Skip to main content
  • 649 Accesses

Abstract

A cough is a complex neurogenic reflex that forms part of the innate protective mechanisms of the airways. The function of coughing is to clear the airways of noxious stimuli (microbes, chemicals, and physical); however, many medical conditions, including those of the upper airways, evoke cough, which in itself may be a major symptom of the particular disease state. This chapter is structured to overview the neural and molecular mechanisms involved in the detection and reaction to stimuli, causes of cough with a focus on upper airway etiologies, and two case studies to contextualize this information.

Love and a cough cannot be hid.

George Herbert (British Poet 1593–1633)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hamizan AW, Christensen JM, Ebenzer J, Oakley G, Tattersall J, Sacks R, et al. Middle turbinate edema as a diagnostic marker of inhalant allergy. Int Forum Allergy Rhinol. 2017;7(1):37–42. https://doi.org/10.1002/alr.21835.

    Article  PubMed  Google Scholar 

  2. Fokkens WJ, Lund VJ, Mullol J, Bachert C, Alobid I, Baroody F, et al. EPOS 2012: European position paper on rhino-sinusitis and nasal polyps 2012. A summary for otorhinolaryngologists. Rhinology. 2012;50(1):1–12. https://doi.org/10.4193/Rhino50E2.

    Article  PubMed  Google Scholar 

  3. Mbarek C, Akrout A, Khamassi K, Ben Gamra O, Hariga I, Ben Amor M, et al. Recurrent upper respiratory tract infections in children and allergy. A cross-sectional study of 100 cases. Tunis Med. 2008;86(4):358–61.

    PubMed  Google Scholar 

  4. Ulanovski D, Barenboim E, Raveh E, Grossman A, Azaria B, Shpitzer T. Sinusitis in pilots of different aircraft types: is allergic rhinitis a predisposing factor? Am J Rhinol. 2008;22(2):122–4.

    Article  PubMed  Google Scholar 

  5. Southwood JE, Hoekzema CR, Samuels TL, Wells C, Poetker DM, Johnston N, et al. The impact of pepsin on human nasal epithelial cells in vitro: a potential mechanism for extraesophageal reflux induced chronic rhinosinusitis. Ann Otol Rhinol Laryngol. 2015;124(12):957–64. https://doi.org/10.1177/0003489415593556.

    Article  PubMed  Google Scholar 

  6. Pinnock CB, Graham NM, Mylvaganam A, Douglas RM. Relationship between milk intake and mucus production in adult volunteers challenged with rhinovirus-2. Am Rev Respir Dis. 1990;141(2):352–6.

    Article  CAS  PubMed  Google Scholar 

  7. Rimmer J, Hellgren J, Harvey RJ. Simulated postnasal mucus fails to reproduce the symptoms of postnasal drip in rhinitics but only in healthy subjects. Rhinology. 2015;53(2):129–34.

    PubMed  Google Scholar 

  8. Brusch AM, Clarke RC, Platt PR, Phillips EJ. Exploring the link between pholcodine exposure and neuromuscular blocking agent anaphylaxis. Br J Clin Pharmacol. 2014;78(1):14–23. https://doi.org/10.1111/bcp.12290.

    Article  CAS  PubMed  Google Scholar 

  9. Bisgaard H, Study Group on Montelukast and Respiratory Syncytial Virus. A randomized trial of montelukast in respiratory syncytial virus postbronchiolitis. Am J Respir Crit Care Med. 2003;167(3):379–83.

    Article  PubMed  Google Scholar 

  10. Wang K, Birring SS, Taylor K, Fry NK, Hay AD, Moore M, et al. Montelukast for postinfectious cough in adults: a double-blind randomised placebo-controlled trial. Lancet Respir Med. 2014;2(1):35–43. https://doi.org/10.1016/S2213-2600(13)70245-5.

    Article  CAS  PubMed  Google Scholar 

  11. Macpherson LJ, Geierstanger BH, Viswanath V, Bandell M, Eid SR, Hwang S, et al. The pungency of garlic: activation of TRPA1 and TRPV1 in response to allicin. Curr Biol. 2005;15(10):929–34.

    Article  CAS  PubMed  Google Scholar 

  12. Nilius B, Appendino G. Spices: the savoury and beneficial science of pungency. Rev Physiol Biochem Pharmacol. 2013;164:1–76. https://doi.org/10.1007/112_2013_11.

    Article  CAS  PubMed  Google Scholar 

  13. Widdicombe JG. Neurophysiology of the cough reflex. Eur Respir J. 1995;8:1193–202.

    Article  CAS  PubMed  Google Scholar 

  14. Shannon R, Baekey DM, Morris KF, Nuding SC, Segers LS, Lindsey BG. Production of reflex cough by brainstem respiratory networks. Pulm Pharmacol Ther. 2004;17:369–76.

    Article  CAS  PubMed  Google Scholar 

  15. Mazzone SB, Cole LJ, Ando A, Egan GF, Farrell MJ. Investigation of the neural control of cough and cough suppression in humans using functional brain imaging. J Neurosci. 2011;31(8):2948–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Mazzone SB. An overview of the sensory receptors regulating cough. Cough. 2005;1:2.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Canning BJ, Reynolds SM, Mazzone SB. Multiple mechanisms of reflex bronchospasm in guinea pigs. J Appl Physiol. 2001;91:2642–53.

    Article  CAS  PubMed  Google Scholar 

  18. Mario Polverin M, Francesca Polverino F, Marco Fasolino M, Filippo Andò F, Antonio Alfieri A, De Blasio F. Anatomy and neuro-pathophysiology of the cough reflex arc. Multidiscip Respir Med. 2012;7:5.

    Article  Google Scholar 

  19. Mazzone SB, Undem BJ. Cough sensors. V. Pharmacological modulation of cough sensors. Handb Exp Pharmacol. 2009;187:99–127.

    Article  CAS  Google Scholar 

  20. Song WJ, Chang YS, Morice AH. Changing the paradigm for cough: does ‘cough hypersensitivity’ aid our understanding? Asia Pac Allergy. 2014;4:3–13.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Caterina MJ, Schumacher MA, Tominaga M, Rosen TA, Levine JD, Julius D. The capsaicin receptor: a heat-activated ion channel in the pain pathway. Nature. 1997;389:816–24.

    Article  CAS  PubMed  Google Scholar 

  22. Henrich F, Magerl W, Klein T, Greffrath W, Treede RD. Capsaicin-sensitive C- and A-fibre nociceptors control long-term potentiation-like pain amplification in humans. Brain. 2015;138(Pt 9):2505–20.

    Article  PubMed  Google Scholar 

  23. Shim WS, Tak MH, Lee MH, Kim M, Kim M, Koo JY, et al. TRPV1 mediates histamine-induced itching via the activation of phospholipase A2 and 12-lipoxygenase. J Neurosci. 2007;27(9):2331–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Lee LY, Gu Q. Role of TRPV1 in inflammation-induced airway hypersensitivity. Curr Opin Pharmacol. 2009;9(3):243–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Nilius B, Owsianik G. The transient receptor potential family of ion channels. Genome Biol. 2011;12:218.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Tominaga M, Caterina MJ, Malmberg AB, Rosen TA, Gilbert H, Skinner K, et al. The cloned capsaicin receptor integrates multiple pain-producing stimuli. Neuron. 1998;21:531–43.

    Article  CAS  PubMed  Google Scholar 

  27. Bessac BF, Sivula M, von Hehn CA, Escalera J, Cohn L, Jordt SE. TRPA1 is a major oxidant sensor in murine airway sensory neurons. J Clin Invest. 2008;118(5):1899–910.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Bandell M, Story GM, Hwang SW, Viswanath V, Eid SR, Petrus MJ, et al. Noxious cold ion channel TRPA1 is activated by pungent compounds and bradykinin. Neuron. 2004;41:849–57.

    Article  CAS  PubMed  Google Scholar 

  29. Enyedi P, Czirják G. Molecular background of leak K+ currents: two-pore domain potassium channels. Physiol Rev. 2010;90:559–605.

    Article  CAS  PubMed  Google Scholar 

  30. Sluka KA, Winter OC, Wemmie JA. Acid-sensing ion channels: a new target for pain and CNS diseases. Curr Opin Drug Discov Devel. 2009;12:693–704.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Reznikov LR, Meyerholz DK, Adam RJ, Abou Alaiwa M, Jaffer O, Michalski AS, et al. Acid-sensing ion channel 1a contributes to airway hyperreactivity in mice. PLoS One. 2016;11(11):e0166089. https://doi.org/10.1371/journal.pone.0166089.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Hattori M, Gouaux E. Molecular mechanism of ATP binding and ion channel activation in P2X receptors. Nature. 2012;485:207–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. G B, Brouns I, Adriaensen D, Timmermans JP. Purinergic signaling in the airways. Pharmacol Rev. 2012;64(4):834–68.

    Article  Google Scholar 

  34. Groneberg DA, Niimi A, Dinh QT, Cosio B, Hew M, Fischer A, Chung KF. Increased expression of transient receptor potential vanilloid-1 in airway nerves of chronic cough. Am J Respir Crit Care Med. 2004;170(12):1276–80.

    Article  PubMed  Google Scholar 

  35. O’Connell F, Thomas VE, Pride NB, Fuller RW. Capsaicin cough sensitivity decreases with successful treatment of chronic cough. Am J Respir Crit Care Med. 1994;150:374–80.

    Article  PubMed  Google Scholar 

  36. Grace MS, Belvisi MG. TRPA1 receptors in cough. Pulm Pharmacol Ther. 2011;24(3):286–8. https://doi.org/10.1016/j.pupt.2010.11.002.

    Article  CAS  PubMed  Google Scholar 

  37. El-Hashim AZ, Jaffal SM. Nerve growth factor enhances cough and airway obstruction via TrkA receptor- and TRPV1-dependent mechanisms. Thorax. 2009;64:791–7.

    Article  CAS  PubMed  Google Scholar 

  38. Diogenes A, Akopian AN, Hargreaves KM. NGF up-regulates TRPA1: implications for orofacial pain. J Dent Res. 2007;86:550–5.

    Article  CAS  PubMed  Google Scholar 

  39. Ji RR, Samad TA, Jin SX, Schmoll R, Woolf CJ. p38 MAPK activation by NGF in primary sensory neurons after inflammation increases TRPV1 levels and maintains heat hyperalgesia. Neuron. 2002;36:57–68.

    Article  CAS  PubMed  Google Scholar 

  40. Kobayashi H, Gleich GJ, Butterfield JH, Kita H. Human eosinophils produce neurotrophins and secrete nerve growth factor on immunologic stimuli. Blood. 2002;99:2214–20.

    Article  CAS  PubMed  Google Scholar 

  41. Raap U, Deneka N, Bruder M, Kapp A, Wedi B. Differential upregulation of neurotrophin receptors and functional role of neurotrophins on peripheral blood eosinophils of patients with atopic dermatitis, allergic rhinitis and nonatopic healthy controls. Clin Exp Allergy. 2008;38:1493–8.

    Article  CAS  PubMed  Google Scholar 

  42. Khan AA, Diogenes A, Jeske NA, Henry MA, Akopian A, Hargreaves KM. Tumor necrosis factor alpha enhances the sensitivity of rat trigeminal neurons to capsaicin. Neuroscience. 2008;155:503–9.

    Article  CAS  PubMed  Google Scholar 

  43. Alenmyr L, Herrmann A, Högestätt ED, Greiff L, Zygmunt PM. TRPV1 and TRPA1 stimulation induces MUC5B secretion in the human nasal airway in vivo. Clin Physiol Funct Imag. 2011;31(6):435–44. https://doi.org/10.1111/j.1475-097X.2011.01039.x.

    Article  CAS  Google Scholar 

  44. Bianchi ME. DAMPs, PAMPs and alarmins: all we need to know about danger. J Leukoc Biol. 2007;81:1–5.

    Article  CAS  PubMed  Google Scholar 

  45. Saenz SA, Taylor BC, Artis D. Welcome to the neighborhood: epithelial cell-derived cytokines license innate and adaptive immune responses at mucosal sites. Immunol Rev. 2008;226:172–90. https://doi.org/10.1111/j.1600-065X.2008.00713.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Wilson SR, Thé L, Batia LM, Beattie K, Katibah GE, McClain SP, et al. The epithelial cell-derived atopic dermatitis cytokine TSLP activates neurons to induce itch. Cell. 2013;155(2):285–95. https://doi.org/10.1016/j.cell.2013.08.057.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Hensellek S, Brell P, Schaible HG, Brauer R, Segond v BG. The cytokine TNFalpha increases the proportion of DRG neurones expressing the TRPV1 receptor via the TNFR1 receptor and ERK activation. Mol Cell Neurosci. 2007;36:381–91.

    Article  CAS  PubMed  Google Scholar 

  48. Wessler IA, Kirkpatrick CJ, Rack K. Non-neuronal acetylcholine, a locally acting molecule, widely distributed in biological systems: expression and function in humans. Pharmacol Ther. 1998;77:59–79.

    Article  CAS  PubMed  Google Scholar 

  49. Remheimer T, Baumgartner D, Oelert H, Racke K, Wessler I. Acetylcholine inhibits ionophore-induced histamine release from human bronchi via stimulation of muscarinic receptors. Naunyn Schmiedebergs Arch Pharmacol. 1996;353(Suppl):R79.

    Google Scholar 

  50. Remheimer T, Baumgsrtner D, Hohle K-D, Racke K, Wessler I. Acetylcholine inhibits histamine release from human isolated bronchi via stimulation of muscaric receptors. Am J Respir Crit Care Med. 1997;156:389–95.

    Article  Google Scholar 

  51. Reinheimer T, Münch M, Bittinger F, Racké K, Kirkpatrick CJ, Wessler I. Glucocorticoids mediate reduction of epithelial acetylcholine content in the airways of rats and humans. Eur J Pharmacol. 1998;349:277–84.

    Article  CAS  PubMed  Google Scholar 

  52. Lee LY, Burki NK, Gerhardstein DC, Gu Q, Kou YR, Xu J. Airway irritation and cough evoked by inhaled cigarette smoke: role of neuronal nicotinic acetylcholine receptors. Pulmonary Pharmacol Ther. 2007;20(4):355–64.

    Article  CAS  Google Scholar 

  53. Kichko TI, Lennerz J, Eberhardt M, Babes RM, Neuhuber W, Kobal G, et al. Bimodal concentration-response of nicotine involves the nicotinic acetylcholine receptor, transient receptor potential vanilloid type 1, and transient receptor potential ankyrin 1 channels in mouse trachea and sensory neurons. J Pharmacol Exp Ther. 2013;347(2):529–39. https://doi.org/10.1124/jpet.113.205971.

    Article  CAS  PubMed  Google Scholar 

  54. Hecker A, Mikulski Z, Lips KS, Pfeil U, Zakrzewicz A, Wilker S, et al. Pivotal advance: up-regulation of acetylcholine synthesis and paracrine cholinergic signaling in intravascular transplant leukocytes during rejection of rat renal allografts. J Leukoc Biol. 2009;86(1):13–22. https://doi.org/10.1189/jlb.1107722.

    Article  CAS  PubMed  Google Scholar 

  55. Skok MV. To channel or not to channel? Functioning of nicotinic acetylcholine receptors in leukocytes. J Leukoc Biol. 2016;86(1):1–3.

    Article  Google Scholar 

  56. Chen C-Y, Joad JP, Bric J, Bonham AC. Central mechanisms I: plasticity of central pathways. Handb Exp Pharmacol. 2009;187:187–201.

    Article  CAS  Google Scholar 

  57. Canning BJ. Afferent nerves regulating the cough reflex: mechanisms and mediators of cough in disease. Otolaryngol Clin N Am. 2010;43(1):15–vii. https://doi.org/10.1016/j.otc.2009.11.012.

    Article  Google Scholar 

  58. Ashley Woodcock A, Young EC, Smith JA. New insights in cough. Br Med Bull. 2010;96(1):61–73. https://doi.org/10.1093/bmb/ldq034.

    Article  PubMed  Google Scholar 

  59. Wong IW, Rees G, Greiff L, Myers JC, Jamieson GG, Wormald PJ. Gastroesophageal reflux disease and chronic sinusitis: in search of an esophageal-nasal reflex. Am J Rhinol Allergy. 2010;24(4):255–9. https://doi.org/10.2500/ajra.2010.24.3490.

    Article  PubMed  Google Scholar 

  60. Braunstahl GJ, Overbeek SE, Fokkens WJ, Kleinjan A, McEuen AR, Walls AF, et al. Segmental bronchoprovocation in allergic rhinitis patients affects mast cell and basophil numbers in nasal and bronchial mucosa. Am J Respir Crit Care Med. 2001;164(5):858–65.

    Article  CAS  PubMed  Google Scholar 

  61. Braunstahl GJ, Kleinjan A, Overbeek SE, Prins JB, Hoogsteden HC, Fokkens WJ. Segmental bronchial provocation induces nasal inflammation in allergic rhinitis patients. Am J Respir Crit Care Med. 2000 Jun;161(6):2051–7.

    Article  CAS  PubMed  Google Scholar 

  62. Braunstahl GJ, Fokkens WJ, Overbeek SE, KleinJan A, Hoogsteden HC, Prins JB. Mucosal and systemic inflammatory changes in allergic rhinitis and asthma: a comparison between upper and lower airways. Clin Exp Allergy. 2003;33(5):579–87.

    Article  PubMed  Google Scholar 

  63. Braunstahl GJ, Overbeek SE, Kleinjan A, Prins JB, Hoogsteden HC, Fokkens WJ. Nasal allergen provocation induces adhesion molecule expression and tissue eosinophilia in upper and lower airways. J Allergy Clin Immunol. 2001;107(3):469–76.

    Article  CAS  PubMed  Google Scholar 

  64. Irwin RS, Baumann MH, Bolser DC, Boulet L-P, Braman SS, Brightling CE, et al. Diagnosis and management of cough executive summary: ACCP evidence-based clinical practice guidelines. Chest. 2006;129(1 Suppl):1S–23S.

    Article  PubMed  Google Scholar 

  65. Schindlbeck NE, Heinrich C, Huber RM, Müller-Lissner SA. Effects of albuterol (salbutamol) on esophageal motility and gastroesophageal reflux in healthy volunteers. JAMA. 1988;260(21):3156–8.

    Article  CAS  PubMed  Google Scholar 

  66. Rachelefsky GS, Goldberg M, Katz RM, Boris G, Gyepes MT, Shapiro MJ, et al. Sinus disease in children with respiratory allergy. J Allergy Clin Immunol. 1978;61(5):310–4.

    Article  CAS  PubMed  Google Scholar 

  67. Bjermer L. The nose as an air conditioner for the lower airways. Allergy. 1999;54(Suppl 57):26–30.

    Article  PubMed  Google Scholar 

  68. Chong LY, Head K, Hopkins C, Philpott C, Glew S, Scadding G, Burton MJ, et al. Saline irrigation for chronic rhinosinusitis. Cochrane Database Syst Rev. 2016;(4):CD011995. https://doi.org/10.1002/14651858.CD011995.pub2.

  69. Takahama K, Tetsuya Shirasaki T. Central and peripheral mechanisms of narcotic antitussives: codeine-sensitive and -resistant coughs. Cough. 2007;3:8.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Millqvist E, Ternesten-Hasséus E, Bende M. Inhalation of menthol reduces capsaicin cough sensitivity and influences inspiratory flows in chronic cough. Respir Med. 2013;107(3):433–8. https://doi.org/10.1016/j.rmed.2012.11.017.

    Article  PubMed  Google Scholar 

  71. Galeotti N, Di Cesare Mannelli L, Mazzanti G, Bartolini A, Ghelardini C. Menthol: a natural analgesic compound. Neurosci Lett. 2002;322(3):145–8.

    Article  CAS  PubMed  Google Scholar 

  72. Karashima Y, Damann N, Prenen J, Talavera K, Segal A, Voets T, Nilius B. Bimodal action of menthol on the transient receptor potential channel TRPA1. J Neurosci. 2007;27(37):9874–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Fokkens W, Peter Hellings P, Segboer C. Capsaicin for rhinitis. Curr Allergy Asthma Rep. 2016;16:60. https://doi.org/10.1007/s11882-016-0638-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Adeleye IA, Opiah L. Antimicrobial activity of extracts of local cough mixtures on upper respiratory tract bacterial pathogens. West Indian Med J. 2003;52(3):188–90.

    CAS  PubMed  Google Scholar 

  75. Jeyakumar A, Brickman TM, Haben M. Effectiveness of amitriptyline versus cough suppressants in the treatment of chronic cough resulting from postviral vagal neuropathy. Laryngoscope. 2006;116(12):2108–12.

    Article  CAS  PubMed  Google Scholar 

  76. Gibson PG, Vertigan AE. Gabapentin in chronic cough. Pulm Pharmacol Ther. 2015;35:145–8. https://doi.org/10.1016/j.pupt.2015.06.007.

    Article  CAS  PubMed  Google Scholar 

  77. Ryan NM. Gibson PG recent additions in the treatment of cough. Thoracic Dis. 2014;6(Suppl 7):S739–47.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Smith, P.K. (2018). Rhinitis and Cough. In: Bernstein, J. (eds) Rhinitis and Related Upper Respiratory Conditions. Springer, Cham. https://doi.org/10.1007/978-3-319-75370-6_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-75370-6_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-75369-0

  • Online ISBN: 978-3-319-75370-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics