Skip to main content

Current Pharmacological Concepts in the Treatment of the Retinitis Pigmentosa

  • Conference paper
  • First Online:

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1074))

Abstract

Retinitis pigmentosa (RP) encompasses a heterogeneous group of inherited retinal disorders characterized by progressive photoreceptor and/or retinal pigment epithelial (RPE) degenerations with a prevalence approximately 1 in 4000 in the general population. Over 70 causative genes have been defined in RP families, and a number of animal models have been identified so far. However there have been no widely recognized treatments able to recover or reverse the degenerating retina, to prevent the disease deterioration, ultimately to restore the remaining vision. Therapeutics advancements have been achieved including gene therapy, pharmacotherapy, cell replacement, neurotrophic factors, and retinal prosthesis. In this review, we focus on the pharmaceutical drugs for RP with emphases on the context of drug discovery, development, and clinical translation.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Bahrami H, Melia M, Dagnelie G (2006) Lutein supplementation in retinitis pigmentosa: PC-based vision assessment in a randomized double-masked placebo-controlled clinical trial [NCT00029289]. BMC Ophthalmol 6:23

    Article  Google Scholar 

  • Berson EL (1982) Nutrition and retinal degenerations. Vitamin A, taurine, ornithine, and phytanic acid. Retina 2(4):236–255

    Article  CAS  Google Scholar 

  • Berson EL, Rosner B, Sandberg MA, Hayes KC, Nicholson BW, Weigel-DiFranco C, Willett W (1993) A randomized trial of vitamin A and vitamin E supplementation for retinitis pigmentosa. Arch Ophthalmol 111(6):761–772

    Article  CAS  Google Scholar 

  • Berson EL, Rosner B, Sandberg MA, Weigel-DiFranco C, Brockhurst RJ, Hayes KC, Johnson EJ, Anderson EJ, Johnson CA, Gaudio AR et al (2010) Clinical trial of lutein in patients with retinitis pigmentosa receiving vitamin A. Arch Ophthalmol 128(4):403–411

    Article  CAS  Google Scholar 

  • Berson EL, Rosner B, Sandberg MA, Weigel-DiFranco C, Moser A, Brockhurst RJ, Hayes KC, Johnson CA, Anderson EJ, Gaudio AR et al (2004a) Clinical trial of docosahexaenoic acid in patients with retinitis pigmentosa receiving vitamin A treatment. Arch Ophthalmol 122(9):1297–1305

    Article  CAS  Google Scholar 

  • Berson EL, Rosner B, Sandberg MA, Weigel-DiFranco C, Moser A, Brockhurst RJ, Hayes KC, Johnson CA, Anderson EJ, Gaudio AR et al (2004b) Further evaluation of docosahexaenoic acid in patients with retinitis pigmentosa receiving vitamin A treatment: subgroup analyses. Arch Ophthalmol 122(9):1306–1314

    Article  CAS  Google Scholar 

  • Berson EL, Rosner B, Sandberg MA, Weigel-DiFranco C, Willett WC (2012) Omega-3 intake and visual acuity in patients with retinitis pigmentosa receiving vitamin A. Arch Ophthalmol 130(6):707–711

    Article  CAS  Google Scholar 

  • Biermann J, Grieshaber P, Goebel U, Martin G, Thanos S, Di Giovanni S, Lagreze WA (2010) Valproic acid-mediated neuroprotection and regeneration in injured retinal ganglion cells. Invest Ophthalmol Vis Sci 51(1):526–534

    Article  Google Scholar 

  • Clemson CM, Tzekov R, Krebs M, Checchi JM, Bigelow C, Kaushal S (2011) Therapeutic potential of valproic acid for retinitis pigmentosa. Br J Ophthalmol 95(1):89–93

    Article  CAS  Google Scholar 

  • Del Rio P, Irmler M, Arango-Gonzalez B, Favor J, Bobe C, Bartsch U, Vecino E, Beckers J, Hauck SM, Ueffing M (2011) GDNF-induced osteopontin from Muller glial cells promotes photoreceptor survival in the Pde6brd1 mouse model of retinal degeneration. Glia 59(5):821–832

