Skip to main content

Substances of Abuse and Hallucinogenic Activity: The Dopaminergic Pathway - Focus on Cocaine and Amphetamine-type Stimulants

  • Chapter
  • First Online:
Hallucinations in Psychoses and Affective Disorders

Abstract

The role of the dopaminergic pathway in drug-induced hallucinations is strictly related to the dopaminergic model of psychosis, which represents a useful heuristic model which aims to explain some aspects of the pathophysiology of psychotic disorders. Some drugs of abuse can induce psychotic symptoms such as hallucinations in healthy subjects, thus representing an experimental model of induced psychosis. The clinical aspects, with a special focus on hallucinations, and primarily the specific molecular mechanisms of cocaine and amphetamine-type stimulants are discussed. Their specific actions as competitive substrates of DAT and the reverse action on VMAT and TAAR1 full agonism with a consequent over-activation of D2 brain receptors in the mesocorticolimbic pathway are examined in depth. The role of genetic polymorphisms such as D2D2, SLC6A3, COMT, Dßh, GSTM1, and VNTR are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fowler JS, Volkow ND, Wang GJ, Gatley SJ, Logan J. ([11])Cocaine: PET studies of cocaine pharmacokinetics, dopamine transporter availability and dopamine transporter occupancy. Nucl Med Biol. 2001;28:561–72.

    Article  PubMed  CAS  Google Scholar 

  2. Schmidt GW, Jirschitzka J, Porta T, Reichelt M, Luck K, Torre JCP, D’Auria JC. The last step in cocaine biosynthesis is catalyzed by a BAHD acyltransferase. Plant Physiol. 2015;167:89–101.

    Article  PubMed  CAS  Google Scholar 

  3. European Drug Report. Trends and developments. 2016. http://www.emcdda.europa.eu/edr2016.

  4. United Nations Office on Drugs and Crime, World Drug Report 2016 (United Nations publication, Sales No. E.16.XI.7).

    Google Scholar 

  5. Roncero C, Daigre C, Gonzalvo B, Valero S, Castells X, Grau-López L, Casas M. Risk factors for cocaine-induced psychosis in cocaine-dependent patients. Eur Psychiatry. 2013;28:141–6.

    Article  PubMed  CAS  Google Scholar 

  6. Roncero C, Ros-Cucurull E, Daigre C, Casas M. Prevalence and risk factors of psychotic symptoms in cocaine-dependent patients. Actas Esp Psiquiatr. 2012;40:187–97.

    PubMed  Google Scholar 

  7. Brady KT, Lydiard RB, Malcolm R, Ballenger JC. Cocaine-induced psychosis. J Clin Psychiatry. 1991;52:509–12.

    PubMed  CAS  Google Scholar 

  8. Roncero C, Daigre C, Grau-López L, Barral C, Pérez-Pazos J, Martínez-Luna N, Casas M. An international perspective and review of cocaine-induced psychosis: a call to action. Subst Abus. 2014;35:321–7.

    Article  PubMed  Google Scholar 

  9. Vergara-Moragues E, Gómez PA, González-Saiz F, Rodríguez-Fonseca F. Cocaine-induced psychotic symptoms in clinical setting. Psychiatry Res. 2014;217:115–20.

    Article  PubMed  CAS  Google Scholar 

  10. Miller NS, Gold MS, Mahler JC. Violent behaviors associated with cocaine use: possible pharmacological mechanisms. Int J Addict. 1991;26:1077–88.

    Article  PubMed  CAS  Google Scholar 

  11. Vorspan F, Brousse G, Bloch V, Bellais L, Romo L, Guillem E, Lépine JP. Cocaine-induced psychotic symptoms in French cocaine addicts. Psychiatry Res. 2012;200:1074–6.

    Article  PubMed  CAS  Google Scholar 

  12. Diagnostic statistical manual of mental disorders. Washington, DC: American Psychiatric Association; 1994. p. 886.

    Google Scholar 

  13. Siegel RK. Cocaine hallucinations. Am J Psychiatry. 1978;135:309–14.

    Article  PubMed  CAS  Google Scholar 

  14. Mitchell J, Vierkant AD. Delusions and hallucinations of cocaine abusers and paranoid schizophrenics: a comparative study. J Psychol. 1991;125:301–10.

    Article  PubMed  CAS  Google Scholar 

  15. Berrios GE. Tactile hallucinations: conceptual and historical aspects. J Neurol Neurosurg Psychiatry. 1982;45:285–93.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Magnan V, Saury M. Trois cas de cocainisme chronique. C R Séances Mem Soc Biol. 1889:60–3.

    Google Scholar 

  17. de Clerambault G. Oeuvre, Tome I. 1909. p. 145–210.

    Google Scholar 

  18. Paillet-Loilier M, Cesbron A, Le Boisselier R, Bourgine J, Debruyne D. Emerging drugs of abuse: current perspectives on substituted cathinones. Subst Abuse Rehabil. 2014;5:37.

    PubMed  PubMed Central  Google Scholar 

  19. Meltzer PC, Butler D, Deschamps JR, Madras BK. 1-(4-Methylphenyl)-2-pyrrolidin-1-yl-pentan-1-one (Pyrovalerone) analogues: a promising class of monoamine uptake inhibitors. J Med Chem. 2006;49:1420–32.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Manepalli S, Surratt CK, Madura JD, Nolan TL. Monoamine transporter structure, function, dynamics, and drug discovery: a computational perspective. AAPS J. 2012;14:820–31.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Kristensen AS, Andersen J, Jorgensen TN, Sorensen L, Eriksen J, Loland CJ, et al. SLC6 neurotransmitter transporters: structure, function, and regulation. Pharmacol Rev. 2011;63:585–640.

    Article  PubMed  CAS  Google Scholar 

  22. Koob GF. Drugs of abuse: anatomy, pharmacology and function of reward pathways. Trends Pharmacol Sci. 1992;13:177–84.

    Article  PubMed  CAS  Google Scholar 

  23. Vaughan RA, Foster JD. Mechanisms of dopamine transporter regulation in normal and disease states. Trends Pharmacol Sci. 2013;34:489–96.

    Article  PubMed  CAS  Google Scholar 

  24. Giros B, Caron MG. Molecular characterization of the dopamine transporter. Trends Pharmacol Sci. 1993;14:43–9. Review.

    Article  PubMed  CAS  Google Scholar 

  25. Volkow ND, Fowler JS, Wang GJ, Baler R, Telang F. Imaging dopamine’s role in drug abuse and addiction. Neuropharmacology. 2009;56:3–8.

    Article  PubMed  CAS  Google Scholar 

  26. Civelli O, Bunzow JR, Grandy DK. Molecular diversity of the dopamine receptors. Annu Rev Pharmacol Toxicol. 1993;33:281–307. Review.

    Article  PubMed  CAS  Google Scholar 

  27. Schmitt KC, Reith ME. Regulation of the dopamine transporter. Ann N Y Acad Sci. 2010;1187:316–40.

    Article  PubMed  CAS  Google Scholar 

  28. Greengard P. The neurobiology of dopamine signaling. Biosci Rep. 2001;21:247–69. Review.

    Article  PubMed  CAS  Google Scholar 

  29. Bergquist F, Shahabi HN, Nissbrandt H. Somatodendritic dopamine release in rat substantia nigra influences motor performance on the accelerating rod. Brain Res. 2003;973:81–91.

    Article  PubMed  CAS  Google Scholar 

  30. Bodea GO, Blaess S. Establishing diversity in the dopaminergic system. FEBS Lett. 2015;589:3773–85. Review.

    Article  PubMed  CAS  Google Scholar 

  31. Massaly N, Morón JA, Al-Hasani R. A trigger for opioid misuse: chronic pain and stress dysregulate the mesolimbic pathway and kappa opioid system. Front Neurosci. 2016;10:480. Review.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Horvitz JC. Mesolimbocortical and nigrostriatal dopamine responses to salient non-reward events. Neuroscience. 2000;96:651–6. Review.

    Article  PubMed  CAS  Google Scholar 

  33. Yetnikoff L, Lavezzi HN, Reichard RA, Zahm DS. An update on the connections of the ventral mesencephalic dopaminergic complex. Neuroscience. 2014;282:23–48.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Buchta WC, Riegel AC. Chronic cocaine disrupts mesocortical learning mechanisms. Brain Res. 2015;1628:88–103.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Li X, Wolf ME. Multiple faces of BDNF in cocaine addiction. Behav Brain Res. 2015;279:240–54.

    Article  PubMed  CAS  Google Scholar 

  36. Cooper S, Robison AJ, Mazei-Robison MS. Reward circuitry in addiction. Neurotherapeutics. 2017;14(3):687–97.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Donnan GA, Kaczmarczyk SJ, Paxinos G, Chilco PJ, Kalnins RM, Woodhouse DG, Mendelsohn FA. Distribution of catecholamine uptake sites in human brain as determined by quantitative [3H] mazindol autoradiography. J Comp Neurol. 1991;304:419–34.

    Article  PubMed  CAS  Google Scholar 

  38. Làdavas E, Zeloni G, Farnè A. Visual peripersonal space centered on the face in humans. Brain. 1998;121:2317–26.

    Article  PubMed  Google Scholar 

  39. Yoo SS, Freeman DK, McCarthy JJ III, Jolesz FA. Neural substrates of tactile imagery: a functional MRI study. Neuroreport. 2003;14:581–5.

    Article  PubMed  Google Scholar 

  40. Broderick PA. Distinguishing effects of cocaine IV and SC on mesoaccumbens dopamine and serotonin release with chloral hydrate anesthesia. Pharmacol Biochem Behav. 1992a;43:929–37.

    Article  PubMed  CAS  Google Scholar 

  41. Broderick PA. Cocaine’s colocalized effects on synaptic serotonin and dopamine in ventral tegmentum in a reinforcement paradigm. Pharmacol Biochem Behav. 1992b;42:889–98.

    Article  PubMed  CAS  Google Scholar 

  42. Huber M, Karner M, Kirchler E, Lepping P, Freudenmann RW. Striatal lesions in delusional parasitosis revealed by magnetic resonance imaging. Prog Neuro-Psychopharmacol Biol Psychiatry. 2008;32:1967–71.

    Article  Google Scholar 

  43. Spealman RD, Bergman J, Madras BK, Kamien JB, Melia KF. Role of D 1 and D 2 dopamine receptors in the behavioral effects of cocaine. Neurochem Int. 1992;20:147–52.

    Article  Google Scholar 

  44. Gerfen CR, Engber TM, Mahan LC, Susel ZVI, Chase TN, Monsma FJ, Sibley DR. D1 and D2 dopamine receptor-regulated gene expression of striatonigral and striatopallidal neurons. Science. 1990;250:1429–32.

    Article  PubMed  CAS  Google Scholar 

  45. Brousse G, Vorspan F, Ksouda K, Bloch V, Peoc’h K, Laplanche JL, et al. Could the inter-individual variability in cocaine-induced psychotic effects influence the development of cocaine addiction?: towards a new pharmacogenetic approach to addictions. Med Hypotheses. 2010;75:600–4.

    Article  PubMed  CAS  Google Scholar 

  46. Cubells JF, Kranzler HR, McCance-Katz E, Anderson GM, Malison RT, Price LH, Gelernter J. A haplotype at the DBH locus, associated with low plasma dopamine [beta]-hydroxylase activity, also associates with cocaine-induced paranoia. Mol Psychiatry. 2000;5:56.

    Article  PubMed  CAS  Google Scholar 

  47. Zabetian CP, Anderson GM, Buxbaum SG, Elston RC, Ichinose H, Nagatsu T, et al. A quantitative-trait analysis of human plasma–dopamine β-hydroxylase activity: evidence for a major functional polymorphism at the DBH locus. Am J Hum Genet. 2001;68:515–22.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Tang Y, Anderson GM, Zabetian CP, Köhnke MD, Cubells JF. Haplotype-controlled analysis of the association of a non-synonymous single nucleotide polymorphism at DBH (+1603C→T) with plasma dopamine β-hydroxylase activity. Am J Med Genet B Neuropsychiatr Genet. 2005;139:88–90.

    Article  Google Scholar 

  49. Kalayasiri R, Sughondhabirom A, Gueorguieva R, Coric V, Lynch WJ, Lappalainen J, et al. Dopamine β-hydroxylase gene (DβH)-1021C→T influences self-reported paranoia during cocaine self-administration. Biol Psychiatry. 2007;61:1310–3.

    Article  PubMed  CAS  Google Scholar 

  50. Gelernter J, Kranzler HR, Satel SL, Rao PA. Genetic association between dopamine transporter protein alleles and cocaine-induced paranoia. Neuropsychopharmacology. 1994;11:195–200.

    Article  PubMed  CAS  Google Scholar 

  51. Ujike H, Katsu T, Okahisa Y, et al. Genetic variants of D2 but not D3 or D4 dopamine receptor gene are associated with rapid onset and poor prognosis of methamphetamine psychosis. Prog Neuro-Psychopharmacol Biol Psychiatry. 2009;33(4):625–9.

    Article  CAS  Google Scholar 

  52. Morton WA. Cocaine and psychiatric symptoms. Prim Care Companion J Clin Psychiatry. 1999;1(4):109.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Willi TS, Barr AM, Gicas K, Lang DJ, Vila-Rodriguez F, Su W, et al. Characterization of white matter integrity deficits in cocaine-dependent individuals with substance-induced psychosis compared with non-psychotic cocaine users. Addict Biol. 2016;22:873–81.

    Article  PubMed  Google Scholar 

  54. Edeleano L. Uebereinige Derivate der Phenylmethacrylsäure und der Phenylisobuttersäure. Eur J Inorg Chem. 1887;20:616–22.

    Google Scholar 

  55. Sulzer D, Sonders MS, Poulsen NW, Galli A. Mechanisms of neurotransmitter release by amphetamines: a review. Prog Neurobiol. 2005;75:406–33.

    Article  PubMed  CAS  Google Scholar 

  56. Berman SM, Kuczenski R, McCracken JT, London ED. Potential adverse effects of amphetamine treatment on brain and behavior: a review. Mol Psychiatry. 2009;14:123.

    Article  PubMed  CAS  Google Scholar 

  57. Biel JH, Bopp BA. Amphetamines: structure-activity relationships. In: Stimulants. Boston, MA: Springer; 1978. p. 1–39.

    Google Scholar 

  58. Weissensteiner R, Steinkellner T, Jurik A, Bulling S, Sandtner W, Kudlacek O, Sitte HH. Towards an understanding of the psychostimulant action of amphetamine and cocaine. In: Sensory perception. Vienna: Springer; 2012. p. 183–203.

    Google Scholar 

  59. Schifano F, Corkery J, Naidoo V, Oyefeso A, Ghodse H. Overview of amphetamine-type stimulant mortality data–UK, 1997–2007. Neuropsychobiology. 2010;61:122–30.

    Article  PubMed  CAS  Google Scholar 

  60. World Health Organization (WHO) Disease Control Priorities Related to Mental, Neurological, Developmental and Substance Abuse Disorders. Disease control priorities project. Geneva: Department of Mental Health and Substance Abuse; 2006.

    Google Scholar 

  61. Clauwaert KM, Van Bocxlaer JF, Els A, VanCalenbergh S, Lambert WE, De Leenheer AP. Determination of the designer drugs 3,4-methylenedioxymethamphetamine, 3,4-methylenedioxyethylamphetamine, and 3,4-methylenedioxyamphetamine with HPLC and fluorescence detection in whole blood, serum, vitreous humor, and urine. Clin Chem. 2000;46:1968–77.

    PubMed  CAS  Google Scholar 

  62. Nichols DE. Differences between the mechanism of action of MDMA, MBDB, and the classic hallucinogens. Identification of a new therapeutic class: entactogens. J Psychoactive Drugs. 1986;18:305–13.

    Article  PubMed  CAS  Google Scholar 

  63. Vollenweider FX, Geyer MA. A systems model of altered consciousness: integrating natural and drug-induced psychoses. Brain Res Bull. 2001;56:495–507.

    Article  PubMed  CAS  Google Scholar 

  64. De la Torre R, Farré M, Roset PN, Pizarro N, Abanades S, Segura M, et al. Human pharmacology of MDMA: pharmacokinetics, metabolism, and disposition. Ther Drug Monit. 2004;26:137–44.

    Article  PubMed  Google Scholar 

  65. Kalant H. The pharmacology and toxicology of “ecstasy” (MDMA) and related drugs. Can Med Assoc J. 2001;165:917–28.

    CAS  Google Scholar 

  66. Cao DN, Shi JJ, Hao W, Wu N, Li J. Advances and challenges in pharmacotherapeutics for amphetamine-type stimulants addiction. Eur J Pharmacol. 2016;780:129–35.

    Article  PubMed  CAS  Google Scholar 

  67. Heal DJ, Smith SL, Gosden J, Nutt DJ. Amphetamine, past and present—a pharmacological and clinical perspective. J Psychopharmacol. 2013;27:479–96.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Bramness JG, Gundersen ØH, Guterstam J, Rognli EB, Konstenius M, Løberg EM, Franck J. Amphetamine-induced psychosis-a separate diagnostic entity or primary psychosis triggered in the vulnerable? BMC Psychiatry. 2012;12:221.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Carvalho M, Carmo H, Costa VM, Capela JP, Pontes H, Remião F, de Lourdes Bastos M. Toxicity of amphetamines: an update. Arch Toxicol. 2012;86:1167–231.

    Article  PubMed  CAS  Google Scholar 

  70. Young D, Scoville WB. Paranoid psychosis in narcolepsy and the possible danger of benzedrine treatment. Med Clin North Am. 1938;22:637–46.

    Article  Google Scholar 

  71. Connell PH. Amphetamine psychosis. Maudsley Monographs Number Five. London: Oxford University Press; 1958.

    Google Scholar 

  72. Ellinwood EH Jr. Amphetamine psychosis. Description of the individuals and process. J Nerv Ment Dis. 1967;144:273–83.

    Article  Google Scholar 

  73. Grant KM, LeVan TD, Wells SM, Li M, Stoltenberg SF, Gendelman HE, Bevins RA. Methamphetamine-associated psychosis. J Neuroimmune Pharmacol. 2012;7:113–39.

    Article  PubMed  Google Scholar 

  74. Kokkinidis L, Anisman H. Amphetamine psychosis and schizophrenia: a dual model. Neurosci Biobehav Rev. 1982;5:449–61.

    Article  Google Scholar 

  75. Dore G, Sweeting M. Drug-induced psychosis associated with crystalline methamphetamine. Australas Psychiatry. 2006;14:86–9.

    Article  PubMed  Google Scholar 

  76. Srisurapanont M, Ali R, Marsden J, Sunga A, Wada K, Monteiro M. Psychotic symptoms in methamphetamine psychotic in-patients. Int J Neuropsychopharmacol. 2003;6:347–52.

    Article  PubMed  Google Scholar 

  77. Zweben JE, Cohen JB, Christian D, Galloway GP, Salinardi M, Parent D, Iguchi M. Psychiatric symptoms in methamphetamine users. Am J Addict. 2004;13:181–90.

    Article  PubMed  Google Scholar 

  78. Martin I, Lampinen TM, McGhee D. Methamphetamine use among marginalized youth in British Columbia. Can J Public Health. 2006;97(4):320–4.

    PubMed  Google Scholar 

  79. McKetin R, McLaren J, Lubman DI, Hides L. The prevalence of psychotic symptoms among methamphetamine users. Addiction. 2006;101:1473–8.

    Article  PubMed  Google Scholar 

  80. McKetin R, Lubman DI, Baker AL, Dawe S, Ali RL. Dose-related psychotic symptoms in chronic methamphetamine users: evidence from a prospective longitudinal study. JAMA Psychiat. 2013;70:319–24.

    Article  Google Scholar 

  81. Bousman CA, McKetin R, Burns R, Woods SP, Morgan EE, Atkinson JH, Grant I. Typologies of positive psychotic symptoms in methamphetamine dependence. Am J Addict. 2014;24:94.

    Article  Google Scholar 

  82. Nakamura M, Koo J. Drug-induced tactile hallucinations beyond recreational drugs. Am J Clin Dermatol. 2016;17:643–52.

    Article  PubMed  Google Scholar 

  83. Rothman RB, Baumann MH, Dersch CM, Romero DV, Rice KC, Carroll FI, Partilla JS. Amphetamine-type central nervous system stimulants release norepinephrine more potently than they release dopamine and serotonin. Synapse. 2001;39:32–41.

    Article  PubMed  CAS  Google Scholar 

  84. Kahlig KM, Binda F, Khoshbouei H, Blakely RD, McMahon DG, Javitch JA, Galli A. Amphetamine induces dopamine efflux through a dopamine transporter channel. Proc Natl Acad Sci U S A. 2005;102:3495–500.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  85. Pérez-Mañá C, Castells X, Torrens M, Capellà D, Farre M. Efficacy of psychostimulant drugs for amphetamine abuse or dependence. The Cochrane Library. 2013.

    Google Scholar 

  86. Partilla JS, Dempsey AG, Nagpal AS, Blough BE, Baumann MH, Rothman RB. Interaction of amphetamines and related compounds at the vesicular monoamine transporter. J Pharmacol Exp Ther. 2006;319:237–46.

    Article  PubMed  CAS  Google Scholar 

  87. Boutrel B, Koob GF. What keeps us awake: the neuropharmacology of stimulants and wakefulness-promoting medications. Sleep. 2004;27:1181–94.

    Article  PubMed  Google Scholar 

  88. Sulzer D, Rayport S. Amphetamine and other psychostimulants reduce pH gradients in midbrain dopaminergic neurons and chromaffin granules: a mechanism of action. Neuron. 1990;5:797–808.

    Article  PubMed  CAS  Google Scholar 

  89. Tucker KR, Block ER, Levitan ES. Action potentials and amphetamine release antipsychotic drug from dopamine neuron synaptic VMAT vesicles. Proc Natl Acad Sci. 2015;112:4485–94.

    Article  Google Scholar 

  90. Sitte HH, Freissmuth M. The reverse operation of Na+/Cl−-coupled neurotransmitter transporters–why amphetamines take two to tango. J Neurochem. 2010;112:340–55.

    Article  PubMed  CAS  Google Scholar 

  91. Ramamoorthy S, Blakely RD. Phosphorylation and sequestration of serotonin transporters differentially modulated by psychostimulants. Science. 1999;285:763–6.

    Article  PubMed  CAS  Google Scholar 

  92. Cervinski MA, Foster JD, Vaughan RA. Psychoactive substrates stimulate dopamine transporter phosphorylation and down-regulation by cocaine-sensitive and protein kinase C-dependent mechanisms. J Biol Chem. 2005;280(49):40442–9.

    Article  PubMed  CAS  Google Scholar 

  93. Green AR, Mechan AO, Elliott JM, O’Shea E, Colado MI. The pharmacology and clinical pharmacology of 3,4-methylenedioxymethamphetamine (MDMA, “ecstasy”). Pharmacol Rev. 2003;55:463–508.

    Article  PubMed  CAS  Google Scholar 

  94. Capela JP, Carmo H, Remião F, Bastos ML, Meisel A, Carvalho F. Molecular and cellular mechanisms of ecstasy-induced neurotoxicity: an overview. Mol Neurobiol. 2009;39(3):210–71.

    Article  PubMed  CAS  Google Scholar 

  95. Yamamoto BK, Moszczynska A, Gudelsky GA. Amphetamine toxicities: classical and emerging mechanisms. Ann N Y Acad Sci. 2010;1187:101–21.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  96. Robertson SD, Matthies HJG, Galli A. A closer look at amphetamine-induced reverse transport and trafficking of the dopamine and norepinephrine transporters. Mol Neurobiol. 2009;39:73–80.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  97. Howell LL, Kimmel HL. Monoamine transporters and psychostimulant addiction. Biochem Pharmacol. 2008;75:196–217.

    Article  PubMed  CAS  Google Scholar 

  98. Zahniser NR, Sorkin A. Trafficking of dopamine transporters in psychostimulant actions. Semin Cell Dev Biol. 2009;20(4):411–7.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  99. Mantle TJ, Tipton KF, Garrett NJ. Inhibition of monoamine oxidase by amphetamine and related compounds. Biochem Pharmacol. 1976;25:2073–7.

    Article  PubMed  CAS  Google Scholar 

  100. Mattay VS, Goldberg TE, Fera F, Hariri AR, Tessitore A, Egan MF, Kolachana B, Callicott JH, Weinberger DR. Catechol O-methyltransferase val158-met genotype and individual variation in the brain response to amphetamine. Proc Natl Acad Sci U S A. 2003;100:6186–91.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  101. Hashimoto T, Hashimoto K, Matsuzawa D, et al. A functional glutathione S-transferase P1 gene polymorphism is associated with methamphetamine-induced psychosis in Japanese population. Am J Med Genet B Neuropsychiatr Genet. 2005;135(1):5–9.

    Article  Google Scholar 

  102. Ujike H, Harano M, Inada T, et al. Nine- or fewer repeat alleles in VNTR polymorphism of the dopamine transporter gene is a strong risk factor for prolonged methamphetamine psychosis. Pharmacogenomics J. 2003;3:242–7.

    Article  PubMed  CAS  Google Scholar 

  103. Hsieh JH, Stein DJ, Howells FM. The neurobiology of methamphetamine induced psychosis. Front Hum Neurosci. 2014;8:537.

    Article  PubMed  PubMed Central  Google Scholar 

  104. Lloyd SA, Corkill B, Bruster MC, Roberts RL, Shanks RA. Chronic methamphetamine exposure significantly decreases microglia activation in the arcuate nucleus. J Chem Neuroanat. 2017;82:5–11.

    Article  PubMed  CAS  Google Scholar 

  105. Laruelle M, Abi-Dargham A, van Dyck CH, Rosenblatt W, Zea-Ponce Y, Zoghbi SS, et al. SPECT imaging of striatal dopamine release after amphetamine challenge. J Nucl Med. 1995;36:1182–90.

    PubMed  CAS  Google Scholar 

  106. Drevets WC, Gautier C, Price JC, Kupfer DJ, Kinahan PE, Grace AA, et al. Amphetamine-induced dopamine release in human ventral striatum correlates with euphoria. Biol Psychiatry. 2001;49:81–96.

    Article  PubMed  CAS  Google Scholar 

  107. Aoki Y, Orikabe L, Takayanagi Y, Yahata N, Mozue Y, Sudo Y, Ishii T, Itokawa M, Suzuki M, Kurachi M, Okazaki Y. Volume reductions in frontopolar and left perisylvian cortices in methamphetamine induced psychosis. Schizophr Res. 2013;147:355–61.

    Article  PubMed  Google Scholar 

  108. Orikabe L, Yamasue H, Inoue H, Takayanagi Y, Mozue Y, Sudo Y, Okazaki Y. Reduced amygdala and hippocampal volumes in patients with methamphetamine psychosis. Schizophr Res. 2011;132:183–9.

    Article  PubMed  Google Scholar 

  109. Uhlmann A, Fouche JP, Koen N, Meintjes EM, Wilson D, Stein DJ. Fronto-temporal alterations and affect regulation in methamphetamine dependence with and without a history of psychosis. Psychiatry Res Neuroimaging. 2016;248:30–8.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This chapter was supported by a grant from the AIFA (Proposal AIFA-2016-02364852).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paolo Brambilla .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lazzaretti, M., Mandolini, G.M., Altamura, A.C., Brambilla, P. (2018). Substances of Abuse and Hallucinogenic Activity: The Dopaminergic Pathway - Focus on Cocaine and Amphetamine-type Stimulants. In: Brambilla, P., Mauri, M., Altamura, A. (eds) Hallucinations in Psychoses and Affective Disorders. Springer, Cham. https://doi.org/10.1007/978-3-319-75124-5_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-75124-5_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-75123-8

  • Online ISBN: 978-3-319-75124-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics