Skip to main content

Proteolytic Activation of Paramyxoviruses and Pneumoviruses

  • Chapter
  • First Online:
Activation of Viruses by Host Proteases

Abstract

Viruses in the families Paramyxoviridae and Pneumoviridae infect multiple animal species, and infection can result in varying disease severity. Membrane fusion is an obligate early step during infection and is driven primarily by viral fusion (F) proteins present on the viral envelope. F-mediated membrane fusion begins with insertion of a hydrophobic fusion peptide into the cell membrane and, through a series of conformational changes, culminates in the merger of both the viral and cellular membranes. Proteolytic processing N-terminal to the fusion peptide enables insertion into the cellular membrane, making this cleavage event an essential step in F-promoted membrane fusion. While all F proteins are cleaved by host proteases, the protease utilized and location of F cleavage vary widely among paramyxo- and pneumoviruses. With some paramyxoviruses, proteolytic activation of the hemagglutinin-neuraminidase (HN) glycoprotein has also been observed involving removal of a C-terminal extension from a precursor that blocks the attachment function of this protein. The availability of protein structures and extensive studies on the spatial and temporal processing details have illuminated many important aspects of proteolytic activation of these proteins. However, why such disparate proteolytic cleavage pathways evolved and to what extent they affect pathogenesis are less well understood.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aerts L, Hamelin ME, Rheaume C, Lavigne S, Couture C, Kim W, Susan-Resiga D, Prat A, Seidah NG, Vergnolle N, et al. Modulation of protease activated receptor 1 influences human metapneumovirus disease severity in a mouse model. PLoS One. 2013;8:e72529.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Afonso CL, Amarasinghe GK, Banyai K, Bao Y, Basler CF, Bavari S, Bejerman N, Blasdell KR, Briand FX, Briese T, et al. Taxonomy of the order Mononegavirales: update 2016. Arch Virol. 2016;161:2351–60.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ambrose MR, Hetherington SV, Watson AS, Scroggs RA, Portner A. Molecular evolution of the F glycoprotein of human parainfluenza virus type 1. J Infect Dis. 1995;171:851–6.

    Article  CAS  PubMed  Google Scholar 

  • Authier F, Posner BI, Bergeron JJ. Endosomal proteolysis of internalized proteins. FEBS Lett. 1996;389:55–60.

    Article  CAS  PubMed  Google Scholar 

  • Barrett T, Clarke DK, Evans SA, Rima BK. The nucleotide sequence of the gene encoding the F protein of canine distemper virus: a comparison of the deduced amino acid sequence with other paramyxoviruses. Virus Res. 1987;8:373–86.

    Article  PubMed  CAS  Google Scholar 

  • Begona Ruiz-Arguello M, Gonzalez-Reyes L, Calder LJ, Palomo C, Martin D, Saiz MJ, Garcia-Barreno B, Skehel JJ, Melero JA. Effect of proteolytic processing at two distinct sites on shape and aggregation of an anchorless fusion protein of human respiratory syncytial virus and fate of the intervening segment. Virology. 2002;298:317–26.

    Article  PubMed  CAS  Google Scholar 

  • Biacchesi S, Skiadopoulos MH, Tran KC, Murphy BR, Collins PL, Buchholz UJ. Recovery of human metapneumovirus from cDNA: optimization of growth in vitro and expression of additional genes. Virology. 2004;321:247–59.

    Article  PubMed  CAS  Google Scholar 

  • Bose S, Jardetzky TS, Lamb RA. Timing is everything: fine-tuned molecular machines orchestrate paramyxovirus entry. Virology. 2015;479-480:518–31.

    Article  PubMed  CAS  Google Scholar 

  • Bukreyev A, Whitehead SS, Murphy BR, Collins PL. Recombinant respiratory syncytial virus from which the entire SH gene has been deleted grows efficiently in cell culture and exhibits site-specific attenuation in the respiratory tract of the mouse. J Virol. 1997;71:8973–82.

    PubMed  PubMed Central  CAS  Google Scholar 

  • Chang A, Dutch RE. Paramyxovirus fusion and entry: multiple paths to a common end. Virus. 2012;4:613–36.

    Article  CAS  Google Scholar 

  • Chua KB, Bellini WJ, Rota PA, Harcourt BH, Tamin A, Lam SK, Ksiazek TG, Rollin PE, Zaki SR, Shieh W, et al. Nipah virus: a recently emergent deadly paramyxovirus. Science. 2000;288:1432–5.

    Article  PubMed  CAS  Google Scholar 

  • Cifuentes-Munoz N, Sun W, Ray G, Schmitt PT, Webb S, Gibson K, Dutch RE, Schmitt AP. Mutations in the transmembrane domain and cytoplasmic tail of hendra virus fusion protein disrupt virus-like-particle assembly. J Virol. 2017;91:pii: e00152-17.

    Article  Google Scholar 

  • Collins PL, Crowe JE. Respiratory syncytial virus and metapneumovirus. In: Knipe DM, Howley PM, editors. Fields virology. Philadelphia: Lippincott, Williams and Wilkins; 2007. p. 1601–46.

    Google Scholar 

  • Connolly SA, Leser GP, Yin HS, Jardetzky TS, Lamb RA. Refolding of a paramyxovirus F protein from prefusion to postfusion conformations observed by liposome binding and electron microscopy. Proc Natl Acad Sci U S A. 2006;103:17903–8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Craft WW Jr, Dutch RE. Sequence motif upstream of the Hendra virus fusion protein cleavage site is not sufficient to promote efficient proteolytic processing. Virology. 2005;341:130–40.

    Article  PubMed  CAS  Google Scholar 

  • Diederich S, Moll M, Klenk HD, Maisner A. The nipah virus fusion protein is cleaved within the endosomal compartment. J Biol Chem. 2005;280:29899–903.

    Article  PubMed  CAS  Google Scholar 

  • Diederich S, Sauerhering L, Weis M, Altmeppen H, Schaschke N, Reinheckel T, Erbar S, Maisner A. Activation of the Nipah virus fusion protein in MDCK cells is mediated by cathepsin B within the endosome-recycling compartment. J Virol. 2012;86:3736–45.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Diederich S, Thiel L, Maisner A. Role of endocytosis and cathepsin-mediated activation in Nipah virus entry. Virology. 2008;375:391–400.

    Article  CAS  PubMed  Google Scholar 

  • Dutch RE, Hagglund RN, Nagel MA, Paterson RG, Lamb RA. Paramyxovirus fusion (F) protein: a conformational change on cleavage activation. Virology. 2001;281:138–50.

    Article  PubMed  CAS  Google Scholar 

  • El Najjar F, Lampe L, Baker ML, Wang LF, Dutch RE. Analysis of cathepsin and furin proteolytic enzymes involved in viral fusion protein activation in cells of the bat reservoir host. PLoS One. 2015;10:e0115736.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Franke J, Batts WN, Ahne W, Kurath G, Winton JR. Sequence motifs and prokaryotic expression of the reptilian paramyxovirus fusion protein. Arch Virol. 2006;151:449–64.

    Article  PubMed  CAS  Google Scholar 

  • Freiberg AN, Worthy MN, Lee B, Holbrook MR. Combined chloroquine and ribavirin treatment does not prevent death in a hamster model of Nipah and Hendra virus infection. J Gen Virol. 2010;91:765–72.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gonzalez-Reyes L, Ruiz-Arguello MB, Garcia-Barreno B, Calder L, Lopez JA, Albar JP, Skehel JJ, Wiley DC, Melero JA. Cleavage of the human respiratory syncytial virus fusion protein at two distinct sites is required for activation of membrane fusion. Proc Natl Acad Sci U S A. 2001;98:9859–64.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gotoh B, Ogasawara T, Suzuki H, Asaka J, Shimokata K, Rott R, Nagai Y. Expression of factor X and its significance for the determination of paramyxovirus tropism in the chick embryo. EMBO J. 1992;11:2197–202.

    Google Scholar 

  • Gotoh B, Ogasawara T, Toyoda T, Inocencio M, Hamaguchi M, Nagai Y. An endoprotease homologous to the blood clotting factor X as a determinant of viral tropism in chick embryo. EMBO J. 1990;9:4189–95.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hardes K, Becker GL, Lu Y, Dahms SO, Kohler S, Beyer W, Sandvig K, Yamamoto H, Lindberg I, Walz L, et al. Novel furin inhibitors with potent anti-infectious activity. ChemMedChem. 2015;10:1218–31.

    Article  CAS  PubMed  Google Scholar 

  • Herfst S, Mas V, Ver LS, Wierda RJ, Osterhaus AD, Fouchier RA, Melero JA. Low pH induced membrane fusion mediated by human metapneumoviruses F protein is a rare, strain dependent phenomenon. J Virol. 2008;82:8891–5.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hidaka Y, Kanda T, Iwasaki K, Nomoto A, Shioda T, Shibuta H. Nucleotide sequence of a Sendai virus genome region covering the entire M gene and the 3′ proximal 1013 nucleotides of the F gene. Nucleic Acids Res. 1984;12:7965–73.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Johnston GP, Contreras EM, Dabundo J, Henderson BA, Matz KM, Ortega V, Ramirez A, Park A, Aguilar HC. Cytoplasmic motifs in the nipah virus fusion protein modulate virus particle assembly and egress. J Virol. 2017;91:pii: e02150-16.

    Article  Google Scholar 

  • Jordans S, Jenko-Kokalj S, Kuhl NM, Tedelind S, Sendt W, Bromme D, Turk D, Brix K. Monitoring compartment-specific substrate cleavage by cathepsins B, K, L, and S at physiological pH and redox conditions. BMC Biochem. 2009;10:23.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kido H, Sakai K, Kishino Y, Tashiro M. Pulmonary surfactant is a potential endogenous inhibitor of proteolytic activation of Sendai virus and influenza A virus. FEBS Lett. 1993;322:115–9.

    Article  PubMed  CAS  Google Scholar 

  • Kido H, Yokogoshi Y, Sakai K, Tashiro M, Kishino Y, Fukutomi A, Katunuma N. Isolation and characterization of a novel trypsin-like protease found in rat bronchiolar epithelial Clara cells. J Biol Chem. 1992;267:13573–9.

    PubMed  CAS  Google Scholar 

  • Kim SH, Xiao S, Shive H, Collins PL, Samal SK. Mutations in the fusion protein cleavage site of avian paramyxovirus serotype 4 confer increased replication and syncytium formation in vitro but not increased replication and pathogenicity in chickens and ducks. PLoS One. 2013;8:e50598.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kim YH, Donald JE, Grigoryan G, Leser GP, Fadeev AY, Lamb RA, DeGrado WF. Capture and imaging of a prehairpin fusion intermediate of the paramyxovirus PIV5. Proc Natl Acad Sci U S A. 2011;108:20992–7.

    Article  PubMed  PubMed Central  Google Scholar 

  • Klein-Szanto AJ, Bassi DE. Proprotein convertase inhibition: paralyzing the cell’s master switches. Biochem Pharmacol. 2017;140:8–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Klenk H-D, Garten W. Host cell proteases controlling virus pathogenicity. Trends Microbiol. 1994;2:39–43.

    Article  CAS  PubMed  Google Scholar 

  • Krzyzaniak MA, Zumstein MT, Gerez JA, Picotti P, Helenius A. Host cell entry of respiratory syncytial virus involves macropinocytosis followed by proteolytic activation of the F protein. PLoS Pathog. 2013;9:e1003309.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lamb RA, Parks GD. Paramyxoviridae: the viruses and their replication. In: Knipe DM, Howley PM, editors. Fields virology. Philadelphia: Lippincott Williams and Wilkins; 2013. p. 1449–96.

    Google Scholar 

  • Li Z, Xu J, Patel J, Fuentes S, Lin Y, Anderson D, Sakamoto K, Wang LF, He B. Function of the small hydrophobic protein of J paramyxovirus. J Virol. 2011;85:32–42.

    Article  CAS  PubMed  Google Scholar 

  • Ling R, Sinkovic S, Toquin D, Guionie O, Eterradossi N, Easton AJ. Deletion of the SH gene from avian metapneumovirus has a greater impact on virus production and immunogenicity in turkeys than deletion of the G gene or M2-2 open reading frame. J Gen Virol. 2008;89:525–33.

    Article  PubMed  CAS  Google Scholar 

  • Marsh GA, de Jong C, Barr JA, Tachedjian M, Smith C, Middleton D, Yu M, Todd S, Foord AJ, Haring V, et al. Cedar virus: a novel Henipavirus isolated from Australian bats. PLoS Pathog. 2012;8:e1002836.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Masante C, El Najjar F, Chang A, Jones A, Moncman CL, Dutch RE. The human metapneumovirus small hydrophobic protein has properties consistent with those of a viroporin and can modulate viral fusogenic activity. J Virol. 2014;88:6423–33.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • McLellan JS, Chen M, Leung S, Graepel KW, Du X, Yang Y, Zhou T, Baxa U, Yasuda E, Beaumont T, et al. Structure of RSV fusion glycoprotein trimer bound to a prefusion-specific neutralizing antibody. Science. 2013;340:1113–7.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • McLellan JS, Yang Y, Graham BS, Kwong PD. Structure of respiratory syncytial virus fusion glycoprotein in the postfusion conformation reveals preservation of neutralizing epitopes. J Virol. 2011;85:7788–96.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Meulendyke KA, Wurth MA, McCann RO, Dutch RE. Endocytosis plays a critical role in proteolytic processing of the Hendra virus fusion protein. J Virol. 2005;79:12643–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Michalski WP, Crameri G, Wang L, Shiell BJ, Eaton B. The cleavage activation and sites of glycosylation in the fusion protein of hendra virus. Virus Res. 2000;69:83–93.

    Article  PubMed  CAS  Google Scholar 

  • Moll M, Diederich S, Klenk HD, Czub M, Maisner A. Ubiquitous activation of the Nipah virus fusion protein does not require a basic amino acid at the cleavage site. J Virol. 2004;78:9705–12.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Murakami M, Towatari T, Ohuchi M, Shiota M, Akao M, Okumura Y, Parry MA, Kido H. Mini-plasmin found in the epithelial cells of bronchioles triggers infection by broad-spectrum influenza A viruses and Sendai virus. Eur J Biochem/FEBS. 2001;268:2847–55.

    Article  CAS  Google Scholar 

  • Murray K, Selleck P, Hooper P, Hyatt A, Gould A, Gleeson L, Westbury H, Hiley Lea. A morbillivirus that caused fatal disease in horses and humans. Science. 1995;268:94–7.

    Article  PubMed  CAS  Google Scholar 

  • Nagai Y, Hamaguchi M, Toyoda T. Molecular biology of Newcastle disease virus. Prog Vet Microbiol Immunol. 1989;5:16–64.

    PubMed  CAS  Google Scholar 

  • Nagai Y, Klenk H-D. Activation of precursors to both glycoproteins of Newcastle disease virus by proteolytic cleavage. Virology. 1977;77:125–34.

    Article  PubMed  CAS  Google Scholar 

  • Nagai Y, Klenk H-D, Rott R. Proteolytic cleavage of the viral glycoproteins and its significance for the virulence of Newcastle disease virus. J Virol. 1976;20:501–8.

    Google Scholar 

  • Pager CT, Craft WW Jr, Patch J, Dutch RE. A mature and fusogenic form of the Nipah virus fusion protein requires proteolytic processing by cathepsin L. Virology. 2006;346:251–7.

    Article  PubMed  CAS  Google Scholar 

  • Pager CT, Dutch RE. Cathepsin L is involved in proteolytic processing of the Hendra virus fusion protein. J Virol. 2005;79:12714–20.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pallister J, Middleton D, Crameri G, Yamada M, Klein R, Hancock TJ, Foord A, Shiell B, Michalski W, Broder CC, et al. Chloroquine administration does not prevent Nipah virus infection and disease in ferrets. J Virol. 2009;83:11979–82.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Paterson RG, Harris TJR, Lamb RA. Fusion protein of the paramyxovirus simian virus 5: nucleotide sequence of mRNA predicts a highly hydrophobic glycoprotein. Proc Natl Acad Sci U S A. 1984;81:6706–10.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Paterson RG, Russell CJ, Lamb RA. Fusion protein of the paramyxovirus SV5: destabilizing and stabilizing mutants of fusion activation. Virology. 2000;270:17–30.

    Article  PubMed  CAS  Google Scholar 

  • Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, Ferrin TE. UCSF Chimera--a visualization system for exploratory research and analysis. J Comput Chem. 2004;25:1605–12.

    Article  PubMed  CAS  Google Scholar 

  • Phadke VK, Bednarczyk RA, Salmon DA, Omer SB. Association between vaccine refusal and vaccine-preventable diseases in the United States: a review of measles and pertussis. JAMA. 2016;315:1149–58.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pillay CS, Elliott E, Dennison C. Endolysosomal proteolysis and its regulation. Biochem J. 2002;363:417–29.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Popa A, Carter JR, Smith SE, Hellman L, Fried MG, Dutch RE. Residues in the hendra virus fusion protein transmembrane domain are critical for endocytic recycling. J Virol. 2012;86:3014–26.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Porotto M, Orefice G, Yokoyama CC, Mungall BA, Realubit R, Sganga ML, Aljofan M, Whitt M, Glickman F, Moscona A. Simulating henipavirus multicycle replication in a screening assay leads to identification of a promising candidate for therapy. J Virol. 2009;83:5148–55.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pyrc K, Strzyz P, Milewska A, Golda A, Schildgen O, Potempa J. Porphyromonas gingivalis enzymes enhance infection with human metapneumovirus in vitro. J Gen Virol. 2011;92:2324–32.

    Article  PubMed  CAS  Google Scholar 

  • Rawling J, Cano O, Garcin D, Kolakofsky D, Melero JA. Recombinant Sendai viruses expressing fusion proteins with two furin cleavage sites mimic the syncytial and receptor-independent infection properties of respiratory syncytial virus. J Virol. 2011;85:2771–80.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rawling J, Garcia-Barreno B, Melero JA. Insertion of the two cleavage sites of the respiratory syncytial virus fusion protein in Sendai virus fusion protein leads to enhanced cell-cell fusion and a decreased dependency on the HN attachment protein for activity. J Virol. 2008;82:5986–98.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Richardson C, Hull D, Greer P, Hasel K, Berkovich A, Englund G, Bellini W, Rima B, Lazzarini R. The nucleotide sequence of the mRNA encoding the fusion protein of measles virus (Edmonston strain): a comparison of fusion proteins from several different paramyxoviruses. Virology. 1986;155:508–23.

    Article  CAS  PubMed  Google Scholar 

  • Schickli JH, Kaur J, Ulbrandt N, Spaete RR, Tang RS. An S101P substitution in the putative cleavage motif of the human metapneumovirus fusion protein is a major determinant for trypsin-independent growth in vero cells and does not alter tissue tropism in hamsters. J Virol. 2005;79:10678–89.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Schowalter RM, Smith SE, Dutch RE. Characterization of human metapneumovirus F protein-promoted membrane fusion: critical roles for proteolytic processing and low pH. J Virol. 2006a;80:10931–41.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Schowalter RM, Wurth MA, Aguilar HC, Lee B, Moncman CL, McCann RO, Dutch RE. Rho GTPase activity modulates paramyxovirus fusion protein-mediated cell-cell fusion. Virology. 2006b;350:323–34.

    Article  PubMed  CAS  Google Scholar 

  • Shirogane Y, Takeda M, Iwasaki M, Ishiguro N, Takeuchi H, Nakatsu Y, Tahara M, Kikuta H, Yanagi Y. Efficient multiplication of human metapneumovirus in Vero cells expressing the transmembrane serine protease TMPRSS2. J Virol. 2008;82:8942–6.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Shiryaev SA, Remacle AG, Ratnikov BI, Nelson NA, Savinov AY, Wei G, Bottini M, Rega MF, Parent A, Desjardins R, et al. Targeting host cell furin proprotein convertases as a therapeutic strategy against bacterial toxins and viral pathogens. J Biol Chem. 2007;282:20847–53.

    Article  PubMed  CAS  Google Scholar 

  • Spriggs MK, Olmsted RA, Venkatesan S, Coligan JE, Collins PL. Fusion glycoprotein of human parainfluenza virus type 3: nucleotide sequence of the gene, direct identification of the cleavage-activation site, and comparison with other paramyxoviruses. Virology. 1986;152:241–51.

    Article  PubMed  CAS  Google Scholar 

  • Subbiah M, Khattar SK, Collins PL, Samal SK. Mutations in the fusion protein cleavage site of avian paramyxovirus serotype 2 increase cleavability and syncytium formation but do not increase viral virulence in chickens. J Virol. 2011;85:5394–405.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Swanson K, Wen X, Leser GP, Paterson RG, Lamb RA, Jardetzky TS. Structure of the Newcastle disease virus F protein in the post-fusion conformation. Virology. 2010;402:372–9.

    Article  PubMed  CAS  Google Scholar 

  • Toyoda T, Sakaguchi T, Imai K, Inocencio NM, Gotoh B, Hamaguchi M, Nagai Y. Structural comparison of the cleavage-activation site of the fusion glycoprotein between virulent and avirulent strains of Newcastle disease virus. Virology. 1987;158:242–7.

    Article  PubMed  CAS  Google Scholar 

  • Turk D, Guncar G. Lysosomal cysteine proteases (cathepsins): promising drug targets. Acta Crystallogr D Biol Crystallogr. 2003;59:203–13.

    Article  PubMed  CAS  Google Scholar 

  • van den Hoogen BG, de Jong JC, Groen J, Kuiken T, de Groot R, Fouchier RA, Osterhaus AD. A newly discovered human pneumovirus isolated from young children with respiratory tract disease. Nat Med. 2001;7:719–24.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Watanabe M, Hirano A, Stenglein S, Nelson J, Thomas G, Wong TC. Engineered serine protease inhibitor prevents furin-catalyzed activation of the fusion glycoprotein and production of infectious measles virus. J Virol. 1995;69:3206–10.

    PubMed  PubMed Central  CAS  Google Scholar 

  • Waxham MN, Server AC, Goodman HM, Wolinsky JS. Cloning and sequencing of the mumps virus fusion protein gene. Virology. 1987;159:381–8.

    Article  CAS  PubMed  Google Scholar 

  • Welch BD, Liu Y, Kors CA, Leser GP, Jardetzky TS, Lamb RA. Structure of the cleavage-activated prefusion form of the parainfluenza virus 5 fusion protein. Proc Natl Acad Sci U S A. 2012;109:16672–7.

    Article  PubMed  PubMed Central  Google Scholar 

  • Whitehead SS, Bukreyev A, Teng MN, Firestone CY, St. Claire M, Elkins WR, Collins PL, Murphy BR. Recombinant respiratory syncytial virus bearing a deletion of either the NS2 or SH gene is attenuated in chimpanzees. J Virol. 1999;73:3438–42.

    PubMed  PubMed Central  CAS  Google Scholar 

  • Wong JJ, Paterson RG, Lamb RA, Jardetzky TS. Structure and stabilization of the Hendra virus F glycoprotein in its prefusion form. Proc Natl Acad Sci U S A. 2016;113:1056–61.

    Article  PubMed  CAS  Google Scholar 

  • Xiao S, Khattar SK, Subbiah M, Collins PL, Samal SK. Mutation of the f-protein cleavage site of avian paramyxovirus type 7 results in furin cleavage, fusion promotion, and increased replication in vitro but not increased replication, tissue tropism, or virulence in chickens. J Virol. 2012;86:3828–38.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Xu K, Chan YP, Bradel-Tretheway B, Akyol-Ataman Z, Zhu Y, Dutta S, Yan L, Feng Y, Wang LF, Skiniotis G, et al. Crystal structure of the pre-fusion nipah virus fusion glycoprotein reveals a novel hexamer-of-trimers assembly. PLoS Pathog. 2015;11:e1005322.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yin HS, Paterson RG, Wen X, Lamb RA, Jardetzky TS. Structure of the uncleaved ectodomain of the paramyxovirus (hPIV3) fusion protein. Proc Natl Acad Sci U S A. 2005;102:9288–93.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yin HS, Wen X, Paterson RG, Lamb RA, Jardetzky TS. Structure of the parainfluenza virus 5 F protein in its metastable, prefusion conformation. Nature. 2006;439:38–44.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Yuan P, Swanson KA, Leser GP, Paterson RG, Lamb RA, Jardetzky TS. Structure of the Newcastle disease virus hemagglutinin-neuraminidase (HN) ectodomain reveals a four-helix bundle stalk. Proc Natl Acad Sci U S A. 2011;108:14920–5.

    Article  PubMed  PubMed Central  Google Scholar 

  • Yun B, Guan X, Liu Y, Gao Y, Wang Y, Qi X, Cui H, Liu C, Zhang Y, Gao L, et al. Trypsin- and low pH-mediated fusogenicity of avian metapneumovirus fusion proteins is determined by residues at positions 100, 101 and 294. Sci Rep. 2015;5:15584.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yun B, Zhang Y, Liu Y, Guan X, Wang Y, Qi X, Cui H, Liu C, Zhang Y, Gao H, et al. TMPRSS12 Is an Activating Protease for Subtype B Avian Metapneumovirus. J Virol. 2016;90:11231–46.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhao X, Singh M, Malashkevich VN, Kim PS. Structural characterization of the human respiratory syncytial virus fusion protein core. Proc Natl Acad Sci U S A. 2000;97:14172–7.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zimmer G, Budz L, Herrler G. Proteolytic activation of respiratory syncytial virus fusion protein. Cleavage at two furin consensus sequences. J Biol Chem. 2001;276:31642–50.

    Article  PubMed  CAS  Google Scholar 

  • Zimmer G, Conzelmann KK, Herrler G. Cleavage at the furin consensus sequence RAR/KR(109) and presence of the intervening peptide of the respiratory syncytial virus fusion protein are dispensable for virus replication in cell culture. J Virol. 2002;76:9218–24.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rebecca Ellis Dutch .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Smith, E.C., Dutch, R.E. (2018). Proteolytic Activation of Paramyxoviruses and Pneumoviruses. In: Böttcher-Friebertshäuser, E., Garten, W., Klenk, H. (eds) Activation of Viruses by Host Proteases. Springer, Cham. https://doi.org/10.1007/978-3-319-75474-1_2

Download citation

Publish with us

Policies and ethics