    Article  Google Scholar 

  • Faktorovich EG, Steinberg RH, Yasumura D, Matthes MT, LaVail MM (1990) Photoreceptor degeneration in inherited retinal dystrophy delayed by basic fibroblast growth factor. Nature 347(6288):83–86

    Article  CAS  Google Scholar 

  • Frasson M, Picaud S, Leveillard T, Simonutti M, Mohand-Said S, Dreyfus H, Hicks D, Sabel J (1999) Glial cell line-derived neurotrophic factor induces histologic and functional protection of rod photoreceptors in the rd/rd mouse. Invest Ophthalmol Vis Sci 40(11):2724–2734

    CAS  PubMed  Google Scholar 

  • German OL, Insua MF, Gentili C, Rotstein NP, Politi LE (2006) Docosahexaenoic acid prevents apoptosis of retina photoreceptors by activating the ERK/MAPK pathway. J Neurochem 98(5):1507–1520

    Article  CAS  Google Scholar 

  • Gottlicher M, Minucci S, Zhu P, Kramer OH, Schimpf A, Giavara S, Sleeman JP, Lo Coco F, Nervi C, Pelicci PG et al (2001) Valproic acid defines a novel class of HDAC inhibitors inducing differentiation of transformed cells. EMBO J 20(24):6969–6978

    Article  CAS  Google Scholar 

  • Hamel C (2006) Retinitis pigmentosa. Orphanet J Rare Dis 1:40

    Article  Google Scholar 

  • Hartong DT, Berson EL, Dryja TP (2006) Retinitis pigmentosa. Lancet 368:1795–1809

    Article  CAS  Google Scholar 

  • Hoffman DR, Locke KG, Wheaton DH, Fish GE, Spencer R, Birch DG (2004) A randomized, placebo-controlled clinical trial of docosahexaenoic acid supplementation for X-linked retinitis pigmentosa. Am J Ophthalmol 137(4):704–718

    CAS  PubMed  Google Scholar 

  • Kubota A, Nishida K, Nakashima K, Tano Y (2006) Conversion of mammalian Muller glial cells into a neuronal lineage by in vitro aggregate-culture. Biochem Biophys Res Commun 351(2):514–520

    Article  CAS  Google Scholar 

  • Liang FQ, Aleman TS, Dejneka NS, Dudus L, Fisher KJ, Maguire AM, Jacobson SG, Bennett J (2001) Long-term protection of retinal structure but not function using RAAV.CNTF in animal models of retinitis pigmentosa. Mol Ther 4(5):461–472

    Article  CAS  Google Scholar 

  • Maeda A, Maeda T, Palczewski K (2006) Improvement in rod and cone function in mouse model of fundus albipunctatus after pharmacologic treatment with 9-cis-retinal. Invest Ophthalmol Vis Sci 47(10):4540–4546

    Article  Google Scholar 

  • Marmor MF (1993) A randomized trial of vitamin A and vitamin E supplementation for retinitis pigmentosa. Arch Ophthalmol 111(11):1460–1461; author reply 1463–5

    Article  CAS  Google Scholar 

  • Massof RW, Fishman GA (2010) How strong is the evidence that nutritional supplements slow the progression of retinitis pigmentosa? Arch Ophthalmol 128(4):493–495

    Article  Google Scholar 

  • Mizota A, Sato E, Taniai M, Adachi-Usami E, Nishikawa M (2001) Protective effects of dietary docosahexaenoic acid against kainate-induced retinal degeneration in rats. Invest Ophthalmol Vis Sci 42(1):216–221

    CAS  PubMed  Google Scholar 

  • Nguyen CT, Vingrys AJ, Bui BV (2008) Dietary omega-3 fatty acids and ganglion cell function. Invest Ophthalmol Vis Sci 49(8):3586–3594

    Article  Google Scholar 

  • Radu RA, Yuan Q, Hu J, Peng JH, Lloyd M, Nusinowitz S, Bok D, Travis GH (2008) Accelerated accumulation of lipofuscin pigments in the RPE of a mouse model for ABCA4-mediated retinal dystrophies following Vitamin A supplementation. Invest Ophthalmol Vis Sci 49(9):3821–3829

    Article  Google Scholar 

  • Rotenstreich Y, Harats D, Shaish A, Pras E, Belkin M (2010) Treatment of a retinal dystrophy, fundus albipunctatus, with oral 9-cis-{beta}-carotene. Br J Ophthalmol 94(5):616–621

    Article  Google Scholar 

  • Rotstein NP, Aveldano MI, Barrantes FJ, Roccamo AM, Politi LE (1997) Apoptosis of retinal photoreceptors during development in vitro: protective effect of docosahexaenoic acid. J Neurochem 69(2):504–513

    Article  CAS  Google Scholar 

  • Sahni JN, Angi M, Irigoyen C, Semeraro F, Romano MR, Parmeggiani F (2011) Therapeutic challenges to retinitis pigmentosa, from neuroprotection to gene therapy. Curr Genomics 12(4):276–284

    Article  CAS  Google Scholar 

  • Sandberg MA, Rosner B, Weigel-DiFranco C, Berson EL (2011) Lack of scientific rationale for use of valproic acid for retinitis pigmentosa. Br J Ophthalmol 95(5):744

    Article  Google Scholar 

  • Semba RD, Dagnelie G (2003) Are lutein and zeaxanthin conditionally essential nutrients for eye health? Med Hypotheses 61(4):465–472

    Article  CAS  Google Scholar 

  • Shintani K, Shechtman DL, Gurwood AS (2009) Review and update: current treatment trends for patients with retinitis pigmentosa. Optometry 80(7):384–401

    Article  Google Scholar 

  • Sibulesky L, Hayes KC, Pronczuk A, Weigel-DiFranco C, Rosner B, Berson EL (1999) Safety of <7500 RE (<25000 IU) vitamin A daily in adults with retinitis pigmentosa. Am J Clin Nutr 69(4):656–663

    Article  CAS  Google Scholar 

  • Sieving PA, Caruso RC, Tao W, Coleman HR, Thompson DJ, Fullmer KR, Bush RA (2006) Ciliary neurotrophic factor (CNTF) for human retinal degeneration: phase I trial of CNTF delivered by encapsulated cell intraocular implants. Proc Natl Acad Sci U S A 103(10):3896–3901

    Article  CAS  Google Scholar 

  • Sisk RA (2012) Valproic acid treatment may be harmful in non-dominant forms of retinitis pigmentosa. Br J Ophthalmol 96(8):1154–1155

    Article  Google Scholar 

  • Talcott KE, Ratnam K, Sundquist SM, Lucero AS, Lujan BJ, Tao W, Porco TC, Roorda A, Duncan JL (2011) Longitudinal study of cone photoreceptors during retinal degeneration and in response to ciliary neurotrophic factor treatment. Invest Ophthalmol Vis Sci 52(5):2219–2226

    Article  CAS  Google Scholar 

  • Tao W, Wen R, Goddard MB, Sherman SD, O'Rourke PJ, Stabila PF, Bell WJ, Dean BJ, Kauper KA, Budz VA et al (2002) Encapsulated cell-based delivery of CNTF reduces photoreceptor degeneration in animal models of retinitis pigmentosa. Invest Ophthalmol Vis Sci 43(10):3292–3298

    PubMed  Google Scholar 

  • Uteza Y, Rouillot JS, Kobetz A, Marchant D, Pecqueur S, Arnaud E, Prats H, Honiger J, Dufier JL, Abitbol M et al (1999) Intravitreous transplantation of encapsulated fibroblasts secreting the human fibroblast growth factor 2 delays photoreceptor cell degeneration in Royal College of Surgeons rats. Proc Natl Acad Sci U S A 96(6):3126–3131

    Article  CAS  Google Scholar 

  • van Schooneveld MJ, van den Born LI, van Genderen M, Bollemeijer JG (2011) The conclusions of Clemson et al concerning valproic acid are premature. Br J Ophthalmol 95(1):153; author reply 153–4

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Huang, XF. (2018). Current Pharmacological Concepts in the Treatment of the Retinitis Pigmentosa. In: Ash, J., Anderson, R., LaVail, M., Bowes Rickman, C., Hollyfield, J., Grimm, C. (eds) Retinal Degenerative Diseases. Advances in Experimental Medicine and Biology, vol 1074. Springer, Cham. https://doi.org/10.1007/978-3-319-75402-4_54

Download citation

Publish with us

Policies and ethics