Skip to main content

Real Time and In-Situ Spectroscopic Ellipsometry of CuyIn1−xGaxSe2 for Complex Dielectric Function Determination and Parameterization

  • Chapter
  • First Online:
Spectroscopic Ellipsometry for Photovoltaics

Abstract

Real time spectroscopic ellipsometry (RTSE) has been applied to characterize the structural evolution and final structural properties of ~50–60 nm thin film Cuy(In1−xGax)Se2 (CIGS) solar cell absorber layers deposited by single stage co-evaporation onto crystalline silicon wafer substrates. Two series of depositions were explored; the first spans the range of copper atomic fraction y = [Cu]/([In] + [Ga]) of 0.45 < y < 1.20 for fixed gallium atomic fraction x = [Ga]/([In] + [Ga]) = 0.30 and the second spans the range of 0 ≤ x < 0.50 with fixed y ~ 0.90, as measured by energy dispersive X-ray spectroscopy . Systematic variations in the structural evolution with y reveal that near stoichiometric films undergo significant roughening typically associated with crystallite nucleation and growth whereas films with low and high Cu contents undergo significant smoothening during coalescence typically associated with disordered films or surface regions. The final film structural parameters determined from RTSE enable accurate determination of complex dielectric functions at the deposition temperature and at room temperature based on in-situ SE measurements performed immediately after the deposition process and after film cooling, respectively. Critical point (CP) analysis applying a standard lineshape was performed by fitting twice differentiated dielectric functions . Thus, the resulting CP resonance energies were obtained in accordance with the standardized procedures developed for research on the optical properties of semiconductors. An analytical expression describing the complex dielectric functions of the CIGS films over the range 0.75–3.8 eV was developed that incorporates photon energy independent parameters associated with four CP resonances, a modified Lorentz oscillator as a broad background between CPs, and a sub-bandgap Urbach tail. The procedure for fitting the dielectric functions by this expression was stabilized by fixing the CP energies deduced in the CP analysis. Polynomials describing the dependence on the Cu content y and the Ga content x for each of the photon energy independent parameters were obtained by fitting the plots of these parameter values as functions of y and x. The utility of the dielectric function expression and associated polynomials has been demonstrated through ex-situ spectroscopic ellipsometry (SE) applications in which the compositional parameters of x and y for a ~450 nm CIGS film have been mapped over a 10 cm × 10 cm sample area. Although the dielectric functions have been deduced from ~50–60 nm films on ideal smooth substrates, they have been effective in serving as a database for compositional analysis of much thicker films, as well as films on Mo coated glass substrates in the solar cell configuration.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. W.N. Shafarman, S. Siebentritt, L. Stolt, in Handbook of Photovoltaic Science and Engineering, ed. by A. Luque, S. Hegedus, 2nd edn. (Wiley, New York, NY, 2011), Chapter 13, p. 546

    Google Scholar 

  2. T.-P. Hsieh, C.-C. Chuang, C.-S. Wu, J.-C. Chang, J.-W. Guo, W.-C. Chen, in Proceedings of the 34th IEEE Photovoltaics Specialists Conference (PVSC), June 7–12, 2009, Philadelphia, PA (IEEE, New York, NY, 2009), p. 886

    Google Scholar 

  3. C. Stephan, Structural Trends in Off Stoichiometric Chalcopyrite Type Compound Semiconductors. Ph.D. Dissertation, Freie Universität Berlin, Helmholtz-Zentrum Berlin, Germany, 2011

    Google Scholar 

  4. M. Powalla, W. Witte, P. Jackson, S. Paetel, E. Lotter, R. Würz, F. Kessler, C. Tschamber, W. Hempel, D. Hariskos, R. Menner, A. Bauer, S. Spiering, E. Ahlswede, T. Magorian Friedlmeier, D. Blazquez-Sanchez, I. Klugius, W. Wischmann, IEEE J. Photovolt. 4, 440 (2014)

    Article  Google Scholar 

  5. A.-R. Ibdah, Optical Physics of Cu(In, Ga)Se2 Solar Cells and Their Components. Ph.D. Dissertation, University of Toledo, Toledo, OH, USA, 2017

    Google Scholar 

  6. P. Aryal, Optical and Photovoltaic Properties of Copper Indium-Gallium Diselenide Materials and Solar Cells. Ph.D. Dissertation, University of Toledo, Toledo, OH, USA, 2014

    Google Scholar 

  7. P. Aryal, A.-R. Ibdah, P. Pradhan, D. Attygalle, P. Koirala, N.J. Podraza, S. Marsillac, R.W. Collins, J. Li, Prog. Photovolt.: Res. Appl. 24, 1200 (2016)

    Article  Google Scholar 

  8. J.D. Walker, H. Khatri, V. Ranjan, S. Little, R. Zartman, R.W. Collins, S. Marsillac, in Proceedings of the 34th IEEE Photovoltaic Specialists Conference (PVSC), 7–12 June 2009, Philadelphia, PA (IEEE, New York, NY, 2009), p. 1154

    Google Scholar 

  9. R.W. Collins, A.S. Ferlauto, in Handbook of Ellipsometry, ed. by H.G. Tompkins, E.A. Irene, (William Andrew, Norwich, NY, 2005), Chapter 2, p. 93

    Google Scholar 

  10. W.G. Oldham, Surf. Sci. 16, 97 (1969)

    Article  ADS  Google Scholar 

  11. I. An, Y.M. Li, H.V. Nguyen, C.R. Wronski, R.W. Collins, Appl. Phys. Lett. 59, 2543 (1991)

    Article  ADS  Google Scholar 

  12. S. Marsillac, V. Ranjan, S. Little, R.W. Collins, in Proceedings of the 35th IEEE Photovoltaic Specialists Conference (PVSC), 20–25 June 2010, Honolulu, HI (IEEE, New York NY, 2010), p. 866

    Google Scholar 

  13. V. Ranjan, R.W. Collins, S. Marsillac, Phys. Stat. Sol. RRL 6, 10 (2012)

    Article  Google Scholar 

  14. P. Pradhan, P. Aryal, A.-R. Ibdah, K. Aryal, J. Li, N. J. Podraza, S. Marsillac, R.W. Collins, in Proceedings of the 40th IEEE Photovoltaics Specialists Conference (PVSC), 8–13 June 2014, Denver, CO (IEEE, New York, NY, 2014), pp. 2060–2065

    Google Scholar 

  15. M.A. Contreras, J. Tuttle, A. Gabor, A. Tennant, K. Ramanathan, S. Asher, A. Franz, J. Keane, L. Wang, J. Scofield, R. Noufi, Proceedings of the First World Conference on Photovoltaic Energy Conversion, 5–9 Dec 1994, Waikoloa, HI (IEEE, New York, 1994), p. 68

    Google Scholar 

  16. H. Liu, X. Shi, F. Xu, L. Zhang, W. Zhang, L. Chen, Q. Li, C. Uher, T. Day, G.J. Snyder, Nature Mat. 11, 422 (2012)

    Article  ADS  Google Scholar 

  17. J. Koh, A.S. Ferlauto, P.I. Rovira, C.R. Wronski, R.W. Collins, Appl. Phys. Lett. 75, 2286 (1999)

    Article  ADS  Google Scholar 

  18. P. Pradhan, D. Attygale, P. Aryal, N.J. Podraza, A.S. Ferlauto, S. Marsillac, R.W. Collins, Proceedings of the 39th IEEE Photovoltaics Specialists Conference, 16–21 June 2013, Tampa, FL (IEEE, New York, NY, 2013), p. 414

    Google Scholar 

  19. S. Siebentritt, L. Gütay, D. Regesch, Y. Aida, V. Deprédurand, Sol. Ener. Mater. Sol. Cells 119, 18 (2013)

    Article  Google Scholar 

  20. S. Minoura, T. Maekawa, K. Kodera, A. Nakane, S. Niki, H. Fujiwara, J. Appl. Phys. 117, 195703 (2015)

    Article  ADS  Google Scholar 

  21. M.I. Alonso, M. Garriga, C.A. Durante Rincón, E. Hernández, M. León, Appl. Phys. A 74, 659 (2002)

    Article  ADS  Google Scholar 

  22. S. Minoura, K. Kodera, T. Maekawa, K. Miyazaki, S. Niki, H. Fujiwara, J. Appl. Phys. 113, 063505 (2013)

    Article  ADS  Google Scholar 

  23. A.S. Ferlauto, G.M. Ferreira, J.M. Pearce, C.R. Wronski, R.W. Collins, X.M. Deng, G. Ganguly, J. Appl. Phys. 92, 2424 (2002)

    Article  ADS  Google Scholar 

  24. P. Aryal, D. Attygalle, P. Pradhan, N.J. Podraza, S. Marsillac, R.W. Collins, IEEE J. Photovolt. 3, 359 (2013)

    Article  Google Scholar 

  25. N.J. Podraza, C.R. Wronski, M.W. Horn, R.W. Collins, in Amorphous and Polycrystalline Thin-Film Silicon Science and Technology—2006, Materials Research Society Symposium Proceedings, vol. 910, ed. by S. Wagner, V. Chu, H.A. Atwater, K. Yamamoto, H.-W. Zan, (MRS, Warrendale, PA, 2006), p. 259

    Google Scholar 

  26. J. Li, N.J. Podraza, R.W. Collins, Phys. Stat. Sol (a) 205, 901 (2008)

    Article  ADS  Google Scholar 

  27. P. Aryal, J. Chen, Z. Huang, L.R. Dahal, M.N. Sestak, D. Attygalle, R. Jacobs, V. Ranjan, S. Marsillac, R.W. Collins, in Proceedings of the 37th IEEE Photovoltaics Specialists Conference, 19–24 June 2011, Seattle, WA (IEEE, New York NY, 2011), p. 2241

    Google Scholar 

  28. A. Nakane, H. Tampo, M. Tamakoshi, S. Fujimoto, K.M. Kim, S. Kim, H. Shibata, S. Niki, H. Fujiwara, J. Appl. Phys. 120, 064505 (2016)

    Article  ADS  Google Scholar 

  29. A.-R. Ibdah, P. Koirala, P. Aryal, P. Pradhan, S. Marsillac, A.A Rockett, N.J. Podraza, R.W. Collins, Appl. Surf. Sci. (2017). https://doi.org/10.1016/j.apsusc.2016.12.236

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nikolas J. Podraza .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ibdah, AR.A., Aryal, P., Pradhan, P., Marsillac, S., Podraza, N.J., Collins, R.W. (2018). Real Time and In-Situ Spectroscopic Ellipsometry of CuyIn1−xGaxSe2 for Complex Dielectric Function Determination and Parameterization. In: Fujiwara, H., Collins, R. (eds) Spectroscopic Ellipsometry for Photovoltaics. Springer Series in Optical Sciences, vol 212. Springer, Cham. https://doi.org/10.1007/978-3-319-75377-5_11

Download citation

Publish with us

Policies and ethics