Skip to main content

Mycorrhizal Networks Facilitate Tree Communication, Learning, and Memory

  • Chapter
  • First Online:
Memory and Learning in Plants

Part of the book series: Signaling and Communication in Plants ((SIGCOMM))

Abstract

Mycorrhizal fungal networks linking the roots of trees in forests are increasingly recognized to facilitate inter-tree communication via resource, defense, and kin recognition signaling and thereby influence the sophisticated behavior of neighbors. These tree behaviors have cognitive qualities, including capabilities in perception, learning, and memory, and they influence plant traits indicative of fitness. Here, I present evidence that the topology of mycorrhizal networks is similar to neural networks, with scale-free patterns and small-world properties that are correlated with local and global efficiencies important in intelligence. Moreover, the multiple exploration strategies of interconnecting fungal species have parallels with crystallized and fluid intelligence that are important in memory-based learning. The biochemical signals that transmit between trees through the fungal linkages are thought to provide resource subsidies to receivers, particularly among regenerating seedlings, and some of these signals appear to have similarities with neurotransmitters. I provide examples of neighboring tree behavioral, learning, and memory responses facilitated by communication through mycorrhizal networks, including, respectively, (1) enhanced understory seedling survival, growth, nutrition, and mycorrhization, (2) increased defense chemistry and kin selection, and (3) collective memory-based interactions among trees, fungi, salmon, bears, and people that enhance the health of the whole forest ecosystem. Viewing this evidence through the lens of tree cognition, microbiome collaborations, and forest intelligence may contribute to a more holistic approach to studying ecosystems and a greater human empathy and caring for the health of our forests.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agerer R (2001) Exploration types of ectomycorrhizal mycelial systems: a proposal to classify mycorrhizal mycelial systems with respect to their ecologically important contact area with the substrate. Mycorrhiza 11:107–114

    Article  Google Scholar 

  • Agerer R (2006) Fungal relationships and structural identity of their ectomycorrhizae. Mycol Prog 5:67–107

    Article  Google Scholar 

  • Archibald JM (2011) Origin of eukaryotic cells: 40 years on. Symbiosis 54:69–86

    Article  Google Scholar 

  • Arnebrant K, Ek H, Finlay RD, Söderström B (1993) Nitrogen translocation between Alnus glutinosa (L.) Gaertn. seedlings inoculated with Frankia sp. and Pinus contorta Dougl. ex Loud seedlings connected by a common ectomycorrhizal mycelium. New Phytol 24:231–242

    Article  Google Scholar 

  • Asay AK (2013) Mycorrhizal facilitation of kin recognition in interior Douglas-fir (Pseudotsuga menziesii var. glauca). Master of Science thesis. University of British Columbia, Vancouver, Canada

    Google Scholar 

  • Babikova Z, Gilbert L, Bruce TJA, Birkett M, Caulfield JC, Woodcock C, Pickett JA, Johnson D (2013) Underground signals carried through common mycelial networks warn neighbouring plants of aphid attack. Ecol Lett 16:835–843

    Article  PubMed  CAS  Google Scholar 

  • Bago B, Zipfel W, Williams RM, Jun J, Arreola R, Lammers PJ, Pfeffer PE, Shachar-Hill Y (2002) Translocation and utilization of fungal storage lipid in the arbuscular mycorrhizal symbiosis. Plant Physiol 128:109–124

    Article  CAS  Google Scholar 

  • BaluÅ¡ka F, Mancuso S (2013) Microorganism and filamentous fungi drive evolution of plant synapses. Front Cell Infect Microbiol 3:1–9

    Article  CAS  Google Scholar 

  • BaluÅ¡ka F, Volkmann D, Menzel D (2005) Plant synapses: actin-based domains for cell-to-cell communication. Trends Plant Sci 10:106–111

    Article  PubMed  CAS  Google Scholar 

  • BaluÅ¡ka F, Mancuso S, Volkmann D, Darwin F (2009) The ‘root-brain’ hypothesis of Charles and Francis Darwin. Plant Signal Behav 4:1121–1127

    Article  PubMed  PubMed Central  Google Scholar 

  • BaluÅ¡ka F, Mancuso S, Volkmann D, Barlow PW (2010) Root apex transition zone: a signalling-response nexus in the root. Trends Plant Sci 15:402–408

    Article  PubMed  CAS  Google Scholar 

  • Barabási A-L, Albert R (1999) Emergence of scaling in random networks. Science 286:509–512

    Article  PubMed  Google Scholar 

  • Barbey AK (2017) Network neuroscience theory of human intelligence. Trends Cogn Sci 22:8–20

    Article  PubMed  Google Scholar 

  • Barto EK, Hilker M, Muller F, Mohney BK, Weidenhamer JD, Rillig MC (2011) The fungal fast lane: common mycorrhizal networks extend bioactive zones of allelochemicals in soils. PLoS One 6:e27195

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bascompte J (2009) Mutualistic networks. Front Ecol Environ 7:429e436

    Article  Google Scholar 

  • Beiler KJ, Durall DM, Simard SW, Maxwell SA, Kretzer AM (2010) Architecture of the wood-wide web: Rhizopogon spp. genets link multiple Douglas-fir cohorts. New Phytol 185:543–553

    Article  CAS  PubMed  Google Scholar 

  • Beiler KJ, Simard SW, LeMay V, Durall DM (2012) Vertical partitioning between sister species of Rhizopogon fungi on mesic and xeric sites in an interior Douglas-fir forest. Mol Ecol 21:6163–6174

    Article  PubMed  Google Scholar 

  • Beiler KJ, Simard SW, Durall DM (2015) Topology of tree-mycorrhizal fungus interaction networks in xeric and mesic Douglas-fir forests. J Ecol (3):616–628

    Article  Google Scholar 

  • Bierdrzycki ML, Jilany TA, Dudley SA, Bais HP (2010) Root exudates mediate kin recognition in plants. Commun Integr Biol 3:28–35

    Article  Google Scholar 

  • Bingham MA, Simard SW (2012) Ectomycorrhizal networks of old Pseudotsuga menziesii var. glauca trees facilitate establishment of conspecific seedlings under drought. Ecosystems 15:188–199

    Article  CAS  Google Scholar 

  • Boddy L, Jones TH (2007) Mycelial responses in heterogeneous environments: parallels with macroorganisms. In: Gadd G, Watkinson SC, Dyer P (eds) Fungi in the environment. Cambridge University Press, Cambridge, pp 112–158

    Chapter  Google Scholar 

  • Bowery NG, Smart TG (2006) GABA and glycine as neurotransmitters: a brief history. Br J Pharmacol 147:S109–S119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bray D (2003) Molecular networks: the top-down view. Science 301:1864–1865

    Article  CAS  PubMed  Google Scholar 

  • Brenner ED, Stahlberg R, Mancuso S, Vivanco J, BaluÅ¡ka F, Van Volkenburgh E (2006) Plant neurobiology: an integrated view of plant signaling. Trends Plant Sci 11:413–419

    Article  CAS  PubMed  Google Scholar 

  • Brownlee C, Duddridge J, Malibari A, Read D (1983) The structure and function of mycelial systems of ectomycorrhizal roots with special reference to their role in forming inter-plant connections and providing pathways for assimilate and water transport. Plant Soil 71:433–443

    Article  Google Scholar 

  • Craik F, Bialystok E (2006) Cognition through the lifespan: mechanisms of change. Trends Cogn Sci 10:131–148

    Article  PubMed  Google Scholar 

  • Darwin CR (1880) The power of movement in plants. John Murray, London

    Book  Google Scholar 

  • Dehaene S, Sergent C, Changeux J-P (2003) A neuronal network model linking subjective reports and objective physiological data during conscious perception. Proc Natl Acad Sci USA 100:8520–8525

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Deslippe JR, Simard SW (2011) Below-ground carbon transfer among Betula nana may increase with warming in Arctic tundra. New Phytol 192:689–698

    Article  CAS  PubMed  Google Scholar 

  • Deslippe JR, Hartmann M, Grayston SJ, Simard SW, Mohn WW (2016) Stable isotope probing implicates Cortinarius collinitus in carbon transfer through ectomycorrhizal mycelial networks in the field. New Phytol 210:383–390

    Article  PubMed  Google Scholar 

  • Dudley SA, File AL (2008) Kin recognition in an annual plant. Biol Lett 3:435–438

    Article  Google Scholar 

  • Dudley SA, Murphy GP, File AL (2013) Kin recognition and competition in plants. Funct Ecol 27:898–906

    Article  Google Scholar 

  • Eason WR, Newman EI, Chuba PN (1991) Specificity of interplant cycling of phosphorus: the role of mycorrhizas. Plant Soil 137:267–274

    Article  CAS  Google Scholar 

  • Egerton-Warburton LM, Querejeta JI, Allen MF (2007) Common mycorrhizal networks provide a potential pathway for the transfer of hydraulically lifted water between plants. J Exp Bot 58:1473–1483

    Article  CAS  PubMed  Google Scholar 

  • Ek H, Andersson S, Söderström B (1996) Carbon and nitrogen flow in silver birch and Norway spruce connected by a common mycorrhizal mycelium. Mycorrhiza 6:465–467

    Article  Google Scholar 

  • Ekblad A, Huss-Danell K (1995) Nitrogen fixation by Alnus incana and nitrogen transfer from A. incana to Pinus sylvestris influenced by macronutrient and ectomycorrhiza. New Phytol 131:453–459

    Article  PubMed  Google Scholar 

  • Faust K, Raes J (2012) Microbial interactions: from networks to models. Nat Rev Microbiol 10:538–550

    Article  CAS  PubMed  Google Scholar 

  • File AL, Klironomos J, Maherali H, Dudley SA (2012a) Plant kin recognition enhances abundance of symbiotic microbial partner. PLoS One 7:e45648

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • File AL, Murphy GP, Dudley SA (2012b) Fitness consequences of plants growing with siblings: reconciling kin selection, niche partitioning and competitive ability. Proc R Soc B 279:209–218

    Article  PubMed  Google Scholar 

  • Finlay RD (1989) Functional aspects of phosphorus uptake and carbon translocation in incompatible ectomycorrhizal associations between Pinus sylvestris and Suillus grevillei and Boletinus cavipes. New Phytol 112:185–192

    Article  CAS  Google Scholar 

  • Finlay RD, Read DJ (1986) The structure and function of the vegetative mycelium of ectomycorrhizal plants. II. The uptake and distribution of phosphorus by mycelial strands interconnecting host plants. New Phytol 103:157–165

    Article  Google Scholar 

  • Gagliano M (2012) Green symphonies: a call for studies on acoustic communication in plants. Behav Ecol 24:289–796

    Google Scholar 

  • Gagliano M (2014) In a green frame of mind: perspectives on the behavioural ecology and cognitive nature of plants. AoB Plants 7:plu075

    PubMed  PubMed Central  Google Scholar 

  • Gagliano M, Grimonprez M (2015) Breaking the silence – language and the making of meaning in plants. Ecophys 7:145–152

    Google Scholar 

  • Garcia-Garrido JM, Ocampo JA (2002) Regulation of the plant defence response in arbuscular mycorrhizal symbiosis. J Exp Bot 53:1377–1386

    Article  CAS  PubMed  Google Scholar 

  • Giovannetti M, Sbrana C, Avio L, Stranil P (2004) Patterns of belowground plant interconnections established by means of arbuscular mycorrhizal networks. New Phytol 164:175–181

    Article  PubMed  Google Scholar 

  • Giovannetti M, Avio L, Fortuna P, Pellegrino E, Sbrana C, Strani P (2005) At the root of the Wood Wide Web: self recognition and non-self incompatibility in mycorrhizal networks. Plant Signal Behav 1:1–5

    Article  Google Scholar 

  • Gorzelak M (2017) Kin selected signal transfer through mycorrhizal networks in Douglas-fir. PhD Dissertation. University of British Columbia, Vancouver, Canada

    Google Scholar 

  • Gorzelak M, Asay AK, Pickles BJ, Simard SW (2015) Inter-plant communication through mycorrhizal networks mediates complex adaptive behaviour in plant communities. AoB Plants 7:plv050

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gyuricza V, Thiry Y, Wannijn J, Declerck S, de Boulois HD (2010) Radiocesium transfer between Medicago truncatula plants via a common mycorrhizal network. Environ Microbiol 12:2180–2189

    CAS  PubMed  Google Scholar 

  • He X-H, Critchley C, Bledsoe C (2003) Nitrogen transfer within and between plants through common mycorrhizal networks (CMNs). Crit Rev Plant Sci 22:531–567

    Article  Google Scholar 

  • He XH, Critchley C, Ng H, Bledsoe C (2004) Reciprocal N (15NH4+ or 15NO3-) transfer between non-N2-fixing Eucalyptus maculata and N2-fixing Casuarina cunninghamiana linked by the ectomycorrhizal fungus Pisolithus sp. New Phytol 163:629–640

    Article  PubMed  Google Scholar 

  • He XH, Critchley C, Ng H, Bledsoe C (2005) Nodulated N2-fixing Casuarina cunninghamiana is the sink for net N transfer from non-N2-fixing Eucalyptus maculata via an ectomycorrhizal fungus Pisolithus sp. supplied as ammonium nitrate. New Phytol 167:897–912

    Article  CAS  PubMed  Google Scholar 

  • He XH, Bledsoe CS, Zasoski RJ, Southworth D, Horwath WR (2006) Rapid nitrogen transfer from ectomycorrhizal pines to adjacent ectomycorrhizal and arbuscular mycorrhizal plants in a California oak woodland. New Phytol 170:143–151

    Article  CAS  PubMed  Google Scholar 

  • He XH, Xu M, Qiu GY, Zhou J (2009) Use of 15Nstable isotope to quantify nitrogen transfer between mycorrhizal plants. J Plant Ecol 2:107–118

    Article  Google Scholar 

  • Heaton L, Obara B, Grau V, Jones N, Nakagaki T, Boddy L, Fricker MD (2012) Analysis of fungal networks. Fungal Biol Rev 26:12e29

    Article  Google Scholar 

  • Heil M, Karban R (2009) Explaining evolution of plant communication by airborne signals. Trends Ecol Evol 25:137–144

    Article  Google Scholar 

  • Hobbie E, Agerer R (2010) Nitrogen isotopes in ectomycorrhizal sporocarps correspond to belowground exploration types. Plant Soil 327:71–83

    Article  CAS  Google Scholar 

  • Hocking MD, Reynolds JD (2011) Impacts of Salmon on riparian plant diversity. Science 331:1609–1612

    Article  CAS  PubMed  Google Scholar 

  • Horton TR (ed) (2015) Mycorrhizal networks. Ecological studies. Netherlands: Springer, 224

    Google Scholar 

  • Humphreys CP, Franks PJ, Rees M, Bidartondo MI, Leake JR, Beerling DJ (2010) Mutualistic mycorrhiza-like symbiosis in the most ancient group of land plants. Nat Commun 1:103

    Article  PubMed  CAS  Google Scholar 

  • Ingham RE, Trofymow JA, Ingham ER, Coleman DC (1985) Interactions of bacteria, fungi, and their nematode grazers: effects on nutrient cycling and plant growth. Ecol Monogr 55:119–140

    Article  Google Scholar 

  • Karban R, Shiojiri K (2009) Self-recognition affects plant communication and defense. Ecol Lett 12:502–506

    Article  PubMed  Google Scholar 

  • Karban R, Yang LH, Edwards KF (2014) Volatile communication between plants that affects herbivory: a meta-analysis. Ecol Lett 17:44–52

    Article  PubMed  Google Scholar 

  • Karst J, Erbilgin N, Pec GJ, Cigan PW, Najar A, Simard SW, Cahill JF Jr (2015) Ectomycorrhizal fungi mediate indirect effects of a bark beetle outbreak on secondary chemistry and establishment of pine seedlings. New Phytol 208:904–914

    Article  CAS  PubMed  Google Scholar 

  • Kretzer AM, Luoma DL, Molina R, Spatafora JW (2003) Taxonomy of the Rhizopogon vinicolor species complex based on analysis of ITS sequences and microsatellite loci. Mycologia 95:480–487

    Article  CAS  PubMed  Google Scholar 

  • Kurz WA, Dymond CC, Stinson G, Rampley GJ, Neilson ET, Carroll AL, Ebata T, Safranyik L (2008) Mountain pine beetle and forest carbon feedback to climate change. Nature 452:987–990

    Article  CAS  PubMed  Google Scholar 

  • Leake J, Johnson D, Donnelly D, Muckle G, Boddy L, Read D (2004) Networks of power and influence: the role of mycorrhizal mycelium in controlling plant communities and agroecosystem functioning. Can J Bot 82:1016–1045

    Article  Google Scholar 

  • Lehto T, Zwiazek JJ (2011) Ectomycorrhizas and water relations of trees: a review. Mycorrhiza 21:71–90

    Article  PubMed  Google Scholar 

  • Levin SA (2005) Self-organization and the emergence of complexity in ecological systems. Bioscience 55:1075

    Article  Google Scholar 

  • Lian C, Narimatsu M, Nara K, Hogetsu T (2006) Tricholoma matsutake in a natural Pinus densiflora forest: correspondence between above- and below- ground genets, association with multiple host trees and alteration of existing ectomycorrhizal communities. New Phytol 171:825–836

    Article  PubMed  Google Scholar 

  • Lilleskov EA, Hobbie EA, Horton TR (2011) Conservation of ectomycorrhizal fungi: exploring the linkages between functional and taxonomic responses to anthropogenic N deposition. Fungal Ecol 4:174–183

    Article  Google Scholar 

  • Margulis L (1981) Symbiosis in cell evolution. WH Freeman Company, San Francisco

    Google Scholar 

  • Martin F, Stewart GR, Genetet I, Le Tacon F (1986) Assimilation of 15NH4 by beech (Fagus sylvatica L.) ectomycorrhizas. New Phytol 102:85–94

    Article  CAS  PubMed  Google Scholar 

  • McNickle GG, St. Clair CC, Cahill JF Jr (2009) Focusing the metaphor: plant root foraging behavior. Trends Ecol Evol 24:419–426

    Article  PubMed  Google Scholar 

  • Meding SM, Zasoski RJ (2008) Hyphal-mediated transfer of nitrate, arsenic, cesium, rubidium, and strontium between arbuscular mycorrhizal forbs and grasses from a California oak woodland. Soil Biol Biochem 40:126–134

    Article  CAS  Google Scholar 

  • Molina R (2013) Rhizopogon. In: Cairney JWG, Chamber SM (eds) Ectomycorrhizal fungi: key Genera in profile. Springer Verlag, Berlin, pp 129–152

    Google Scholar 

  • Molina R, Horton TR (2015) Mycorrhiza specificity: its role in the development and function of common mycelial networks. In: Horton TR (ed) Mycorrhizal networks, Ecological studies, vol 224. Springer, Netherlands, pp 1–39

    Chapter  Google Scholar 

  • Molina R, Massicotte H, Trappe J (1992) Specificity phenomena in mycorrhizal symbioses: community-ecological consequences and practical implications. In: Allen MF (ed) Mycorrhizal functioning: an integrative plant–fungal process. Chapman and Hall, New York, pp 357–423

    Google Scholar 

  • Nehls U, Grunze B, Willmann M, Reich M, Küster H (2007) Sugar for my honey: carbohydrate partitioning in ectomycorrhizal symbiosis. Phytochemistry 68:82–91

    Article  CAS  PubMed  Google Scholar 

  • Novoplansky A (2009) Picking battles wisely: plant behaviour under competition. Plant Cell Environ 32:726–741

    Article  PubMed  Google Scholar 

  • Pelagio-Flores R, Ortíz-Castro R, Méndez-Bravo A, Macías-Rodríguez L, López-Bucio J (2011) Serotonin, a tryptophan-derived signal conserved in plants and animals, regulates root system architecture probably acting as a natural auxin inhibitor in Arabidopsis thaliana. Plant Cell Physiol 52:490–508

    Article  CAS  PubMed  Google Scholar 

  • Perry DA, Margolis H, Choquette C, Molina R, Trappe JM (1989) Ectomycorrhizal mediation of competition between coniferous tree species. New Phytol 112:501–511

    Article  CAS  PubMed  Google Scholar 

  • Pickles BJ, Wilhelm R, Asay AK, Hahn A, Simard SW, Mohn WW (2016) Transfer of 13C between paired Douglas-fir seedlings reveals plant kinship effects and uptake of exudates by ectomycorrhizas. New Phytol 214:400–411

    Article  PubMed  CAS  Google Scholar 

  • Poorter H, Niklas KJ, Reich PB, Oleksy J, Poot P, Mommer L (2012) Biomass allocation to leaves, stems and roots: meta-analyses of interspecific variation and environmental control. New Phytol 193:30–50

    Article  CAS  PubMed  Google Scholar 

  • Pozo MJ, López-Ráez JA, Azcón-Aguilar C, García-Garrido JM (2015) Phytohormones as integrators of environmental signals in the regulation of mycorrhizal symbioses. New Phytol 205:1431–1436

    Article  CAS  PubMed  Google Scholar 

  • Querejeta JI, Egerton-Warburton LM, Prieto I, Vargas R, Allen MF (2012) Changes in soil hyphal abundance and viability can alter the patterns of hydraulic redistribution by plant roots. Plant Soil 355:63–73

    Article  CAS  Google Scholar 

  • Rai V (2002) Role of amino acids in plant responses to stresses. Biol Plant 45:481–487

    Article  CAS  Google Scholar 

  • Rygiewicz PT, Anderson CP (1994) Mycorrhizae alter quality and quantity of carbon allocated below ground. Nature 369:58–60

    Article  Google Scholar 

  • Scheffer M, Carpenter S, Foley JA, Folke C, Walker B (2001) Catastrophic shifts in ecosystems. Nat Rev 413:591–596

    CAS  Google Scholar 

  • Selosse M-A, Richard F, He X, Simard SW (2006) Mycorrhizal network: des liaisons dangereuses? Trends Ecol Evol 21:621–628

    Article  PubMed  Google Scholar 

  • Semchenko M, John EA, Hutchings MJ (2007) Effects of physical connection and genetic identity of neighbouring ramets on root-placement patterns in two clonal species. New Phytol 176:644–654

    Article  PubMed  Google Scholar 

  • Simard SW (2012) Mycorrhizal networks and seedling establishment in Douglas-fir forests (Chapter 4). In: Southworth D (ed) Biocomplexity of plant–fungal interactions, 1st edn. Wiley, Chichester, pp 85–107. isbn-10:0813815940 | isbn-13:978-0813815947

    Chapter  Google Scholar 

  • Simard SW, Durall DM (2004) Mycorrhizal networks: a review of their extent, function, and importance. Can J Bot 82:1140–1165

    Article  CAS  Google Scholar 

  • Simard SW, Beiler KJ, Bingham MA, Deslippe JR, Philip LJ, Teste FP (2012) Mycorrhizal networks: mechanisms, ecology and modelling. Fungal Biol Rev 26:39–60

    Article  Google Scholar 

  • Simard SW, Martin K, Vyse A, Larson B (2013) Meta-networks of fungi, fauna and flora as agents of complex adaptive systems. In: Puettmann K, Messier C, Coates KD (eds) Managing world forests as complex adaptive systems: building resilience to the challenge of global change, vol 7. Routledge, New York, pp 133–164

    Google Scholar 

  • Simard SW, Asay AK, Beiler KJ, Bingham MA, Deslippe JR, He X, Philip LJ, Song Y, Teste FP (2015) Resource transfer between plants through ectomycorrhizal networks. In: Horton TR (ed) Mycorrhizal networks, Ecological studies, vol 224. Springer, Netherlands, pp 133–176

    Chapter  Google Scholar 

  • Smith S, Read D (2008) Mycorrhizal symbiosis. Academic, London

    Google Scholar 

  • Smith SE, Smith FA (1990) Structure and function of the interfaces in biotrophic symbioses as they relate to nutrient transport. New Phytol 114:1–38

    Article  CAS  PubMed  Google Scholar 

  • Song YY, Zeng RS, Xu JF, Li J, Shen X, Yihdego WG (2010) Interplant communication of tomato plants through underground common mycorrhizal networks. PLoS One 5:e13324

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Song YY, Ye M, Li C, He X, Zhu-Salzman K, Wang RL, Su YJ, Luo SM, Zheng RS (2014) Hijacking common mycorrhizal networks for herbivore-induced defence signal transfer between tomato plants. Sci Rep 4:3915

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Song YY, Simard SW, Carroll A, Mohn WW, Zheng RS (2015) Defoliation of interior Douglas-fir elicits carbon transfer and defense signalling to ponderosa pine neighbors through ectomycorrhizal networks. Sci Rep 5:8495

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Southworth D, He X-H, Swenson W, Bledsoe CS (2005) Application of network theory to potential mycorrhizal networks. Mycorrhiza 15:589–595

    Article  CAS  PubMed  Google Scholar 

  • Taylor AFS, Gebauer G, Read DJ (2004) Uptake of nitrogen and carbon from double-labelled (15N and 13C) glycine by mycorrhizal pine seedlings. New Phytol 164:383–388

    Article  CAS  PubMed  Google Scholar 

  • Teste FP, Simard SW, Durall DM, Guy RD, Jones MD (2009) Access to mycorrhizal networks and roots of trees: importance for seedling survival and resource transfer. Ecology 90:2808–2822

    Article  PubMed  Google Scholar 

  • Teste FP, Simard SW, Durall DM, Guy RD, Berch SM (2010) Net carbon transfer between Pseudotsuga menziesii var. glauca seedlings in the field is influenced by soil disturbance. J Ecol 98:429–439

    Article  CAS  Google Scholar 

  • Toju H, Sato H, Tanabe AS (2014) Diversity and spatial structure of belowground plant– fungal symbiosis in a mixed subtropical forest of ectomycorrhizal and arbuscular mycorrhizal plants. PLoS One:e86566

    Google Scholar 

  • Trappe JM (1987) Phylogenetic and ecologic aspects of mycotrophy in the angiosperms from an evolutionary standpoint. In: Safir GR (ed) Ecophysiology of VA mycorrhizal plants. CRC Press, Florida

    Google Scholar 

  • Treu R, Karst J, Randall M, Pec GJ, Cigan P, Simard SW, Cooke J, Erbilgin N, Cahill JF Jr (2014) Decline of ectomycorrhizal fungi following mountain pine beetle infestation. Ecology 95:1096–1103

    Article  PubMed  Google Scholar 

  • Twieg B, Durall DM, Simard SW (2007) Ectomycorrhizal fungal succession in mixed temperate forests. New Phytol 176:437–447

    Article  PubMed  Google Scholar 

  • Van der Heijden MGA, Hartmann M (2016) Networking in the plant microbiome. PLoS Biol 14:e1002378

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Van der Heijden MGA, Horton TR (2009) Socialism in soil? The importance of mycorrhizal fungal networks for facilitation in natural ecosystems. J Ecol 97:1139–1150

    Article  Google Scholar 

  • Van Dorp C (2016) Rhizopogon mycorrhizal networks with interior douglas-fir in selectively harvested and non-harvested forests. Master of Science Thesis, University of British Columbia

    Google Scholar 

  • Wipf D, Ludewig U, Tegeder M, Rentsch D, Koch W, Frommer WB (2002) Conservation of amino acid transporters in fungi, plants and animals. Trends Biochem Sci 27:139–147

    Article  CAS  PubMed  Google Scholar 

  • Yang H, Bognor M, Steinhoff Y-D, Ludewig U (2010) H+-independent glutamine transport in plant root tips. PLoS One 5:e8917

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgments

I thank my graduate students, postdoctoral fellows, and collaborators who contributed to this research on mycorrhizal networks over the years, including Amanda Asay, Jason Barker, Marcus Bingham, Camille Defrenne, Julie Deslippe, Dan Durall, Monika Gorzelak, Melanie Jones, Justine Karst, Allen Larocque, Deon Louw, Katie McMahen, Gabriel Orrego, Huamani Orrego, Julia Amerongen Maddison, Greg Pec, Leanne Philip, Brian Pickles, Teresa Ryan, Laura Super, Francois Teste, Brendan Tweig, and Matt Zustovic. This research was supported by a Natural Sciences and Engineering Research Council (NSERC) Discovery Grant to SWS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suzanne W. Simard .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Simard, S.W. (2018). Mycorrhizal Networks Facilitate Tree Communication, Learning, and Memory. In: Baluska, F., Gagliano, M., Witzany, G. (eds) Memory and Learning in Plants. Signaling and Communication in Plants. Springer, Cham. https://doi.org/10.1007/978-3-319-75596-0_10

Download citation

Publish with us

Policies and ethics