOD1 and GhCAT1 overexpression in cotton chloroplasts on enhancing tolerance to methyl viologen and salt stresses. PLoS One 8:e54002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Masand S, Yadav SK (2016) Overexpression of MuHSP70 gene from Macrotyloma uniflorum confers multiple abiotic stress tolerance in transgenic Arabidopsis thaliana. Mol Biol Rep 43:53–64

    Article  CAS  PubMed  Google Scholar 

  • Melvin P, Bankapalli K, D’Silva P, Shivaprasad PV (2017) Methylglyoxal detoxification by a DJ-1 family protein provides dual abiotic and biotic stress tolerance in transgenic plants. Plant Mol Biol 94:381–397

    Google Scholar 

  • Mishra A, Tanna B (2017) Halophytes: potential resources for salt stress tolerance genes and promoters. Front Plant Sci 8:829

    Article  PubMed  PubMed Central  Google Scholar 

  • Mittler R (2002) Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci 7:405–410

    Article  CAS  PubMed  Google Scholar 

  • Moon H, Lee B, Choi G, Shin D, Prasad DT, Lee O et al (2003) NDP kinase 2 interacts with two oxidative stress activated MAPKs to regulate cellular redox state and enhances multiple stress tolerance in transgenic plants. Proc Natl Acad Sci U S A 100:358–363

    Article  CAS  PubMed  Google Scholar 

  • Munns R (2005) Genes and salt tolerance: bringing them together. New Phytol 167:645–663

    Article  CAS  PubMed  Google Scholar 

  • Munns R, Tester M (2008) Mechanisms of salinity tolerance. Annu Rev Plant Biol 59:651–681

    Article  CAS  PubMed  Google Scholar 

  • Nguyen TX, Nguyen T, Alameldin H, Goheen B, Loescher W, Sticklen M (2013) Transgene pyramiding of the HVA1 and mtlD in T3 maize (Zea mays L.) plants confers drought and salt tolerance, along with an increase in crop biomass. Int J Agron. https://doi.org/10.1155/2013/598163

  • Nishiyama R, Le DT, Watanabe Y, Matsui A, Tanaka M, Seki M, Yamaguchi-Shinozaki K, Shinozaki K, Tran LS (2012) Transcriptome analyses of a salt-tolerant cytokinin-deficient mutant reveal differential regulation of salt stress response by cytokinin deficiency. PLoS One 7:e32124

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Niu X, Bressan RA, Hasegawa PM, Pardo JM (1995) Ion homeostasis in NaCl stress environments. Plant Physiol 109:735–742

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Paddon CJ, Westfall PJ, Pitera DJ, Benjamin K, Fisher K, McPhee D, Leavell MD, Tai A, Main A, Eng D, Polichuk DR, Teoh KH, Reed DW, Treynor T, Lenihan J, Fleck M, Bajad S, Dang G, Dengrove D, Diola D, Dorin G, Ellens KW, Fickes S, Galazzo J, Gaucher SP, Geistlinger T, Henry R, Hepp M, Horning T, Iqbal T, Jiang H, Kizer L, Lieu B, Melis D, Moss N, Regentin R, Secrest S, Tsuruta H, Vazquez R, Westblade LF, Xu L, Yu M, Zhang Y, Zhao L, Lievense J, Covello PS, Keasling JD, Reiling KK, Renninger NS, Newman JD (2013) High-level semi-synthetic production of the potent antimalarial artemisinin. Nature 496:528–532

    Article  CAS  PubMed  Google Scholar 

  • Pan WJ, Tao JJ, Cheng T, Shen M, Ma JB, Zhang WK, Lin Q, Ma B, Chen SY, Zhang JS (2017) Soybean NIMA-related kinase 1 promotes plant growth and improves salt and cold tolerance. Plant Cell Physiol 58:1268–1278

    Google Scholar 

  • Pandey G, Yadav CB, Sahu PP, Muthamilarasan M, Prasad M (2017) Salinity induced differential methylation patterns in contrasting cultivars of foxtail millet (Setaria italica L.) Plant Cell Rep 36:759–772

    Article  CAS  PubMed  Google Scholar 

  • Pang Q, Chen S, Dai S, Chen Y, Wang Y, Yan X (2010) Comparative proteomics of salt tolerance in Arabidopsis thaliana and Thellungiella halophila. J Proteome Res 9:2584–2599

    Article  CAS  PubMed  Google Scholar 

  • Park HJ, Kim WY, Yun DJ (2016) A new insight of salt stress signaling in plant. Mol Cells 39:447–459

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Patanun O, Ueda M, Itouga M, Kato Y, Utsumi Y, Matsui A, Tanaka M, Utsumi C, Sakakibara H, Yoshida M, Narangajavana J, Seki M (2017) The histone deacetylase inhibitor suberoylanilide hydroxamic acid alleviates salinity stress in cassava. Front Plant Sci 7:2039

    Article  PubMed  PubMed Central  Google Scholar 

  • Peng J, Li Z, Wen X, Li W, Shi H, Yang L, Zhu H, Guo H (2014) Salt-induced stabilization of EIN3/EIL1 confers salinity tolerance by deterring ROS accumulation in Arabidopsis. PLoS Genet 10:e1004664

    Article  PubMed  PubMed Central  Google Scholar 

  • Pruthvi V, Narasimhan R, Nataraja KN (2014) Simultaneous expression of abiotic stress responsive transcription factors, AtDREB2A, AtHB7 and AtABF3 improves salinity and drought tolerance in peanut (Arachis hypogaea L.) PLoS One 9:e111152

    Article  PubMed  PubMed Central  Google Scholar 

  • Puniran-Hartley N, Hartley J, Shabala L, Shabala S (2014) Salinity-induced accumulation of organic osmolytes in barley and wheat leaves correlates with increased oxidative stress tolerance: in planta evidence for cross-tolerance. Plant Physiol Biochem 83:32–39

    Article  CAS  PubMed  Google Scholar 

  • Quan R, Wang J, Yang D, Zhang H, Zhang Z, Huang R (2017) EIN3 and SOS2 synergistically modulate plant salt tolerance. Sci Rep 7:44637

    Article  PubMed  PubMed Central  Google Scholar 

  • Rahnama A, Poustini K, Munns R, James RA (2010) Stomatal conductance as a screen for osmotic stress tolerance in durum wheat growing in saline soil. Funct Plant Biol 37:255–263

    Article  Google Scholar 

  • Reddy MP, Sanish S, Iyengar ERR (1992) Photosynthetic studies and compartmentation of ions in different tissues of Salicornia brachiata Roxb. under saline conditions. Photosynthetica 26:173–179

    CAS  Google Scholar 

  • Reddy PS, Jogeswar G, Rasineni GK, Maheswari M, Reddy AR, Varshney RK et al (2015) Proline over-accumulation alleviates salt stress and protects photosynthetic and antioxidant enzyme activities in transgenic sorghum [Sorghum bicolor (L.) Moench]. Plant Physiol Biochem 94:104–113

    Article  PubMed  Google Scholar 

  • Rontein D, Basset G, Hanson AD (2002) Metabolic engineering of osmoprotectant accumulation in plants. Metab Eng 4:49–56

    Article  CAS  PubMed  Google Scholar 

  • Roy SJ, Negrão S, Tester M (2014) Salt resistant crop plants. Curr Opin Biotechnol 26:115–124

    Article  CAS  PubMed  Google Scholar 

  • Rozema J, Flowers T (2008) Ecology. Crops for salinized world. Science 322:1470–1480

    Article  Google Scholar 

  • Sahoo RK, Ansari MW, Tuteja R, Tuteja N (2014) OsSUV3 transgenic rice maintains higher endogenous levels of plant hormones that mitigates adverse effects of salinity and sustains crop productivity. Rice (NY) 7:17

    Google Scholar 

  • Sakamoto A, Murata N (2000) Genetic engineering of glycine betaine synthesis in plants: current status and implications for enhancement of stress tolerance. J Exp Bot 51:81–88

    Article  CAS  PubMed  Google Scholar 

  • Sereflioglu S, Dinler BS, Tasci E (2017) Alpha-tocopherol-dependent salt tolerance is more related with auxin synthesis rather than enhancement antioxidant defense in soybean roots. Acta Biol Hung 68:115–125

    Article  PubMed  Google Scholar 

  • Shabala S, Wu H, Bose J (2015) Salt stress sensing and early signalling events in plant roots: current knowledge and hypothesis. Plant Sci 241:109–119

    Article  CAS  PubMed  Google Scholar 

  • Sharma I, Ching E, Saini S, Bhardwaj R, Pati PK (2013) Exogenous application of brassinosteroid offers tolerance to salinity by altering stress responses in rice variety Pusa Basmati-1. Plant Physiol Biochem 69:17–26

    Article  CAS  PubMed  Google Scholar 

  • Sharma A, Kumar D, Kumar S, Rampuria S, Reddy AR, Kirti PB (2016) Ectopic expression of an atypical hydrophobic group 5 LEA protein from wild peanut, Arachis diogoi, confers abiotic stress tolerance in tobacco. PLoS One 11:e0150609

    Article  PubMed  PubMed Central  Google Scholar 

  • Shen J, Lv B, Luo L, He J, Mao C, Xi D, Ming F (2017) The NAC-type transcription factor OsNAC2 regulates ABA-dependent genes and abiotic stress tolerance in rice. Sci Rep 7:40641

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Silva EN, Silveira JA, Rodrigues CR, Viégas RA (2015) Physiological adjustment to salt stress in Jatropha curcas is associated with accumulation of salt ions, transport and selectivity of K+, osmotic adjustment and K+/Na+ homeostasis. Plant Biol (Stuttg) 17:1023–1029

    Article  CAS  Google Scholar 

  • Singh AK, Sopory SK, Wu K, Singla-Pareek SK (2010) Transgenic approaches. In: Pareek A, Sopory SK, Bohnert HJ, Govindjee (eds) Abiotic stress adaptation in plants: physiological, molecular and genomic foundation. Springer, New York, pp 417–450

    Google Scholar 

  • Singh M, Kumar J, Singh VP, Prasad SM (2014) Plant tolerance mechanism against salt stress: the nutrient management approach. Biochem Pharmacol 3:e165

    Google Scholar 

  • Singla-Pareek SL, Reddy MK, Sopory SK (2003) Genetic engineering of the glyoxalase pathway in tobacco leads to enhanced salinity tolerance. Proc Natl Acad Sci U S A 100:14672–14677

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Su X, Chu Y, Li H, Hou Y, Zhang B, Huang Q, Hu Z, Huang R, Tian Y (2011) Expression of multiple resistance genes enhances tolerance to environmental stressors in transgenic poplar (Populus × euramericana 'Guariento'). PLoS One 6:e24614

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun J, Dai S, Wang R, Chen S, Li N, Zhou X, Lu C, Shen X, Zheng X, Hu Z et al (2009) Calcium mediates root K+/Na+ homeostasis in poplar species differing in salt tolerance. Tree Physiol 9:1175–1186

    Article  Google Scholar 

  • Thomson MJ, de Ocampo M, Egdane J, Rahman MA, Sajise AG, Adorada DL et al (2010) Characterizing the saltol quantitative trait locus for salinity tolerance in rice. Rice 3:148–160

    Article  Google Scholar 

  • Turan, S, Cornish K, Kumar S (2012) Salinity tolerance in plants: Breeding and genetic engineering. AJCS 6:1337–1348

    Google Scholar 

  • Turan S, Tripathy BC (2013) Salt and genotype impact on antioxidative enzymes and lipid peroxidation in two rice cultivars during de-etiolation. Protoplasma 250:209–222

    Google Scholar 

  • Unesco Water Portal (2007) http://www.unesco.org/water

  • Varshney RK, Langridge P, Graner A (2007) Application of genomics to molecular breeding of wheat and barley. Adv Genet 58:121–155

    CAS  PubMed  Google Scholar 

  • Veena Reddy VS, Sopory SK (1999) Glyoxalase I from Brassica juncea: molecular cloning, regulation and its over-expression confer tolerance in transgenic tobacco under stress. Plant J 17:385–395

    Article  Google Scholar 

  • Vishwakarma K, Upadhyay N, Kumar N, Yadav G, Singh J, Mishra RK, Kumar V, Verma R, Upadhyay RG, Pandey M, Sharma S (2017) Abscisic acid signaling and abiotic stress tolerance in plants: a review on current knowledge and future prospects. Front Plant Sci 8:161

    PubMed  PubMed Central  Google Scholar 

  • Vivek PJ, Tuteja N, Soniya EV (2013) CDPK1 from ginger promotes salinity and drought stress tolerance without yield penalty by improving growth and photosynthesis in Nicotiana tabacum. PLoS One 8:e76392

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Waditee R, Bhuiyan MN, Rai V, Aoki K, Tanaka Y, Hibino T, Suzuki S, Takano J, Jagendorf AT, Takabe T, Takabe T (2005) Genes for direct methylation of glycine provide high levels of glycine betaine and abiotic-stress tolerance in Synechococcus and Arabidopsis. Proc Natl Acad Sci U S A 102:1318–1323

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang RK, Li LL, Cao ZH, Zhao Q, Li M, Zhang LY, Hao YJ (2012) Molecular cloning and functional characterization of a novel apple MdCIPK6L gene reveals its involvement in multiple abiotic stress tolerance in transgenic plants. Plant Mol Biol 79:123–135

    Article  CAS  PubMed  Google Scholar 

  • Wang M, Zheng Q, Shen Q, Guo S (2013) The critical role of potassium in plant stress response. Int J Mol Sci 14:7370–7390

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wen F-P, Zhang Z-H, Bai T, Xu Q, Pan Y-H (2010) Proteomics reveals the effects of gibberellic acid (GA3) on salt stressed rice (Oryza sativa L.) shoots. Plant Sci 178:170–175

    Article  CAS  Google Scholar 

  • Wu X, He J, Chen J, Yang S, Zha D (2013) Alleviation of exogenous 6-benzyladenine on two genotypes of eggplant (Solanum melongena Mill.) growth under salt stress. Protoplasma 51:169–176

    Google Scholar 

  • Wu W, Zhang Q, Ervin EH, Yang Z, Zhang X (2017) Physiological mechanism of enhancing salt stress tolerance of perennial ryegrass by 24-epibrassinolide. Front Plant Sci 8:1017

    Article  PubMed  PubMed Central  Google Scholar 

  • Xiong L, Yang Y (2003) Disease resistance and abiotic stress tolerance in rice are inversely modulated by an abscisic acid–inducible mitogen-activated protein kinase. Plant Cell 15:745–759

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu GY, Pedro SCFR, Wang ML, Xu ML, Cui YC, Li LY, Zhu YX, Xia X (2011) A novel rice calmodulin-like gene, OsMSR2, enhances drought and salt tolerance and increases ABA sensitivity in Arabidopsis. Planta 234(1):47–59

    Article  CAS  PubMed  Google Scholar 

  • Xu J, Xing XJ, Tian YS, Peng RH, Xue Y, Zhao W, Yao QH (2015a) Transgenic Arabidopsis plants expressing tomato glutathione S-transferase showed enhanced resistance to salt and drought stress. PLoS One 10:e0136960

    Article  PubMed  PubMed Central  Google Scholar 

  • Xu R, Wang Y, Zheng H, Lu W, Wu C, Huang J, Yan K, Yang G, Zheng C (2015b) Salt-induced transcription factor MYB74 is regulated by the RNA-directed DNA methylation pathway in Arabidopsis. J Exp Bot 66:5997–6008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yadu S, Dewangan TL, Chandrakar V, Keshavkant S (2013) Imperative roles of salicylic acid and nitric oxide in improving salinity tolerance in Pisum sativum L. Physiol Mol Biol Plant 23:43–58

    Google Scholar 

  • Yang Q, Chen ZZ, Zhou XF, Yin HB, Li X, Xin XF, Hong XH, Zhu JK, Gong Z (2009) Overexpression of SOS (Salt Overly Sensitive) genes increases salt tolerance in transgenic Arabidopsis. Mol Plant 2:22–31

    Article  CAS  PubMed  Google Scholar 

  • Yang L, Zu Y-G, Tang Z-H (2013) Ethylene improves Arabidopsis salt tolerance via K+ in shoots and roots rather than decreasing tissue Na+ content. Environ Exp Bot 86:60–69

    Article  CAS  Google Scholar 

  • Yang G, Yu L, Zhang K, Zhao Y, Guo Y, Gao C (2017) A ThDREB gene from Tamarix hispida improved the salt and drought tolerance of transgenic tobacco and T. hispida. Plant Physiol Biochem 113:187–197

    Article  CAS  PubMed  Google Scholar 

  • Yu Y, Ni Z, Chen Q, Qu Y (2017) The wheat salinity-induced R2R3-MYB transcription factor TaSIM confers salt stress tolerance in Arabidopsis thaliana. Biochem Biophys Res Commun 491:642–648

    Google Scholar 

  • Yuan S, Li Z, Li D, Yuan N, Hu Q, Luo H (2015) Constitutive expression of rice microRNA 528 alters plant development and enhances tolerance to salinity stress and nitrogen starvation in creeping bentgrass. Plant Physiol 169:576–593

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang X, Tang W, Liu J, Liu Y (2014) Co-expression of rice OsP5CS1 and OsP5CS2 genes in transgenic tobacco resulted in elevated proline biosynthesis and enhanced abiotic stress tolerance. Chin J Appl Environ Biol 20:717–722

    Google Scholar 

  • Zhang X, Liu X, Wu L, Yu G, Wang X, Ma H (2015) The SsDREB transcription factor from the succulent halophyte Suaeda salsa enhances abiotic stress tolerance in transgenic tobacco. Int J Genomics 2015:875497

    PubMed  PubMed Central  Google Scholar 

  • Zhang M, Smith JA, Harberd NP, Jiang C (2016a) The regulatory roles of ethylene and reactive oxygen species (ROS) in plant salt stress responses. Plant Mol Biol 91:651–659

    Article  CAS  PubMed  Google Scholar 

  • Zhang S, Gan Y, Xu B (2016b) Application of plant-growth-promoting fungi Trichoderma longibrachiatum T6 enhances tolerance of wheat to salt stress through improvement of antioxidative defense system and gene expression. Front Plant Sci 7:1405

    PubMed  PubMed Central  Google Scholar 

  • Zhou S, Chen X, Zhang X, Li Y (2008) Improved salt tolerance in tobacco plants by co-transformation of a betaine synthesis gene BADH and a vacuolar Na+/H+ antiporter gene SeNHX1. Biotechnol Lett 30:369–376

    Article  CAS  PubMed  Google Scholar 

  • Zhou C, Zhu L, Xie Y, Li F, Xiao X, Ma Z, Wang J (2017) Bacillus licheniformis SA03 Confers Increased Saline-Alakaline Tolerance in Chrysanthemum Plants by Induction of Abscisic Acid Accumulation. Front Plant Sci 8:1143

    Google Scholar 

  • Zhu JK (2000) Genetic analysis of plant salt tolerance using Arabidopsis. Plant Physiol 124:941–948

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu JK (2001) Plant salt tolerance. Trends Plant Sci 6:66–71

    Article  CAS  PubMed  Google Scholar 

  • Zhu N, Cheng S, Liu X, Du H, Dai M, Zhou DX, Yang W, Zhao Y (2015) The R2R3-type MYB gene OsMYB91 has a function in coordinating plant growth and salt stress tolerance in rice. Plant Sci 236:146–156

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Turan, S. (2018). Single-Gene Versus Multigene Transfer Approaches for Crop Salt Tolerance. In: Kumar, V., Wani, S., Suprasanna, P., Tran, LS. (eds) Salinity Responses and Tolerance in Plants, Volume 1. Springer, Cham. https://doi.org/10.1007/978-3-319-75671-4_14

Download citation

Publish with us

Policies and ethics