Skip to main content

Agro-Ecosystem Diversity in Petroleum and Natural Gas Explored Sites in Assam State, North-Eastern India: Socio-Economic Perspectives

  • Chapter
  • First Online:

Part of the book series: Sustainable Agriculture Reviews ((SARV,volume 27))

Abstract

The discovery of oil, drilling of oil wells and exploration of fuels from underground reserves and their transportation has a long worldwide history. As collateral for this, accidents of oil tankers and leakage of pipelines, oil spills and infiltration into the sites of explorations, forest and agriculture lands have accompanied oil production. Its visible impact on agriculture productivity has been observed and explored in different parts of the world, including the biodiversity hotspots of the Indian subcontinent. The degraded land becomes barren and unsuitable for the cultivation of cereal crops for longer periods of time. Cereal and horticultural crops are more sensitive and cannot be grown in such inhospitable soil; therefore, alternative energy crops are fit and efficient substitutes on such degraded land.

The oil industry is one of the major industries in the State of Assam, North-Eastern India. The Oil India Limited (OIL) and Oil and Natural Gas Corporation (ONGC) are the two leading companies in this sector which are actively engaged in crude oil exploration in various sites of Assam. According to an estimate the crude oil production in Assam was reported to be 4740TMT (Thousand Metric Tonnes) during the year 2010–11 which was expected to increase manifold with the discovery of new oil drilling sites in various locations.

Most of the drilling sites are based at the periphery of human settlements including adjoining agro-ecosystems. A glimpse of some crude oil exploration sites (a) Lakua, (b) Geleki, (c) Rudrasagar and (d) Moran oil fields shows an alarming picture of this economic activity. During the oil exploration as well as transportation process of crude oil from drilling site, high pressure in the pipe line causes leakage which results in soil and water contamination. Contamination may also take place due to seepage of crude oil from the effluent pits and Group Gathering Station/Oil Collecting Station (GGS/OCS) where crude oil is stored for refining.

In this review, we focus on some fast-growing, contamination-tolerant, energy crops that can be grown in nutrient-less hostile environments for economic benefits as part of sustainable agricultural practices in petroleum and natural gas explored sites. More importantly, these crops remediate contaminated soil and contribute to bio-based economy. In this review, a comprehensive update of agricultural practices implemented in such sites, the possible role of energy crops for sustainable agriculture, and the potential of agro-based industries have been underscored.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abii TA, Nwosu PC (2009) The effect of oil –spillage on the soil of Eleme in Rivers State of the Niger – delta area of Nigeria. Res J Environ Sci 3(3):316–332. https://doi.org/10.3923/rjes.2009.316.320

    Article  CAS  Google Scholar 

  • Adenipekun CO, Oyetunji OJ, Kassim LQ (2009) Screening of Abelmoschusesculentus (L). Moench for tolerance to spent engine oil. J Appl Biosci 20:1131–1137

    Google Scholar 

  • Agbogidi OM (2011) Effects of crude oil contaminated soil on biomass accumulation in Jatropha curcas L. seedlings. J Ornam Hortic Plants 1(1):43–49

    Google Scholar 

  • Akpor OB, Igbinosa OE, Igbinosa OO (2007) Studies on the effect of petroleum hydrocarbon on the microbial and physico-chemicals characteristics of soil. Afr J Biotechnol 6:1939–1943

    Article  CAS  Google Scholar 

  • Annapurna D, Rajkumar M, Prasad MNV (2016) Potential of castor bean (Ricinus communis L.) for phytoremediation of metalliferous waste assisted by plant growth promoting bacteria. In: Prasad MNV (ed) Bioremediation and Bioeconomy. Elsevier, USA, pp 149–175. isbn:978-0-12-802830-8. https://doi.org/10.1016/B978-0-12-802830-8.00008-3

    Chapter  Google Scholar 

  • Anoliefo GO, Isikhuemhen O, Ohimain E (2006) Sensitivity studies of the common bean(Vigna unguiculata) and maize (Zea mays) to different soil types from the crude oil drilling site at Kutchalli, Nigeria. J Soils Sediments 6(1):30–36. https://doi.org/10.1065/jss2005.09.1

    Article  Google Scholar 

  • Anonymous (1999) Environmental Case Study, The Exxon Valdez Oil Spill, Ten Years Late, The McGraw-Hill Companies, Inc. http://www.mhhe.com/Enviro-Sci/CaseStudyLibrary/Topicased/CaseStudy_TheExxonValdezOilSpill.pdf

  • Antonopoulou M, Compton J, Perry LS, Al-Mubarak R (2010) The trade and use of Agarwood (Oudh) in the United Arab Emirates. TRAFFIC Southeast Asia, Petaling Jaya, Selangor, Malaysia

    Google Scholar 

  • Atubi AO, Onokala PC (2006) The Socio- economic effects of oil spillage on agriculture in the Niger Delta. J Environ Stud 2:50–56. https://doi.org/10.1080/15693430802650449

    Google Scholar 

  • Azari-Dehkordi Forood (2011) Introducing Geo-cultural landscapes in Iran in landscape ecology in asian cultures. In: Hong S-K, Wu J, Kim J-E, Nakagoshi N (eds) Landscape Ecology in Asian Cultures. Springer, Tokyo, pp 55–68. https://doi.org/10.1007/978-4-431-87799-8_5

  • Bais HT, Perry LG, Simon G, Vivanco JM (2006) The role of root exudates in rhizosphere interactions with plants and other organisms. Plant Biol 57:233–266. https://doi.org/10.1146/annurev.arplant.57.032905.105159

    Article  CAS  Google Scholar 

  • Barathi S, Vasudevan N (2001) Utilization of petroleum hydrocarbons by Pseudomonas fluorescens isolated from a petroleum-contaminated soil. Environ Int, 26(5–6):413–416. https://doi.org/10.1016/S0160-4120(01)00021-6

    Article  CAS  Google Scholar 

  • Barden A, Anak NA, Mulliken T, Song M (2000) Heart of the matter: agarwood use and trade in CITES implementation for Aquilariamalaccensis. Traffic International, Cambridge. isbn:1-85850-177-6

    Google Scholar 

  • Barea JM, Pozo MJ, Azcon R, Azcon-Aguilar C (2005) Microbial co-operation in the rhizosphere. J Exp Bot 56:1761–1778. https://doi.org/10.1093/jxb/eri197

    Article  CAS  PubMed  Google Scholar 

  • Basumatary B, Saikia R, Bordoloi S, Das HC, Sarma HP (2012) Assessment of potential plant species for phytoremediation of hydrocarbon contaminated areas of upper Assam, India. J Chem Technol Biotechnol 87:1329–1334. https://doi.org/10.1002/jctb.3773

    Article  CAS  Google Scholar 

  • Bayne EM, Habib L, Boutin S (2008) Impacts of chronic anthropogenic noise from energy sector activity on abundance of songbirds in the boreal forest. Conserva Biol 22(5):1186–1193. https://doi.org/10.1111/j.1523-1739.2008.00973.x

    Article  Google Scholar 

  • Bidwell JR, Donald SC, Merski T (2002) Toxicity evaluation of a commercial bioremediation agent mixed with crude oil. Environ Toxicol Chem 22(1):84–91

    Article  Google Scholar 

  • Blanchette RA, Jurgens JA, Beek HHV (2015) Growing Aquilaria and production of Agarwood in hill agro-ecosystems. http://forestpathology.cfans.umn.edu/pdf/

  • Boopathy R (2001) Factors limiting bioremediation technologies. Bioresour Technol 74:63–67. https://doi.org/10.1016/S0960-8524(99)00144-3

    Article  Google Scholar 

  • Bordoloi S, Basumatary B (2016a) A study on degradation of heavy metals in crude oil-contaminated soil using Cyperusrotundus. In: Ansari AA et al (eds) Phytoremediation, pp 53–61. https://doi.org/10.1007/978-3-319-41811-7_4

    Google Scholar 

  • Bordoloi S, Basumatary B (2016b) Phytoremediation of crude oil-contaminated soil using Cynodon dactylon (L.) Pers. In: Ansari AA et al (eds) Phytoremediation, pp 41–52. https://doi.org/10.1007/978-3-319-41811-7_3

  • Bragg JR, Prince RC, Harner EJ, Atlas RM (1994) Effectiveness of bioremediation for the Exxon Valdex oil spill. Nature 368:413–418. https://doi.org/10.1038/368413a0

    Article  CAS  Google Scholar 

  • Brittingham MC, Maloney KO, Farag AM, Harper DD, Bowen ZH (2014) Ecological risks of shale oil and gas development to wildlife, aquatic resources and their habitats. Environ Sci Technol 48(19):11034–11047. https://doi.org/10.1021/es5020482

    Article  CAS  PubMed  Google Scholar 

  • Brodkorb TS, Legge RL (1992) Enhanced biodegradation of phenanthrene in oil tar contaminated soil supplemented with Phanerochaetechrysosporium. Appl Environ Microbial 58:3117–3121

    CAS  Google Scholar 

  • Brus D, Li ZB, Temminghoffd EJM, Song J, Koopmans GF, Luo YM, Japenga J (2009) Predictions of spatially averaged cadmium contents in rice grains in the Fuyang Valley, P.R. S-1 China. J Environ Qual 38:1126–1136. https://doi.org/10.2134/jeq2008.0228

    Article  CAS  PubMed  Google Scholar 

  • Chakrabarty K, Kumar A, Menon V (1994) Trade in Agarwood. World Wildlife Fund-India/Traffic-India, New Delhi. 51pp. http://static1.1.sqspcdn.com/static/f/157301/2704264/1237472509387/traffic_pub_forestry20.pdf?token=AHPQY54zAXoUqAqBvvaG0SnjtJo%3D

    Google Scholar 

  • Chinda, Braide SA (2000) The impact of oil spills on the ecology and economy of Niger Delta. Proceedings of the workshop on sustainable remediation development technology, held at the Institute of Pollution Studies, Rivers State University of Science and Technology, Port Harcourt, pp 1–11. https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&uact=8&ved=0ahUKEwjgn-eJusnWAhXHQyYKHRDvC2sQFggmMAA&url=https%3A%2F%2Fglobaljournals.org%2FGJSFR_Volume12%2F2-Environmental-Impacts-of-Oil-Exploration.pdf&usg=AFQjCNFKtZ_pkVIgXCEmhLxQklfxbkAFDQ

    Google Scholar 

  • CITES (2004) Convention on international trade in endangered species of wild fauna and flora appendices I, II, and III. UNEP-WCMC. Available: http://www.cites.org/eng/app/appendices.php

  • CITES (2005) The trade and use of agarwood in Taiwan, Province of China. TRAFFIC East Asia-Taipei

    Google Scholar 

  • Clark CJ (2003) Field detector evaluation of organic clay soils contaminated with diesel fuel. Environ Forensics 4(3):167–173. https://doi.org/10.1080/713848506

  • Compton J, Ishihara A (2004) The use and trade of agarwood in Japan. TRAFFIC International, Cambridge

    Google Scholar 

  • Dash M, Patra JK, Panda PP (2008) Phytochemical and anti microbial screening of extracts of AquilariaagallochaRoxb. Afr J Biotechnol 7:3531–3534. ISSN 1684–5315. © 2008 Academic Journals

    Google Scholar 

  • Dewling RT, McCarty LT (1980) Chemical treatment of oil spills. Environ Int 3:155–162. https://doi.org/10.1016/0160-4120(80)90050-1

    Article  Google Scholar 

  • Duffy JJ, Peake E, Molitadi MF (1980) Oil spills on land as potential source of groundwater contamination. Environ Int 3:107–120. https://doi.org/10.1016/0160-4120(80)90045-8

    Article  CAS  Google Scholar 

  • Eapen S, D’Souza SF (2005) Prospects of genetic engineering of plants for phytoremediation of toxic metals. BiotechnolAdv 23:97–114. https://doi.org/10.1016/j.biotechadv.2004.10.001

    Article  CAS  Google Scholar 

  • Francis C, Ortega C, Cruz A (2009) Noise pollution changes avian communities and species interactions. Curr Biol 19(16):1415–1419. https://doi.org/10.1016/j.cub.2009.06.052

    Article  CAS  Google Scholar 

  • Francis CD, Barber JR (2013) A framework for understanding noise impacts on wildlife: an urgent conservation priority. Front Ecol Environ 11(6):305–313. https://doi.org/10.1890/120183

    Article  Google Scholar 

  • Gibson IAS (1977) The role of fungi in the origin of oleoresin deposits (agaru) in the wood of Aquilariaag allocha Roxb. BanoBiggyan Patrika 6(1):16–26. ISSN: 0254-4539

    Google Scholar 

  • Gorham E (1997) Human impacts on ecosystems and landscapes. In: Nassauer JI (ed) Placing nature: culture and landscape ecology. Island Press, Washington, DC, pp 65–84

    Google Scholar 

  • Hansen E (2000) The hidden history of scented wood. Saudi Aramco World 51:2–13

    Google Scholar 

  • Hasinger M, Scherr KE, Lundaa T, Bräuer L, Zach C, Loibner AP (2012) Changes in iso and nalkane distribution during biodegradation of crude oil under nitrate and sulphate reducing conditions. J Biotechnol 157(4):490–498. https://doi.org/10.1016/j.jbiotec.2011.09.027

    Article  CAS  PubMed  Google Scholar 

  • Heiss ML, Heiss RL (2011) The story of tea: a cultural history and drinking guide. Random House, New York. p. 31. ISBN 978-1-60774-172-5

    Google Scholar 

  • Henry JG, Heinke GW (2005) Environmental science and engineering, 2nd ed, vol 110001. Prentice Hall, India, New Delhi, pp 64–84

    Google Scholar 

  • Hernández-Allica J, Becerril JM, Garbisu C (2008) Assessment of the phytoextraction potential of high biomass crop plants. Environ Pollut 152:32–40. https://doi.org/10.1016/j.envpol.2007.06.002

    Article  CAS  PubMed  Google Scholar 

  • Huang H, Wang K, Zhu Z, Li Y, He Z, Yang XE, Gupta DK (2013) Moderate phosphorus application enhances Zn mobility and uptake in hyperaccumulator Sedum alfredii. Environ Sci Pollut R 20:2844–2853. https://doi.org/10.1007/s11356-012-1175-7

    Article  CAS  Google Scholar 

  • IUCN (2013) IUCN red list of threatened species. Version 2013.1. Available online: www.iucnredlist.org

  • Juhasz AL, Smith E, Waller N, Stewart R, Weber J (2010) Bioavailability of residual polycyclic aromatic hydrocarbons following enhanced natural attenuation of creosote-contaminated soil. Environ Pollut 158:585–591. https://doi.org/10.1016/j.envpol.2009.08.018

    Article  CAS  PubMed  Google Scholar 

  • Kandalepas D, Blum MJ, Bael SAV (2015) Shifts in symbiotic endophyte communities of a foundational salt marsh grass following oil exposure from the deepwater horizon oil spill. PLoS One. https://doi.org/10.1371/journal.pone.0122378

  • Kiet LK (2003) History and ecology of agarwood in Vietnam. 1st International agarwood conference. November 10–15, Ho Chi Minh City, Vietnam (Unpublished symposium paper available from the authors)

    Google Scholar 

  • Kiran BR, Prasad MNV (2017) Ricinus communis L. (Castor bean), a potential multi-purpose environmental crop for improved and integrated phytoremediation. Eurobiotech J 1(2):101–116. https://doi.org/10.24190/ISSN2564-615X/2017/02.01

    Article  Google Scholar 

  • Kisic I, Jurisic A, Durn G, Mesic H, Mesic S (2010) Effects of hydrocarbons on temporal changes in soil and crops. Afr J Agric Res 5(14):1821–1829. https://www.researchgate.net/publication/228667522_Effects_of_hydrocarbons_on_temporal_changes_in_soil_and_crops

    Google Scholar 

  • Lee K, Levy EM (1991) Bioremediation waxy crude oil stranded on low-energy shoreline. Proc. 1991 Oil Spill Conf. American Petroleum Institute, Washington, DC

    Google Scholar 

  • Lewandowski I (2002) Selection of multiple land use functions for the BioPUSH project. Utrecht University, Copernicus Institute, Department of Science, Technology and Science, Utrecht, The Netherlands

    Google Scholar 

  • Lundberg DS, Lebeis SL, Paredes SH, Yourstone S, Gehring J, Malfatti S (2012) Defining the core Arabidopsis thaliana root microbiome. Nature 487:86–9010.1038. https://doi.org/10.1038/nature11237

    Article  CAS  Google Scholar 

  • Luo YM, Teng Y (2006) Status of soil pollution-caused degradation and countermeasures in China (in Chinese). Soils 38:505–508

    Google Scholar 

  • Macfarlane A, Macfarlane I (2004) The empire of tea. The Overlook Press, p 32. isbn:1-58567-493-1

  • McBroom M, Thomas T, Zhang Y (2012) Soil erosion and surface water quality impacts of natural gas development in east Texas, USA. Water 4(4):944–958

    Article  CAS  Google Scholar 

  • McClay KB, Fox BG, Steffan BJ (2000) Toluene monooxygenase catalyzed epoxidation of alkene. Appl Environ Microbiol 66:1877–1882

    Article  CAS  Google Scholar 

  • Meers E, Ruttens A, Hopgood M, Lesage E, Tack FMG (2005) Potential of Brassica rapa, Cannabis sativa, Helianthus annuus and Zea mays for phytoextraction of heavy metals from calcareous dredged sediment derived soils. Chemosphere 61:561–572. https://doi.org/10.1016/j.chemosphere.2005.02.026

    Article  CAS  PubMed  Google Scholar 

  • Meers E, Slycken SV, Adriaensen K, Ruttens A, Vangronsveld J, Laing GD,Witters N, Thewys T, Tack FMG (2010)The use of bio-energy crops (Zea mays) for ‘phytoremediation’ of heavy metals on moderately contaminated soils: a field experiment. Chemosphere 78:35–41. https://doi.org/10.1016/j.chemosphere.2009.08.015

    Article  CAS  Google Scholar 

  • Mei WL, Zeng YB, Wu J, Dai HF 2008 Chemical composition and anti-MRSA activity of the essential oil from Chinese eaglewood. J Chin Pharm Sci 17:225–229. http://118.145.16.238/Jwk_zgyxen/EN/

  • Mench M, Schwitzguebel J-P, Schroeder P, Bert V, Gawronski S, Gupta S (2009) Assessment of successful experiments and limitations of phytotechnologies: contaminant uptake, detoxification and sequestration, and consequences for food safety. Environ Sci Pollut Res 16:876–900. https://doi.org/10.1007/s11356-009-0252-z

    Article  CAS  Google Scholar 

  • Mohan SV, Kisa T, Ohkuma T, Kanaly RA, Shimizu Y (2006) Bioremediation technologies for treatment of PAH contaminated soil and strategies to enhance process efficiency. Rev Environ Sci Biotechnol 5:347–374. https://doi.org/10.1007/s11157-006-0004-1

    Article  CAS  Google Scholar 

  • Nkwocha EE (2009) Water supply deficiency and implications for rural development in the Niger Delta Region of Nigeria. Soc Indic Res 90:409–418. https://doi.org/10.1007/s11205-008-9268-x

    Article  Google Scholar 

  • Ogboghodo IA, Erebor EB, Osemwota JO, Isitekhole HH (2004) The effects of application of poultry manure to crude oil polluted soils on maize (Zea mays) growth and soil properties. Environ Monit Assess 96(3):153–161. https://doi.org/10.1023/B:EMAS.0000031724.22352.af

    Article  CAS  Google Scholar 

  • Ojimba TP, Iyagba AG (2012) Effects of crude oil pollution on horticultural crops in rivers state, Nigeria. Global Journal of Science Frontier Research Agriculture & Biology. Volume 12 Issue 4. Online ISSN: 2249–4626 & Print ISSN: 0975–5896

    Google Scholar 

  • Okoh AI (2006) Biodegradation alternative in the clean up of petroleum hydrocarbon pollutants. A review. Biotechnol Mol Biol 1(2):38–50. ISSN 1538-2273

    Google Scholar 

  • Okolo JC, Amadi EN, Odu CTI (2005) Effects of soil treatment containing poultry manure on crude oil degradation in sandy loam soil. Appl Ecol Environ Res 3(1):47–53

    Article  Google Scholar 

  • Oldfield S, Lusty C, MacKinven A (1998) The word list of threatened trees. In: Barden A, Anak NA, Mulliken T, Song M (eds) Heart of the matter: agarwood use and trade and CITES implementation for Aquilariamalaccensis. TRAFFIC International, New York

    Google Scholar 

  • Osuji LC, Nwoye I (2007) An appraisal of the impact of petroleum hydrocarbons on soil fertility: the Owaza experience. Afr J Agric Res 2(7):318–324

    Google Scholar 

  • Oyedeji AA, Adebiyi AO, Omotoyinbo MA, Ogunkunle CO (2012) Effect of crude oil-contaminated soil on germination and growth performance of Abelmoschus esculentus L. Moench - a widely cultivated vegetable crop in Nigeria. Am J Plant Sci 3:1451–1454. https://doi.org/10.4236/ajps.2012.310174

    Article  Google Scholar 

  • Phillips A (1998) The nature of cultural landscapes — a nature conservation perspective. Landsc Res 23(1):21–38. https://doi.org/10.1080/01426399808706523

    Article  Google Scholar 

  • Pidlisnyuk V, Stefanovska T, Lewis EE, Erickson LE, Davis LC (2014) Miscanthus as a productive biofuel crop for phytoremediation. Crit Rev Plant Sci 33(1):1–19. https://doi.org/10.1080/07352689.2014.847616

    Article  Google Scholar 

  • Piehler MF, Swistak JG, Pinckney JL, Paerl HW (1999) Stimulation of diesel fuel biodegradation by indigenous nitrogen fixing bacterial consortia. Microb Ecol 38(1):6978

    Article  Google Scholar 

  • Prasad MNV (2007) Phytoremediation in India. In: Willey N (ed) Phytoremediaiton – methods and reviews. Humana Press, Totowa, pp 435–454

    Chapter  Google Scholar 

  • Prasad MNV, Tewari, JC (2016) Prosopis juliflora (Sw) DC – potential for bioremediation and biobased economy. In: Prasad MNV (ed) Bioremediation and bioeconomy. Elsevier, USA, pp 49–76. isbn:978-0-12-802830-8. https://doi.org/10.1016/B978-0-12-802830-8.00003-4

    Chapter  Google Scholar 

  • Prasad MNV, Nakbanpote W, Phadermrod C, Rose D, Suthari S (2016) Mulberry and Vetiver for phytostabilizaion of mine over burden: co-generation of economic products. In: Prasad MNV (ed) Bioremediation and bioeconomy. Elsevier, New York, pp 295–328. isbn:978–0–12-802830-8. https://doi.org/10.1016/B978-0-12-802830-8.00013-7

    Chapter  Google Scholar 

  • Rabalais N (2003) Oil in the sea. Issues Sci Technol 20(1):74

    Google Scholar 

  • Racicot A, Babin-Roussel V, Dauphinais J-F, Joly J-S, Noel P, Lavoie C (2014) Aframework to predict the impacts of shale gas infrastructures on the forest fragmentation of an agroforest region. Environ Manag 53(5):1023–1033

    Article  Google Scholar 

  • Saikia P, Khan ML (2014) Ecological features of cultivated stands of Aquilaria malaccensis Lam. (Thymelaeaceae), a vulnerable tropical tree species in Assamese Homegardens. Int J For Res:140926. https://doi.org/10.1155/2014/140926

  • Salam JA, Hatha MAA, Das N (2017) Microbial-enhanced lindane removal by sugarcane (Saccharum officinarum) in doped soil-applications in phytoremediation and bioaugmentation. J Environ Manag 193(2017):394–399. https://doi.org/10.1016/j.jenvman.2017.02.006

    Article  Google Scholar 

  • Sarma H, Prasad MNV (2015) Plant-microbe association-assisted removal of heavy metals and degradation of polycyclic aromati hydrocarbons. In: Mukherjee S (ed) Petroleum geosciences, indian contexts. Springer International Publishing, Switzerland. Springer Geology, pp 219–236. https://doi.org/10.1007/978–3–319-03119-4_10

    Chapter  Google Scholar 

  • Sarma H, Prasad MNV (2016) Phytomanagement of polycyclic aromatic hydrocarbons and heavy metals contaminated sites in Assam. In: Prasad MNV (ed) Bioremediation and bioeconomy. Elsevier, USA, pp 609–626. https://doi.org/10.1016/B978-0-12-802830-8.00024-1

    Chapter  Google Scholar 

  • Sarma H, Islam NF, Borgohain P, Prassad MNV (2016) Localization of polycyclic aromatic hydrocarbons and heavy metals in surface soil of Asia’s oldest oil and gas drilling site in Assam, northeast India: Implications for the bio-economy. Emerg Contam 2(3):119–127. https://doi.org/10.1016/j.emcon.2016.05.004

    Article  Google Scholar 

  • Sarma H, Islam NF, Prasad MNV (2017) Plant-microbial association in petroleum and gas exploration sites in the state of Assam, north-east India-significance for bioremediation. Environ Sci Pollut Res Int 24(9):8744–8758. https://doi.org/10.1007/s11356-017-8485-8

    Article  CAS  PubMed  Google Scholar 

  • Saxena PK, Krishnaraj S, Dan T (1999) Phytoremediation of heavy metal contaminated and polluted soils. In: Prasad MNV, Hagemeyer J (eds) Heavy metal stress in plants from molecules to ecosystem. Springer, Berlin, pp 305–329

    Chapter  Google Scholar 

  • Sharma V (2014) 7 Major rice producing states https://www.importantindia.com/10116/major-rice-producing-statesin-India/

  • Sharma P, Pandey S (2014) Status of phytoremediation in world scenario. Int J Environ Bioremed Biodegrad 2(4):178–191. https://doi.org/10.12691/ijebb-2-4-5

  • Sharma KK, Hazarika S, Kalita B, Sharma B (2011) Effect of flaring of natural gas in oil fields of Assam in rice cultivation. J Environ Sci Eng 53(3):289–298

    CAS  PubMed  Google Scholar 

  • Singer AC, Crowley DE, Thompson IP (2003) Secondary plant metabolites in phytoremediation and biotransformation. Trends Biotechnol 21:123–130. https://doi.org/10.1016/S0167-7799(02)00041-0

    Article  CAS  Google Scholar 

  • Soehartono T (1997) Overview of trade in gaharu in Indonesia. In: Report of the third regional workshop of the conservation and sustainable management of trees. WCMC IUCN/SSC, Hanoi, pp 27–33

    Google Scholar 

  • Sutton M, Anderson EN (2010) Introduction to cultural ecology, 2nd edn. Alta Mira Press, Lanham

    Google Scholar 

  • Tilman D, Cassman KG, Matson PA, Naylor R, Polasky S (2002) Agricultural sustainability and intensive production practices. Nature 418:8. https://doi.org/10.1038/nature01014

    Article  CAS  Google Scholar 

  • Towell MG, Bellarby J, Paton GI, Coulon F, Pollard SJT, Semple KT (2011) Mineralisation of target hydrocarbons in three contaminated soils from former refinery facilities. Environ Pollut 159(2):515523. https://doi.org/10.1016/j.envpol.2010.10.015

    Article  CAS  Google Scholar 

  • Udebuani AC, Okoli CI, Nwigwe HC, Ozoh PTE (2012) The value of animal manure in the enhancement of bioremediation processes in petroleum hydrocarbon contaminated agricultural soils. J Agric Technol 8(6):1935–1952

    Google Scholar 

  • Udo EJ, Fayemi AAA (1975) The effect of oil pollution on germination growth and nutrient uptake of corn. J Environ Quality 4:537–540. https://doi.org/10.2134/jeq1975.00472425000400040023x

    Article  CAS  Google Scholar 

  • Udoinyan I, Igboekwe MU (2011) The impacts of seismic activities on marine life and its environment. Int Arch Appl Sci Technol 2(2):1–10

    Google Scholar 

  • Vassilev A, Vangronsveld J, Yordanov I (2002) Cadmium phytoextraction: present state, biological background and research needs. Bulg J Plant Physiol 28:68–95

    Google Scholar 

  • Volk TA, Abrahamson LP, Nowak CA, Smart LB, Tharakan PJ, White EH (2006) The development of short-rotation willow in the northeastern United States for bioenergy and bioproducts, agroforestry and phytoremediation. Biomass Bioenergy 30:715–727. https://doi.org/10.1016/j.biombioe.2006.03.001

    Article  Google Scholar 

  • Vwioko DE, Anoliefo GO, Fashemi SD (2006) Metal concentration in plant tissues of Ricinuscommunis L (Castor oil) grown in soil contaminated with spent lubricating soil. J Appl Environ Manag 10(3):127–134

    Google Scholar 

  • Warra AA, Prasad MNV (2016) Jatropha curcas L cultivation on contaminated: exploring the potential for economic growth and environmental protection. In: Prasad MNV (ed) Bioremediation and bioeconomy. Elsevier, USA, pp 129–147. isbn:978-0-12-802830-8. https://doi.org/10.1016/B978-0-12-802830-8.00007-1

    Chapter  Google Scholar 

  • Wenzel WW, Lombi E, Adriano DC (1999) Biochemical processes in the Rhizosphere: role in phytoremediation of metal polluted soil. In: Prasad MNV, Hagemeyer J (eds) Heavy metal stress in plants: from molecular to ecosystem. Springer, Berlin, pp 273–301

    Chapter  Google Scholar 

  • Yadav R, Arora P, Kumar S, Chaudhury A (2010) Perspectives for genetic engineering of poplars for enhanced phytoremediation abilities. Ecotoxicology 19:1574–1588. https://doi.org/10.1007/s10646-010-0543-7

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The Department of Biotechnology, New Delhi provided principal funding through a grant to HS (BT/489/NE/TBP/2013). MNVP is the collaborator of this twin project and SR received a fellowship from the DBT project at NER center. NFI led the field works for photography. HS and MNVP developed TOC, SR retrieved data from published papers. HS carried out manuscript writing and MNVP edited the photographs and streamlined the manuscript. DS incorporated some aspects of cultural ecology. The authors declare that they have no competing interests.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sharma, D., Sarma, H., Hazarika, S., Islam, N.F., Prasad, M.N.V. (2018). Agro-Ecosystem Diversity in Petroleum and Natural Gas Explored Sites in Assam State, North-Eastern India: Socio-Economic Perspectives. In: Lichtfouse, E. (eds) Sustainable Agriculture Reviews 27. Sustainable Agriculture Reviews, vol 27. Springer, Cham. https://doi.org/10.1007/978-3-319-75190-0_2

Download citation

Publish with us

Policies and ethics