Skip to main content

Application of Advanced Cutting Technologies to Micro- and Nano-Manufacturing

  • Chapter
  • First Online:
Advanced Noncontact Cutting and Joining Technologies

Part of the book series: Mechanical Engineering Series ((MES))

  • 890 Accesses

Abstract

In the last two decades, products have been revolutionised by making them smaller, lighter and even more compact. Some of the requirements for making products smaller and lighter were borne out of the necessity to reduce global warming through the reduction of fuel consumption in moving parts (transportation industries). Also, the bulkiness of products in the past was partly as a result of manufacturing limitations, that is, unavailability of suitable manufacturing process to fabricate the smaller product. Miniaturisation has gained popularity in every areas of human endeavour, ranging from laboratory instruments which were once gigantic and can now fit into one’s palm (becoming handheld). The push towards miniaturisation is constantly being pursued in the research community through the development of manufacturing technology that promotes miniaturisation pursuit as well as constant development of these technologies. Advanced cutting technologies take a significant role in achieving miniaturised components since manufacturing these micro- and nano-components relied heavily on effective cutting processes. In this chapter, micro- and nano-machining using various advanced cutting processes that were presented in Chaps. 25 in this book is presented. A number of research works have appeared in the literature on these interesting areas of research and some of them are presented in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Y. Liu, D. Zhu, Y. Zeng, H. Yu, Development of microelectrodes for electrochemical micromachining. Int. J. Adv. Manuf. Technol. 55, 195–203 (2011)

    Article  Google Scholar 

  2. R. Thanigaivelan, R.M. Arunachalam, P. Drukpa, Drilling of micro-holes on copper using electrochemical micromachining. Int. J. Adv. Manuf. Technol. 61, 1185–1190 (2012)

    Article  Google Scholar 

  3. E.-S. Lee, J.-W. Park, Y.-H. Moon, A study on electrochemical micromachining for fabrication of microgrooves in an air-lubricated hydrodynamic bearing. Int. J. Adv. Manuf. Technol. 20, 720–726 (2002)

    Article  Google Scholar 

  4. X. Zhang, N. Qu, X. Fang, Sandwich-like electrochemical micromachining of micro-dimples using a porous metal cathode. Surf. Coat. Technol. 311, 357–364 (2017)

    Article  Google Scholar 

  5. V.M. Volgin, V.V. Lyubimov, I.V. Gnidina, A.D. Davydov, T.B. Kabanov, Effect of current efficiency on electrochemical micromachining by moving electrode. Procedia CIRP 55, 65–70 (2016)

    Article  Google Scholar 

  6. Y. Ye, H. Lianhuan, H. Di, S. Jian-Jia, T. Zhong-Qun, T. Zhao-Wu, Z. Dongping, Electrochemical micromachining under mechanical motion mode. Electrochim. Acta 183, 3–7 (2015)

    Article  Google Scholar 

  7. W. Liu, S. Ao, Y. Li, Z. Liu, Z. Luo, Z. Wang, R. Song, Modeling and fabrication of microhole by electrochemical micromachining using retracted tip tool. Precis. Eng. 50, 77–84 (2017)

    Article  Google Scholar 

  8. K.M. Cole, D.W. Kirk, C.V. Singh, S.J. Thorpe, Optimizing electrochemical micromachining parameters for Zr-basedbulk metallic glass. J. Manuf. Process. 25, 227–234 (2017)

    Article  Google Scholar 

  9. S.S. Anasane, B. Bhattacharyya, Experimental investigation into micromilling of microgrooves ontitanium by electrochemical micromachining. J. Manuf. Process. 28 (, 285–294 (2017)

    Article  Google Scholar 

  10. K. Wang, Q. Zhang, G. Zhu, Q. Liu, Y. Huang, Experimental study on micro electrical discharge machining with helical electrode. Int. J. Adv. Manuf. Technol. 93, 2639–2645 (2017)

    Article  Google Scholar 

  11. K. Wang, Q. Zhang, Q. Liu, G. Zhu, J. Zhang, Experimental study on micro electrical discharge machining of porous stainless steel. Int. J. Adv. Manuf. Technol. 90, 2589–2595 (2017)

    Article  Google Scholar 

  12. H.K. Yoo, W.T. Kwon, S. Kang, Development of a new electrode for micro-electrical discharge machining (EDM) using Ti(C,N)-based cermet. Int. J. Precis. Eng. Manuf. 15(4), 609–616 (2014)

    Article  Google Scholar 

  13. G.S. Prihandana, M. Mahardika, M. Hamdi, Y.S. Wong, K. Mitsui, Accuracy improvement in nanographite powder-suspended dielectric fluid for micro-electrical discharge machining processes. Int. J. Adv. Manuf. Technol. 56, 143–149 (2011)

    Article  Google Scholar 

  14. S. Skoczypiec, A. Ruszaj, A sequential electrochemical–electrodischarge process for micropart manufacturing. Precis. Eng. 38, 680–690 (2014)

    Article  Google Scholar 

  15. L. Raju, S.S. Hiremath, A state-of-the-art review on micro electro-discharge machining. Procedia Technol. 25, 1281–1288 (2016)

    Article  Google Scholar 

  16. K.P. Rajurkar, M.M. Sundaram, A.P. Malshe, Review of electrochemical and electrodischarge machining. Procedia CIRP 6, 13–26 (2013)

    Article  Google Scholar 

  17. J. Forneris, A. Battiato, D. Gatto Monticone, F. Picollo, G. Amato, L. Boarino, G. Brida, I.P. Degiovanni, E. Enrico, M. Genovese, E. Moreva, P. Traina, C. Verona, G. Verona Rinati, P. Olivero, Electroluminescence from a diamond device with ion-beam-micromachined buried graphitic electrodes. Nucl. Inst. Methods Phys. Res. B 348, 187–190 (2015)

    Article  Google Scholar 

  18. L.-C. Chao, C.-C. Ye, Y.-P. Chen, H.-Z. Yu, Facile fabrication of ZnO nanowire-based UV sensors by focused ion beam micromachining and thermal oxidation. Appl. Surf. Sci. 282, 384–389 (2013)

    Article  Google Scholar 

  19. F. Nesprias, M. Venturino, M.E. Debray, J. Davidson, M. Davidson, A.J. Kreiner, D. Minsky, M. Fischer, A. Lamagn, Heavy ion beam micromachining on LiNbO3. Nucl. Inst. Methods Phys. Res. B 267, 69–73 (2009)

    Article  Google Scholar 

  20. F. Yongqi, N.K.A. Bryan, O.N. Shing, H.N.P. Wyan, Influence analysis of dwell time on focused ion beam micromachining in silicon. Sens. Actuators 79, 230–234 (2000)

    Article  Google Scholar 

  21. H. Yang, S. Rachev, Focused Ion Beam Micro Machining and Micro Assembly. IPAS, ed. by S. Ratchev, IFIP AICT 315, 2010, pp. 81–86

    Google Scholar 

  22. S.S. Singh, P.K. Baruah, A. Khare, S.N. Joshi, Effect of laser beam conditioning on fabrication of clean micro-channel on stainless steel 316L using second harmonic of Q-switched Nd:YAG laser. Opt. Laser Technol. 99, 107–117 (2018)

    Article  Google Scholar 

  23. J. Lehr, A.-M. Kietzig, Production of homogenous micro-structures by femtosecond laser micro-machining. Opt. Laser Eng. 57, 121–129 (2014)

    Article  Google Scholar 

  24. S.W. Lee, H.S. Shin, C.N. Chu, Fabrication of micro-pin array with high aspect ratio on stainless steel using nanosecond laser beam machining. Appl. Surf. Sci. 264, 653–663 (2013)

    Article  Google Scholar 

  25. K.T. Paula, G. Gaál, G.F.B. Almeida, M.B. Andrade, M.H.M. Facure, D.S. Correa, A. Riul Jr., V. Rodrigues, C.R. Mendonça, Femtosecond laser micromachining of polylactic acid/graphene composites for designing interdigitated microelectrodes for sensor applications. Opt. Laser Technol. 101, 74–79 (2018)

    Article  Google Scholar 

  26. G. Petzold, P. Siebert, J. Mu¨ller. A micromachined electron beam ion source. Sens. Actuators B 67, 101–111 (2000)

    Article  Google Scholar 

  27. L. Wang, J. Tang, Q.-A. Huang, Gamma and electron beam irradiation effects on the resistance of micromachined polycrystalline silicon beams. Sens. Actuators A 177, 99–104 (2012)

    Article  Google Scholar 

  28. R. Malhotra, I. Saxena, K. Ehmann, J. Cao, Laser-induced plasma micro-machining (LIPMM) for enhanced productivity and flexibility in laser-based micro-machining processes. CIRP Ann. Manuf. Technol. 62, 211–214 (2013)

    Article  Google Scholar 

  29. I. Saxena, S. Wolff, J. Cao, Unidirectional magnetic field assisted laser induced plasma micro-machining. Manuf. Lett. 3, 1–4 (2015)

    Article  Google Scholar 

  30. G. Shang, H. Han, Recent advances in micro- and nano-machining technologies. Front. Mech. Eng. 12(1), 18–32 (2017)

    Article  Google Scholar 

  31. W. Wu, W. Li, F. Fang, Z.W. Xu, Micro tools fabrication by focused ion beam technology, in Handbook of Manufacturing Engineering and Technology, ed. by A. Y. C. Nee (Ed), (Springer-Verlag, London, 2015), pp. 1473–1511

    Google Scholar 

  32. M. Ganesh, A. Sidpara, S. Deb, Fabrication of micro-cutting tools for mechanical micro-machining, in Advanced Manufacturing Technologies, Materials Forming, Machining and Tribology, ed. by K. Gupta (Ed), (Springer International Publishing AG, Cham, 2017), pp. 3–20

    Google Scholar 

  33. K. Das, J.B. Freund, H.T. Johnson, Erosive-thermal transition in high-flux focused ion beam nanomachining of surfaces. Ext. Mech. Lett. 7, 121–125 (2016)

    Article  Google Scholar 

  34. S. Mishra, V. Yadava, Laser beam micromachining (LBMM)—a review. Opt. Laser Eng. 73, 89–122 (2015)

    Article  Google Scholar 

  35. T. Otani, L. Herbst, M. Heglin, S.V. Govorkov, A.O. Wiessner, Microdrilling and micromachining with diode-pumped solid-state lasers. Appl. Phys. A Mater. Sci. Process. 79, 1335–1339 (2004)

    Article  Google Scholar 

  36. M.S. Cheema, A. Dvivedi, A.K. Sharma, Tool wear studies in fabrication of microchannels in ultrasonic micromachining. Ultrasonics 57, 57–64 (2015)

    Article  Google Scholar 

  37. M.S. Cheema, P.K. Singh, O. Tyagi, A. Dvivedi, A.K. Sharma, Tool wear and form accuracy in ultrasonically machined microchannels. Measurement 81, 85–94 (2016)

    Article  Google Scholar 

  38. W. Pei, Z. Yu, J. Li, C. Ma, W. Xu, X. Wang, W. Natsu, Influence of abrasive particle movement in micro USM. Procedia CIRP 6, 551–555 (2013)

    Article  Google Scholar 

  39. Z. Yu, X. Hu, K.P. Rajurkar, Influence of debris accumulation on material removal and surface roughness in micro ultrasonic machining of silicon. Ann. CIRP 55(1), 201–204 (2006)

    Article  Google Scholar 

  40. K. Egashira, T. Masuzawa, Microultrasonic machining by the application of workpiece vibration. CIRP Ann. Manuf. Technol. 48(1), 131–134 (1999)

    Article  Google Scholar 

  41. H. Onikura, O. Ohnishi, Y. Take, Fabrication of micro carbide tools by ultrasonic vibration grinding. Ann. CIRP 49(1), 257–260 (2000)

    Article  Google Scholar 

  42. H. Li, J. Wang, N. Kwok, T. Nguyen, G.H. Yeoh, A study of the micro-hole geometry evolution on glass by abrasive air-jet micromachining. J. Manuf. Proc. 31, 156–161 (2018)

    Article  Google Scholar 

  43. H. Getu, J.K. Spelt, M. Papini, Thermal analysis of cryogenically assisted abrasive jet micromachining of PDMS. Int. J. Mach. Tool. Manuf. 51(9), 721–730 (2011)

    Article  Google Scholar 

  44. M.R. Sookhak Lari, A. Ghazavi, M. Papini, A rotating mask system for sculpting of three-dimensional features using abrasive jet micro-machining. J. Mat. Process. Technol. 243, 62–74 (2017)

    Article  Google Scholar 

  45. R.H.M. Jafar, V. Hadavi, J.K. Spelt, M. Papini, Dust reduction in abrasive jet micro-machining using liquid films. Powder Technol. 301, 1270–1274 (2016)

    Article  Google Scholar 

  46. A. Nouhi, M.R. Sookhak Lari, J.K. Spelt, M. Papini, Implementation of a shadow mask for direct writing in abrasive jetmicro-machining. J. Mater. Process. Technol. 223, 232–239 (2015)

    Article  Google Scholar 

  47. D.S. Miller, Micromachining with abrasive waterjets. J. Mater. Process. Technol. 149(1–3), 37–42 (2004)

    Article  Google Scholar 

  48. H.-T. Liu, Waterjet technology for machining fine features pertaining to micromachining. J. Manuf. Process. 12, 8–18 (2010)

    Article  Google Scholar 

  49. J. Schwartzentruber, M. Papini, Abrasive waterjet micro-piercing of borosilicate glass. J. Mater. Process. Technol. 219, 143–154 (2015)

    Article  Google Scholar 

  50. A. Ghobeity, M. Papini, J.K. Spelt, Computer simulation of particle interference in abrasive jet micromachining. Wear 263(1–6), 265–269 (2007)

    Article  Google Scholar 

  51. A. Ghobeity, D. Ciampini, M. Papini, An analytical model of the effect of particle size distribution on the surface profile evolution in abrasive jet micromachining. J. Mater. Process. Technol. 209(20), 6067–6077 (2009)

    Article  Google Scholar 

  52. H. Getu, A. Ghobeity, J.K. Spelt, M. Papini, Abrasive jet micromachining of polymethylmethacrylate. Wear 263(7–12), 1008–1015 (2007)

    Article  Google Scholar 

  53. A. Ghobeity, T. Krajac, T. Burzynski, M. Papini, J.K. Spelt, Surface evolution models in abrasive jet micromachining. Wear 264(3–4), 185–198 (2008)

    Article  Google Scholar 

  54. V. Tangwarodomnukun, J. Wang, C.Z. Huang, H.T. Zhu, Heating and material removal process in hybrid laser-waterjet ablation of silicon substrates. Int. J. Mach. Tool Manuf. 79, 1–16 (2014)

    Article  Google Scholar 

  55. W. Charee, V. Tangwarodomnukun, C. Dumkum, Ultrasonic-assisted underwater laser micromachining of silicon. J. Mater. Process. Technol. 231, 209–220 (2016)

    Article  Google Scholar 

  56. P. Pawar, R. Ballav, A. Kumar, Micromachining of borosilicate glass: a state of art review. Mater. Today Proceed. 4(2, Part A), 2813–2821 (2017)

    Article  Google Scholar 

  57. A. Schorderet, E. Deghilage, K. Agbeviade, Tool type and hole diameter influence in deep ultrasonic drilling of micro-holes in glass. Procedia CIRP 6, 565–570 (2013)

    Article  Google Scholar 

  58. G. Zhang, J. Guo, W. Ming, Y. Huang, X. Shao, Z. Zhang, Study of the machining process of nano-electrical discharge machining based on combined atomistic-continuum modeling method. Appl. Surf. Sci. 290, 359–367 (2014)

    Article  Google Scholar 

  59. M. Kunieda, A. Hayasaka, X.D. Yang, S. Sano, I. Araie, Study on nano EDM using capacity coupled pulse generator. CIRP Ann. Manuf. Technol. 56, 213–216 (2007)

    Article  Google Scholar 

  60. K. Egashira, Y. Morita, Y. Hattori, Electrical discharge machining of submicron holes using ultrasmall-diameter electrodes. Precis. Eng. 34, 139–144 (2010)

    Article  Google Scholar 

  61. A.P. Malshe, K. Virwani, K.P. Rajurkar, D. Deshpande, Investigation of nanoscale electro machining (nano-EM) in dielectric oil. CIRP Ann. Manuf. Technol. 54, 175–178 (2005)

    Article  Google Scholar 

  62. J.-C. Huang, C.-M. Chen, The study on the atomic force microscopy base nanoscale electrical discharge machining. Scanning 34, 191–199 (2012)

    Article  Google Scholar 

  63. K.R. Virwani, A.P. Malshe, K.P. Rajurkar, Understanding sub-20 nm breakdown behavior of liquid dielectrics. Phys. Rev. Lett. 99, 017601 (2007)

    Article  Google Scholar 

  64. K.R. Virwani, A.P. Malshe, K.P. Rajurkar, Understanding dielectric breakdown and related tool wear characteristics in nanoscale electro-machining process. CIRP Ann. Manuf. Technol. 56, 217–220 (2007)

    Article  Google Scholar 

  65. V.K. Jain, Magnetic field assisted abrasive based micro-/nano-finishing. J. Mater. Process. Technol. 209(20), 6022–6038 (2009)

    Article  Google Scholar 

  66. L. Xu, C. Zhao, Nanometer-scale accuracy electrochemical micromachining with adjustable inductance. Electrochim. Acta 248, 75–78 (2017)

    Article  Google Scholar 

  67. Y. Wen, F. Wang, H. Yu, P. Li, L. Liu, W.J. Li, Laser-nanomachining by microsphere induced photonic nanojet. Sens. Actuators A Phys. 258, 115–122 (2017)

    Article  Google Scholar 

  68. Jia Deng, Li Zhang, Jingyan Dong, Paul H. Cohen, AFM-based 3D nanofabrication using ultrasonic vibration assisted nanomachining, In J. Manuf. Process. , 24, (Part 1), 2016, 195-202

    Google Scholar 

  69. J. Deng, J. Dong, P. Cohen, High rate 3D nanofabrication by AFM-based ultrasonic vibration assisted nanomachining. Procedia Manuf. 5, 1283–1294 (2016)

    Article  Google Scholar 

  70. J. Deng, L. Zhang, J. Dong, P.H. Cohen, AFM-based 3D nanofabrication using ultrasonic vibration assisted nanomachining. Procedia Manuf. 1, 584–592 (2015)

    Article  Google Scholar 

  71. J. Shi, L. Liu, P. Yu, Y. Cong, G. Li, Phase shifting-based debris effect detection in USV-assisted AFM nanomachining. Appl. Surf. Sci. 413, 317–326 (2017)

    Article  Google Scholar 

  72. A. Rodríguez, M.C. Morant-Miñana, A. Dias-Ponte, M. Martínez-Calderón, M. Gómez-Aranzadi, S.M. Olaizola, Femtosecond laser-induced periodic surface nanostructuring of sputtered platinum thin films. Appl. Surf. Sci. 351, 135–139 (2015)

    Article  Google Scholar 

  73. J. Wood, Nanomachining with fast laser pulses: fabrication and processing. Mater. Today 7(7–8), 21 (2004)

    Google Scholar 

Download references

Acknowledgments

This work was supported by the University of Johannesburg research council (URC) fund and University of Ilorin.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mahamood, R.M., Akinlabi, E.T. (2018). Application of Advanced Cutting Technologies to Micro- and Nano-Manufacturing. In: Advanced Noncontact Cutting and Joining Technologies. Mechanical Engineering Series. Springer, Cham. https://doi.org/10.1007/978-3-319-75118-4_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-75118-4_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-75117-7

  • Online ISBN: 978-3-319-75118-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics