Skip to main content

Skeletal Tissue and Ovarian Function: Puberty and Menopause

  • Chapter
  • First Online:
Multidisciplinary Approach to Osteoporosis

Abstract

The main sources of estrogens (E) are ovarian secretion (the major source) and peripheral conversion from androgens (the minor source) in premenopausal women, whereas in postmenopausal women, E derive only from peripheral conversion. E play a central role not only in female reproduction but also in the skeletal homeostasis, in the regulation of bone mass during puberty, adult life, and menopause. E have multiple functions on the bone and other cells related to the bone such as chondrocytes and cells of the immune system. Normally, E suppress osteoclastogenesis in the trabecular bone, increase osteoblastogenesis on endocortical surface and reduce osteoblastogenesis on periosteum of cortical bone, reduce apoptosis of osteocytes, and decrease T- and B-cell activation with consequent inhibition of osteoclastogenesis. Additionally, they possess antioxidant properties, protecting bone cells from oxidative stress, and participate in intestinal calcium absorption and renal conservation. During puberty, E enhance bone formation through direct and indirect mechanism. After reaching the peak of bone mass, E cease growth, maintaining balance between bone formation and resorption. After menopause, E decline leads to rapid bone loss due to increased bone resorption that is followed by slow bone loss associated predominantly with aging processes. In this latter phase, E worsen age-related changes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Riggs BL, Khosla S, Melton LJ III. Sex steroids and the construction and conservation of the adult skeleton. Endocr Rev. 2002;23:279–302.

    Article  CAS  PubMed  Google Scholar 

  2. Melmed S, Polonsky KS, Larsen PR, Kronenberg HM. Williams textbook of endocrinology. In: Bulun SE, editor. Physiology and pathology of female reproductive axis. 12th ed. Philadelphia: Elsevier; 2011. p. 581–644.

    Google Scholar 

  3. Manolagas SС, O’Brien CA, Almeida M. The role of estrogen and androgen receptors in bone health and disease. Nat Rev Endocrinol. 2013;9:699–712.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Martin-Millan M, Almeida M, Ambrogini E, Han L, Zhao H, Weinstein RS, Jilka RL, O’Brien CA, Manolagas SC. The estrogen receptor α in osteoclasts mediates the protective effects of estrogens on cancellous but not cortical bone. Mol Endocrinol. 2010;24:323–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Mori G, D’Amelio P, Faccio R, Brunetti G. Bone-immune cell crosstalk: bone diseases. J Immunol Res. 2015;2015:108451. https://doi.org/10.1155/2015108451.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Nicks KM, Fowler TW, Gaddy D. Reproductive hormones and bone. Curr Osteoporos Rep. 2010;8:60–7.

    Article  PubMed  Google Scholar 

  7. Chappell PE, Lydon JP, Conneely OM, O’Malley BW, Levine JE. Endocrine defects in mice carrying a null mutation for the progesterone receptor gene. Endocrinology. 1997;138:4147–52.

    Article  CAS  PubMed  Google Scholar 

  8. Nicks KM, Perrien DS, Akel NS, Suva LJ, Gaddy D. Regulation of osteoblastogenesis and osteoclastogenesis by the other reproductive hormones, activinand inhibin. Mol Cell Endocrino. 2009;310:11–20.

    Article  CAS  Google Scholar 

  9. Perrien DS, Akel NS, Edwards PK, Carver AA, Bendre MS, Swain FL, Skinner RA, Hogue WR, Nicks KM, Pierson TM, Suva LJ, Gaddy D. Inhibin A is an endocrine stimulator of bone mass and strength. Endocrinology. 2007;148:1654–65.

    Article  CAS  PubMed  Google Scholar 

  10. Melmed S, Polonsky KS, Larsen PR, Kronenberg HM. Williams textbook of endocrinology. In: Styne DM, Grumbach MM, editors. Puberty: ontogeny, neuroendocrinology, physiology, and disorders. 12th ed. Philadelphia: Elsevier; 2011. p. 1055–108.

    Google Scholar 

  11. Weaver CM, Gordon CM, Janz KF, et al. The National Osteoporosis Foundation’s position statement on peak bone mass development and lifestyle factors: a systematic review and implementation recommendations. Osteoporos Int. 2016;27:1281–386.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Berger C, Goltzman D, Langsetmo L, Joseph L, Jackson S, Kreiger N, Tenenhouse A, Davison KS, Josse RG, Prior JC, Hanley DA. Peakbonemassfromlongitudinal data: implications for the prevalence, pathophysiology, and diagnosis of osteoporosis. J Bone Miner Res. 2010;25:1948–57.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Manolagas SC. Fromestrogen-centric to aging and oxidative stress: a revised perspective of the pathogenesis of osteoporosis. Endocr Rev. 2010;31(3):266–300.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Lean JM, Davies JT, Fuller K, Jagger CJ, Kirstein B, Partington GA, Urry ZL, Chambers TJ. A crucial role forthiolantioxidantsinestrogen-deficiencyboneloss. J Clin Invest. 2003;112:915–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Muthusami S, Ramachandran I, Muthusamy B, Vasudevan G, Prabhu V, Subramaniam V, Jagadeesan A, Narasimhan S. Ovariectomyinducesoxidativestressandimpairsbone antioxidantsysteminadultrats. Clin Chim Acta. 2005;360:81–6.

    Article  CAS  PubMed  Google Scholar 

  16. Almeida M, Han L, Martin-Millan M, Plotkin LI, Stewart SA, Roberson PK, Kousteni S, O’Brien CA, Bellido T, Parfitt AM, Weinstein RS, Jilka RL, Manolagas SC. Skeletal involution by age-associated oxidative stress and its acceleration by loss of sex steroids. J Biol Chem. 2007;282:27285–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Rizzoli R, Adachi JD, Cooper C, et al. Management of glucocorticoid-induced osteoporosis. Calcif Tissue Int. 2012;91:225–43.

    Article  CAS  PubMed  Google Scholar 

  18. Gathercole LL, Lavery GG, Morgan SA, et al. 11β-hydroxysteroid dehydrogenase 1: translational and therapeutic aspects. Endocr Rev. 2013;34(4):525–55.

    Article  CAS  PubMed  Google Scholar 

  19. Diaz de Barboza G, Guizzardi S, Tolosa de Talamoni N. Molecular aspects of intestinal calcium absorption. World J Gastroenterol. 2015;21(23):7142–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Annamaria Colao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Colao, A., Di Somma, C., Zhukouskaya, V.V. (2018). Skeletal Tissue and Ovarian Function: Puberty and Menopause. In: Lenzi, A., Migliaccio, S. (eds) Multidisciplinary Approach to Osteoporosis. Springer, Cham. https://doi.org/10.1007/978-3-319-75110-8_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-75110-8_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-75108-5

  • Online ISBN: 978-3-319-75110-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics