Skip to main content

Pre-chronic Kidney Disease (CKD)? Is It Time for a New Staging?

  • Chapter
  • First Online:
Prehypertension and Cardiometabolic Syndrome

Abstract

Recent years have shown a variety of therapeutic approaches in advanced stages of chronic kidney disease and end-stage renal disease to fail to improve outcomes. Renal replacement therapy, while life-saving, has seen very little advances during the last two decades. Some investigators believe that in patients undergoing chronic renal replacement therapy, kidney disease and most importantly cardiovascular comorbidities have progressed past the point where any intervention can improve outcomes. Thus, the focus has shifted to very early stages of chronic kidney disease, which we hope to identify with new biomarkers. Those biomarkers could be of importance in defining a new disease, or at least a new stage of disease. It is common practice in other areas of medicine, where pre-stages like “prehypertension” and “prediabetes” are well known and defined entities that may entail therapeutic interventions and the definition of these pre-stages may thus improve outcomes. Whether “pre-CKD” can be accurately defined, and whether the detection of pre-CKD could provide a benefit to individuals in terms of early detection and intervention leading to a better survival is topic of this review.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Coresh J, et al. Prevalence of chronic kidney disease in the United States. JAMA. 2007;298:2038–47.

    Article  CAS  Google Scholar 

  2. Go AS, Chertow GM, Fan D, McCulloch CE, Hsu C-Y. Chronic kidney disease and the risks of death, cardiovascular events, and hospitalization. N Engl J Med. 2004;351:1296–305.

    Article  CAS  Google Scholar 

  3. Prischl FC, et al. Diabetes-related end-stage renal disease in Austria 1965–2013. Nephrol Dial Transplant. 2015;30:1920–7.

    Article  PubMed  Google Scholar 

  4. Nathan DM, et al. Impaired fasting glucose and impaired glucose tolerance: implications for care. Diabetes Care. 2007;30:753–9.

    Article  CAS  PubMed  Google Scholar 

  5. Vasan RS, et al. Impact of high-normal blood pressure on the risk of cardiovascular disease. N Engl J Med. 2001;345:1291–7.

    Article  CAS  PubMed  Google Scholar 

  6. Chobanian AV, et al. The Seventh Report of the Joint National Committee on Prevention, Detection, Evaluation, and Treatment of High Blood Pressure: the JNC 7 report. JAMA. 2003;289:2560–72.

    Article  CAS  PubMed  Google Scholar 

  7. Curhan GC. Prediabetes, prehypertension … is it time for pre-CKD? Clin J Am Soc Nephrol. 2010;5:557–9.

    Article  PubMed  Google Scholar 

  8. Lewington S, et al. Age-specific relevance of usual blood pressure to vascular mortality: a meta-analysis of individual data for one million adults in 61 prospective studies. Lancet. 2002;360:1903–13.

    Article  PubMed  Google Scholar 

  9. Sundstrom J, Neovius M, Tynelius P, Rasmussen F. Association of blood pressure in late adolescence with subsequent mortality: cohort study of Swedish male conscripts. BMJ. 2011;342:d643.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Julius S, et al. Feasibility of treating prehypertension with an angiotensin-receptor blocker. N Engl J Med. 2006;354:1685–97.

    Article  CAS  PubMed  Google Scholar 

  11. Chamberlain JJ, et al. Pharmacologic therapy for type 2 diabetes: synopsis of the 2017 American Diabetes Association Standards of Medical Care in Diabetes. Ann Intern Med. 2017;166:572–8.

    Article  PubMed  Google Scholar 

  12. American Diabetes Association. Classification and diagnosis of diabetes mellitus. Diabetes Care. 2017;40:S11–24.

    Article  Google Scholar 

  13. Kidney Disease: Improving Global Outcomes (KDIGO) CKD-MBD Work Group. KDIGO clinical practice guideline for the diagnosis, evaluation, prevention, and treatment of Chronic Kidney Disease-Mineral and Bone Disorder (CKD-MBD). Kidney Int Suppl. 2009;76:S1–130.

    Google Scholar 

  14. Hemmelgarn BR, et al. Relation between kidney function, proteinuria, and adverse outcomes. JAMA. 2010;303:423–9.

    Article  CAS  PubMed  Google Scholar 

  15. Moyer VA, U.S. Preventive Services Task Force. Screening for chronic kidney disease: U.S. Preventive Services Task Force recommendation statement. Ann Intern Med. 2012;157:567–70.

    Article  PubMed  Google Scholar 

  16. van der Velde M, de Jong PE, Gansevoort RT. Comparison of the yield of different screening approaches to detect chronic kidney disease. Nephrol Dial Transplant. 2010;25:3222–30.

    Article  PubMed  Google Scholar 

  17. Carville S, Wonderling D, Stevens P, Guideline Development G. Early identification and management of chronic kidney disease in adults: summary of updated NICE guidance. BMJ. 2014;349:g4507.

    Article  PubMed  Google Scholar 

  18. Wetzels JF, Kiemeney LA, Swinkels DW, Willems HL, den Heijer M. Age- and gender-specific reference values of estimated GFR in Caucasians: the Nijmegen Biomedical Study. Kidney Int. 2007;72:632–7.

    Article  CAS  PubMed  Google Scholar 

  19. Mattix HJ, Hsu C-Y, Shaykevich S, Curhan G. Use of the albumin/creatinine ratio to detect microalbuminuria: implications of sex and race. J Am Soc Nephrol. 2002;13:1034–9.

    CAS  PubMed  Google Scholar 

  20. Tonneijck L, et al. Glomerular hyperfiltration in diabetes: mechanisms, clinical significance, and treatment. J Am Soc Nephrol. 2017;28:1023–39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Stevens LA, Coresh J, Greene T, Levey AS. Assessing kidney function—measured and estimated glomerular filtration rate. N Engl J Med. 2006;354:2473–83.

    Article  CAS  PubMed  Google Scholar 

  22. Levey AS, Stevens LA. Estimating GFR using the CKD Epidemiology Collaboration (CKD-EPI) creatinine equation: more accurate GFR estimates, lower CKD prevalence estimates, and better risk predictions. Am J Kidney Dis. 2010;55:622–7.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Wasung ME, Chawla LS, Madero M. Biomarkers of renal function, which and when? Clinica chimica acta. Int J Clin Chem. 2015;438:350–7.

    CAS  Google Scholar 

  24. Abrahamson M, Dalboge H, Olafsson I, Carlsen S, Grubb A. Efficient production of native, biologically active human cystatin C by Escherichia coli. FEBS Lett. 1988;236:14–8.

    Article  CAS  PubMed  Google Scholar 

  25. Hojs R, Bevc S, Ekart R, Gorenjak M, Puklavec L. Serum cystatin C as an endogenous marker of renal function in patients with mild to moderate impairment of kidney function. Nephrol Dial Transplant. 2006;21:1855–62.

    Article  CAS  PubMed  Google Scholar 

  26. Stevens LA, et al. Estimating GFR using serum cystatin C alone and in combination with serum creatinine: a pooled analysis of 3,418 individuals with CKD. Am J Kidney Dis. 2008;51:395–406.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Ribitsch W, et al. Neutrophil gelatinase-associated lipocalin (NGAL) fails as an early predictor of contrast induced nephropathy in chronic kidney disease (ANTI-CI-AKI study). Sci Rep. 2017;7:41300.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Kuncio GS, Neilson EG, Haverty T. Mechanisms of tubulointerstitial fibrosis. Kidney Int. 1991;39:550–6.

    Article  CAS  PubMed  Google Scholar 

  29. Mitsnefes MM, et al. Serum neutrophil gelatinase-associated lipocalin as a marker of renal function in children with chronic kidney disease. Pediatr Nephrol. 2007;22:101–8.

    Article  PubMed  Google Scholar 

  30. Smith ER, et al. Urinary neutrophil gelatinase-associated lipocalin may aid prediction of renal decline in patients with non-proteinuric stages 3 and 4 chronic kidney disease (CKD). Nephrol Dial Transplant. 2013;28:1569–79.

    Article  CAS  PubMed  Google Scholar 

  31. Bolignano D, et al. Neutrophil gelatinase-associated lipocalin (NGAL) and progression of chronic kidney disease. Clin J Am Soc Nephrol. 2009;4:337–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Ketteler M, et al. Executive summary of the 2017 KDIGO Chronic Kidney Disease-Mineral and Bone Disorder (CKD-MBD) Guideline update: what's changed and why it matters. Kidney Int. 2017;92:26–36.

    Article  PubMed  Google Scholar 

  33. Isakova T, Wolf MS. FGF23 or PTH: which comes first in CKD ? Kidney Int. 2010;78:947–9.

    Article  CAS  PubMed  Google Scholar 

  34. Gutierrez O, et al. Fibroblast growth factor-23 mitigates hyperphosphatemia but accentuates calcitriol deficiency in chronic kidney disease. J Am Soc Nephrol. 2005;16:2205–15.

    Article  CAS  PubMed  Google Scholar 

  35. Isakova T, et al. Fibroblast growth factor 23 is elevated before parathyroid hormone and phosphate in chronic kidney disease. Kidney Int. 2011;79:1370–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Isakova T, et al. Fibroblast growth factor 23 and risks of mortality and end-stage renal disease in patients with chronic kidney disease. JAMA. 2011;305:2432–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Dhingra R, et al. Relations of serum phosphorus and calcium levels to the incidence of cardiovascular disease in the community. Arch Intern Med. 2007;167:879–85.

    Article  CAS  PubMed  Google Scholar 

  38. Foley RN, Collins AJ, Ishani A, Kalra PA. Calcium-phosphate levels and cardiovascular disease in community-dwelling adults: the Atherosclerosis Risk in Communities (ARIC) Study. Am Heart J. 2008;156:556–63.

    Article  CAS  PubMed  Google Scholar 

  39. Gutiérrez OM, et al. Fibroblast growth factor 23 and mortality among patients undergoing hemodialysis. N Engl J Med. 2008;359:584–92.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Block GA, Hulbert-Shearon TE, Levin NW, Port FK. Association of serum phosphorus and calcium × phosphate product with mortality risk in chronic hemodialysis patients: a national study. Am J Kidney Dis. 1998;31:607–17.

    Article  CAS  PubMed  Google Scholar 

  41. The EVOLVE Trial Investigators. Effect of cinacalcet on cardiovascular disease in patients undergoing dialysis. N Engl J Med. 2012;367:2482–94. https://doi.org/10.1056/NEJMoa1205624.

    Article  Google Scholar 

  42. Raggi P, et al. The ADVANCE study: a randomized study to evaluate the effects of cinacalcet plus low-dose vitamin D on vascular calcification in patients on hemodialysis. Nephrol Dial Transplant. 2011;26:1327–39.

    Article  CAS  PubMed  Google Scholar 

  43. Blacher J, Guerin AP, Pannier B, Marchais SJ, London GM. Arterial calcifications, arterial stiffness, and cardiovascular risk in end-stage renal disease. Hypertension. 2001;38:938–42.

    Article  CAS  PubMed  Google Scholar 

  44. Moe SM, et al. Cinacalcet, fibroblast growth factor-23, and cardiovascular disease in hemodialysis: the Evaluation of Cinacalcet HCl Therapy to Lower Cardiovascular Events (EVOLVE) trial. Circulation. 2015;132:27–39.

    Article  CAS  PubMed  Google Scholar 

  45. Fliser D, et al. Fibroblast growth factor 23 (FGF23) predicts progression of chronic kidney disease: the Mild to Moderate Kidney Disease (MMKD) study. J Am Soc Nephrol. 2007;18:2600–8.

    Article  CAS  PubMed  Google Scholar 

  46. Gutiérrez OM, et al. Fibroblast growth factor 23 and left ventricular hypertrophy in chronic kidney disease. Circulation. 2009;119:2545–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Grabner A, et al. Activation of cardiac fibroblast growth factor receptor 4 causes left ventricular hypertrophy. Cell Metab. 2015;22:1020–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Mirza MA, et al. Relationship between circulating FGF23 and total body atherosclerosis in the community. Nephrol Dial Transplant. 2009;24:3125–31.

    Article  CAS  PubMed  Google Scholar 

  49. Evenepoel P, et al. Fibroblast growth factor-23 in early chronic kidney disease: additional support in favor of a phosphate-centric paradigm for the pathogenesis of secondary hyperparathyroidism. Clin J Am Soc Nephrol. 2010;5:1268–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Parker BD, et al. The associations of fibroblast growth factor 23 and uncarboxylated matrix Gla protein with mortality in coronary artery disease: the Heart and Soul Study. Ann Intern Med. 2010;152:640–8.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander H. Kirsch .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kirsch, A.H., Rosenkranz, A.R. (2019). Pre-chronic Kidney Disease (CKD)? Is It Time for a New Staging?. In: Zimlichman, R., Julius, S., Mancia, G. (eds) Prehypertension and Cardiometabolic Syndrome. Updates in Hypertension and Cardiovascular Protection. Springer, Cham. https://doi.org/10.1007/978-3-319-75310-2_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-75310-2_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-75309-6

  • Online ISBN: 978-3-319-75310-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics