Skip to main content

Adrenal Function and Skeletal Regulation

  • Chapter
  • First Online:
Multidisciplinary Approach to Osteoporosis

Abstract

The hormones produced by the adrenal gland have important effects on the bone both in physiological and pathological conditions. The role of cortisol secretion on the bone physiology during growth is not fully understood. During the adult life, the degree of the cortisol secretion, still in the normal range, seems to directly correlate with the bone mineral density in elderly individuals and in osteoporotic women. The overt and subclinical cortisol excess leads to an increased risk of fracture partially independent of the bone mineral density reduction and possibly related to a reduced bone quality. The individual sensitivity to cortisol due to the different polymorphisms of the glucocorticoid receptor (GR) or of the 11β-hydroxysteroid dehydrogenase may modulate the effect of glucocorticoids (GCs) on the bone, thus explaining, at least in part, the wide interindividual variability of the skeletal consequences of the hypercortisolism. The adrenal androgens excess in congenital adrenal hyperplasia (CAH) importantly affects the bone, leading not only to an early growth acceleration but to a reduction in the final adult height. On the other hand, the reduction of the adrenal androgens during aging has been considered among the pathophysiological mechanisms of the osteoporosis in the elderly, but the effects of the restoration of the androgen levels in the aging-related osteoporosis are conflicting. Finally, the presence of mineralocorticoid receptors has been demonstrated in osteoblast, osteoclast, and osteocyte, and an association exists between indexes of bone strength and some genes involved in aldosterone pathways. In keeping, the condition of hyperaldosteronism has been associated with an increased fracture risk.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hardy R, Cooper MS. Adrenal gland and bone. Arch Biochem Biophys. 2010;503:137–45.

    Article  CAS  PubMed  Google Scholar 

  2. Clarke BL, Khosla S. Androgens and bone. Steroids. 2009;74:296–305.

    Article  CAS  PubMed  Google Scholar 

  3. Chiodini I, Eller Vainicher C, Morelli V, Palmieri S, Cairoli E, Salcuni AS, Copetti M, Scillitani A. Mechanisms in endocrinology: endogenous subclinical hypercortisolism and bone: a clinical review. Eur J Endocrinol. 2016;175(6):R265–82.

    Article  CAS  PubMed  Google Scholar 

  4. Osella G, Ventura M, Ardito A, Allasino B, Termine A, Saba L, Vitetta R, Terzolo M, Angeli A. Cortisol secretion, bone health, and bone loss: a cross-sectional and prospective study in normal non-osteoporotic women in the early postmenopausal period. Eur J Endocrinol. 2012;166:855–60.

    Article  CAS  PubMed  Google Scholar 

  5. Cetin A, Gökçe-Kutsal Y, Celiker R. Predictors of bone mineral density in healthy males. Rheumatol Int. 2001;21:85–8.

    Article  CAS  PubMed  Google Scholar 

  6. Zhukouskaya VV, Eller-Vainicher C, Gaudio A, Cairoli E, Ulivieri FM, Palmieri S, Morelli V, Orsi E, Masserini B, Barbieri AM, Polledri E, Fustinoni S, Spada A, Fiore CE, Chiodini I. In postmenopausal female subjects with type 2 diabetes mellitus, vertebral fractures are independently associated with cortisol secretion and sensitivity. J Clin Endocrinol Metab. 2015;100:1417–25.

    Article  CAS  PubMed  Google Scholar 

  7. Cain DW, Cidlowski JA. Specificity and sensitivity of glucocorticoid signaling in health and disease. Best Pract Res Clin Endocrinol Metab. 2015;29:545–56.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  8. Siggelkow H, Etmanski M, Bozkurt S, Groβ P, Koepp R, Brockmöller J, Tzvetkov MV. Genetic polymorphisms in 11β-hydroxysteroid dehydrogenase type 1 correlate with the postdexamethasone cortisol levels and bone mineral density in patients evaluated for osteoporosis. J Clin Endocrinol Metab. 2014;99:293–302.

    Article  CAS  Google Scholar 

  9. Larsen PR, et al. The adrenal cortex (chap. 14, adrenal cortex and endocrine hypertension by Paul M. Stewart). In: William textbook of endocrinology. 10th ed. New York: Elsevier; 2002. p. 492–506.

    Google Scholar 

  10. Draper N, Stewart PM. 11beta-hydroxysteroid dehydrogenase and the pre-receptor regulation of corticosteroid hormone action. J Endocrinol. 2005;186(2):251–71.

    Article  CAS  PubMed  Google Scholar 

  11. Durbridge TC, Morris HA, Parsons AM, Parkinson IH, Moore RJ, Porter S, Need AG, Nordin BE, Vernon-Roberts B. Progressive cancellous bone loss in rats after adrenalectomy and oophorectomy. Calcif Tissue Int. 1990;47(6):383–7.

    Article  CAS  PubMed  Google Scholar 

  12. Björnsdottir S, Sääf M, Bensing S, Kämpe O, Michaëlsson K, Ludvigsson JF. Risk of hip fracture in Addison's disease: a population-based cohort study. J Intern Med. 2011;270(2):187–95.

    Article  PubMed  Google Scholar 

  13. Hartmann K, Koenen M, Schauer S, Wittig-Blaich S, Ahmad M, Baschant U, Tuckermann JP. Molecular actions of glucocorticoids in cartilage and bone during health, disease, and steroid therapy. Physiol Rev. 2016;96(2):409–47.

    Article  CAS  PubMed  Google Scholar 

  14. Kalak R, Zhou H, Street J, Day RE, Modzelewski JR, Spies CM, Liu PY, Li G, Dunstan CR, Seibel MJ. Endogenous glucocorticoid signaling in osteoblasts is necessary to maintain normal bone structure in mice. Bone. 2009;45(1):61–7.

    Article  CAS  PubMed  Google Scholar 

  15. Sher LB, Woitge HW, Adams DJ, Gronowicz GA, Krozowski Z, Harrison JR, Kream BE. Transgenic expression of 11beta-hydroxysteroid dehydrogenase type 2 in osteoblasts reveals an anabolic role for endogenous glucocorticoids in bone. Endocrinology. 2004;145(2):922–9.

    Article  CAS  PubMed  Google Scholar 

  16. Sher LB, Harrison JR, Adams DJ, Kream BE. Impaired cortical bone acquisition and osteoblast differentiation in mice with osteoblast-targeted disruption of glucocorticoid signaling. Calcif Tissue Int. 2006;79(2):118–25.

    Article  CAS  PubMed  Google Scholar 

  17. Rauch A, Seitz S, Baschant U, Schilling AF, Illing A, Stride B, Kirilov M, Mandic V, Takacz A, Schmidt-Ullrich R, Ostermay S, Schinke T, Spanbroek R, Zaiss MM, Angel PE, Lerner UH, David JP, Reichardt HM, Amling M, Schütz G, Tuckermann JP. Glucocorticoids suppress bone formation by attenuating osteoblast differentiation via the monomeric glucocorticoid receptor. Cell Metab. 2010;11(6):517–31.

    Article  CAS  PubMed  Google Scholar 

  18. Zhou H, Mak W, Zheng Y, Dunstan CR, Seibel MJ. Osteoblasts directly control lineage commitment of mesenchymal progenitor cells through Wnt signaling. J Biol Chem. 2008;283(4):1936–45.

    Article  PubMed  Google Scholar 

  19. Leclerc N, Luppen CA, Ho VV, Nagpal S, Hacia JG, Smith E, Frenkel B. Gene expression profiling of glucocorticoid-inhibited osteoblasts. J Mol Endocrinol. 2004;33(1):175–93.

    Article  CAS  PubMed  Google Scholar 

  20. Zhou H, Mak W, Kalak R, Street J, Fong-Yee C, Zheng Y, Dunstan CR, Seibel MJ. Glucocorticoid-dependent Wnt signaling by mature osteoblasts is a key regulator of cranial skeletal development in mice. Development. 2009;136(3):427–36.

    Article  CAS  PubMed  Google Scholar 

  21. Van Cauter E, Leproult R, Kupfer DJ. Effects of gender and age on the levels and circadian rhythmicity of plasma cortisol. J Clin Endocrinol Metab. 1996;81:2468–73.

    PubMed  Google Scholar 

  22. Dennison E, Hindmarsh P, Fall C, Kellingray S, Barker D, Phillips D, Cooper C. Profiles of endogenous circulating cortisol and bone mineral density in healthy elderly men. J Clin Endocrinol Metab. 1999;84:3058–63.

    CAS  PubMed  Google Scholar 

  23. Purnell JQ, Brandon DD, Isabelle LM, Loriaux DL, Samuels MH. Association of 24-hour cortisol production rates, cortisol-binding globulin, and plasma-free cortisol levels with body composition, leptin levels, and aging in adult men and women. J Clin Endocrinol Metab. 2004;89:281–7.

    Article  CAS  PubMed  Google Scholar 

  24. Reynolds RM, Dennison EM, Walker BR, Syddall HE, Wood PJ, Andrew R, Phillips DI, Cooper C. Cortisol secretion and rate of bone loss in a population-based cohort of elderly men and women. Calcif Tissue Int. 2005;77:134–8.

    Article  CAS  PubMed  Google Scholar 

  25. Weinstein RS, Wan C, Liu Q, Wang Y, Almeida M, O'Brien CA, Thostenson J, Roberson PK, Boskey AL, Clemens TL, Manolagas SC. Endogenous glucocorticoids decrease skeletal angiogenesis, vascularity, hydration, and strength in aged mice. Aging Cell. 2010;9(2):147–61.

    Article  CAS  PubMed  Google Scholar 

  26. Wilkinson CW, Petrie EC, Murray SR, Colasurdo EA, Raskind MA, Peskind ER. Human glucocorticoid feedback inhibitions reduced in older individuals: evening study. J Clin Endocrinol Metab. 2001;86:545–50.

    CAS  PubMed  Google Scholar 

  27. Cooper MS, Rabbitt EH, Goddard PE, Bartlett WA, Hewison M, Stewart PM. Osteoblastic 11beta-hydroxysteroid dehydrogenase type 1 activity increases with age and glucocorticoid exposure. J Bone Miner Res. 2002;17:979–86.

    Article  CAS  PubMed  Google Scholar 

  28. Huizenga NA, Koper JW, De Lange P, Pols HA, Stolk RP, Burger H, Grobbee DE, Brinkmann AO, De Jong FH, Lamberts SW. A polymorphism in the glucocorticoid receptor gene may be associated with and increased sensitivity to glucocorticoids in vivo. J Clin Endocrinol Metab. 1998;83(1):144–51.

    CAS  PubMed  Google Scholar 

  29. van Schoor NM, Dennison E, Lips P, Uitterlinden AG, Cooper C. Serum fasting cortisol in relation to bone, and the role of genetic variations in the glucocorticoid receptor. Clin Endocrinol. 2007;67(6):871–8.

    Article  CAS  Google Scholar 

  30. Enjuanes A, Garcia-Giralt N, Supervía A, Nogués X, Ruiz-Gaspà S, Bustamante M, Mellibovsky L, Grinberg D, Balcells S, Díez-Pérez A. Functional analysis of the I.3, I.6, pII and I.4 promoters of CYP19 (aromatase) gene in human osteoblasts and their role in vitamin D and dexamethasone stimulation. Eur J Endocrinol. 2005;153(6):981–8.

    Article  CAS  PubMed  Google Scholar 

  31. Watanabe M, Noda M, Nakajin S. Aromatase expression in a human osteoblastic cell line increases in response to prostaglandin E(2) in a dexamethasone-dependent fashion. Steroids. 2007;72(9–10):686–92.

    Article  CAS  PubMed  Google Scholar 

  32. Abu EO, Horner A, Kusec V, Triffitt JT, Compston JE. The localization of androgen receptors in human bone. J Clin Endocrinol Metab. 1997;82(10):3493–7.

    Article  CAS  PubMed  Google Scholar 

  33. Bord S, Horner A, Beavan S, Compston J. Estrogen receptors alpha and beta are differentially expressed in developing human bone. J Clin Endocrinol Metab. 2001;86(5):2309–14.

    CAS  PubMed  Google Scholar 

  34. Kerrigan JR, Rogol AD. The impact of gonadal steroid hormone action on growth hormone secretion during childhood and adolescence. Endocr Rev. 1992;13(2):281–98.

    CAS  PubMed  Google Scholar 

  35. Kasperk C, Helmboldt A, Börcsök I, Heuthe S, Cloos O, Niethard F, Ziegler R. Skeletal site-dependent expression of the androgen receptor in human osteoblastic cell populations. Calcif Tissue Int. 1997;61(6):464–73.

    Article  CAS  PubMed  Google Scholar 

  36. Wiren K, Keenan E, Zhang X, Ramsey B, Orwoll E. Homologous androgen receptor up-regulation in osteoblastic cells may be associated with enhanced functional androgen responsiveness. Endocrinology. 1999;140(7):3114–24.

    Article  CAS  PubMed  Google Scholar 

  37. Bertelloni S, Baroncelli GI, Federico G, Cappa M, Lala R, Saggese G. Altered bone mineral density in patients with complete androgen insensitivity syndrome. Horm Res. 1998;50(6):309–14.

    Article  CAS  PubMed  Google Scholar 

  38. Jones ME, Boon WC, McInnes K, Maffei L, Carani C, Simpson ER. Recognizing rare disorders: aromatase deficiency. Nat Clin Pract Endocrinol Metab. 2007;3(5):414–21.

    Article  CAS  PubMed  Google Scholar 

  39. Barrett-Connor E, Kritz-Silverstein D, Edelstein SL. A prospective study of dehydroepiandrosterone sulfate (DHEAS) and bone mineral density in older men and women. Am J Epidemiol. 1993;137(2):201–6.

    Article  CAS  PubMed  Google Scholar 

  40. Greendale GA, Edelstein S, Barrett-Connor E. Endogenous sex steroids and bone mineral density in older women and men: the Rancho Bernardo Study. J Bone Miner Res. 1997;12(11):1833–43.

    Article  CAS  PubMed  Google Scholar 

  41. Remer T, Manz F, Hartmann MF, Schoenau E, Wudy SA. Prepubertal healthy children's urinary androstenediol predicts diaphyseal bone strength in late puberty. J Clin Endocrinol Metab. 2009;94(2):575–8.

    Article  CAS  PubMed  Google Scholar 

  42. Chiodini I. Clinical review: diagnosis and treatment of subclinical hypercortisolism. J Clin Endocrinol Metab. 2011;96:1223–36.

    Article  CAS  PubMed  Google Scholar 

  43. Bovio S, Cataldi A, Reimondo G, Sperone P, Novello S, Berruti A, Borasio P, Fava C, Dogliotti L, Scagliotti GV, et al. Prevalence of adrenal incidentaloma in a contemporary computerized tomography series. J Endocrinol Investig. 2006;29:298–302.

    Article  CAS  Google Scholar 

  44. Toini A, Dolci A, Ferrante E, Verrua E, Malchiodi E, Sala E, Lania AG, Chiodini I, Beck-Peccoz P, Arosio M, et al. Screening for ACTH-dependent hypercortisolism in patients affected with pituitary incidentaloma. Eur J Endocrinol. 2015;172:363–9.

    Article  CAS  PubMed  Google Scholar 

  45. Chiodini I, Torlontano M, Carnevale V, Trischitta V, Scillitani A. Skeletal involvement in adult patients with endogenous hypercortisolism. J Endocrinol Investig. 2008;31:267–76.

    Article  CAS  Google Scholar 

  46. Chiodini I, Morelli V, Masserini B, Salcuni AS, Eller-Vainicher C, Viti R, Coletti F, Guglielmi G, Battista C, Carnevale V, et al. Bone mineral density, prevalence of vertebral fractures and bone quality in patients with adrenal incidentalomas with and without subclinical hypercortisolism: an Italian Multicenter Study. J Clin Endocrinol Metab. 2009;94:3207–14.

    Article  CAS  PubMed  Google Scholar 

  47. Eller-Vainicher C, Morelli V, Ulivieri FM, Palmieri S, Zhukouskaya VV, Cairoli E, Pino R, Naccarato A, Scillitani A, Beck-Peccoz P, et al. Bone quality, as measured by trabecular bone score in patients with adrenal incidentalomas with and without subclinical hypercortisolism. J Bone Miner Res. 2012;27:2223–30.

    Article  CAS  PubMed  Google Scholar 

  48. Morelli V, Eller-Vainicher C, Salcuni AS, Coletti F, Iorio L, Muscogiuri G, Della Casa S, Arosio M, Ambrosi B, Beck-Peccoz P, et al. Risk of new vertebral fractures in patients with adrenal incidentaloma with and without subclinical hypercortisolism: a multicenter longitudinal study. J Bone Miner Res. 2011;26:1816–21.

    Article  PubMed  Google Scholar 

  49. Salcuni AS, Morelli V, Eller-Vainicher C, Palmieri S, Cairoli E, Spada A, Scillitani A, Chiodini I. Adrenalectomy reduces the risk of vertebral fractures in patients with monolateral adrenal incidentalomas and subclinical hypercortisolism. Eur J Endocrinol. 2016;174:261–9.

    Article  CAS  PubMed  Google Scholar 

  50. Morelli V, Eller-Vainicher C, Palmieri S, Cairoli E, Salcuni AS, Scillitani A, Carnevale V, Corbetta S, Arosio M, Della Casa S, Muscogiuri G, Spada A, Chiodini I. Prediction of vertebral fractures in patients with monolateral adrenal incidentalomas. J Clin Endocrinol Metab. 2016;101(7):2768–75.

    Article  CAS  PubMed  Google Scholar 

  51. Chiodini I, Viti R, Coletti F, Guglielmi G, Battista C, Ermetici F, Morelli V, Salcuni A, Carnevale V, Urbano F, et al. Eugonadal male patients with adrenal incidentalomas and subclinical hypercortisolism have increased rate of vertebral fractures. Clin Endocrinol (Oxf). 2009;70:208–13.

    Article  CAS  Google Scholar 

  52. Canalis E, Mazziotti G, Giustina A, Bilezikian JP. Glucocorticoid-induced osteoporosis: pathophysiology and therapy. Osteoporos Int. 2007;18:1319–28.

    Article  PubMed  CAS  Google Scholar 

  53. Chiodini I, Mascia ML, Muscarella S, Battista C, Minisola S, Arosio M, Santini SA, Guglielmi G, Carnevale V, Scillitani A. Subclinical hypercortisolism among outpatients referred for osteoporosis. Ann Intern Med. 2007;147:541–8.

    Article  PubMed  Google Scholar 

  54. Hofbauer LC, Hamann C, Ebeling PR. Approach to the patient with secondary osteoporosis. Eur J Endocrinol. 2010;162(6):1009–20.

    Article  CAS  PubMed  Google Scholar 

  55. Scillitani A, Mazziotti G, Di Somma C, Moretti S, Stigliano A, Pivonello R, Giustina A, Colao A, on behalf of ABC Group. Treatment of skeletal impairment in patients with endogenous hypercortisolism: when and how? Osteoporos Int. 2014;25:441–6.

    Article  CAS  PubMed  Google Scholar 

  56. Nieman LK, Biller BMK, Finding JW, Newell-Price J, Savage MO, Stewart PM, Montori VM. The diagnosis of Cushing’s syndrome: an Endocrine Society clinical practice guideline. J Clin Endocrinol Metab. 2008;93:1526–40.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  57. Chiodini I, Carnevale V, Torlontano M, Fusilli S, Guglielmi G, Pileri M, Modoni S, Di Giorgio A, Liuzzi A, Minisola S, Cammisa M, Trischitta V, Scillitani A. Alterations of bone turnover and bone mass at different skeletal sites due to pure glucocorticoid excess: study in eumenorrheic patients with Cushing's syndrome. J Clin Endocrinol Metab. 1998;83(6):1863–7.

    CAS  PubMed  Google Scholar 

  58. Mancini T, Doga M, Mazziotti G, et al. Cushing’s syndrome and bone. Pituitary. 2004;7:249–52.

    Article  PubMed  Google Scholar 

  59. Kawamata A, Iihara M, Okamoto T, et al. Bone mineral density before and after surgical cure of Cushing’s syndrome due to adrenocortical adenoma: prospective study. World J Surg. 2008;32:890–6.

    Article  PubMed  Google Scholar 

  60. van der Eerden AW, den Heijer M, Oyen WJ, et al. Cushing’s syndrome and bone mineral density: lowest Z scores in young patients. Neth J Med. 2007;65:137–41.

    PubMed  Google Scholar 

  61. Dekkers OM, Horvath-Puho E, Jorgensen JO, et al. Multisystem morbidity and mortality in Cushing’s syndrome: a cohort study. J Clin Endocrinol Metab. 2013;98:2277–84.

    Article  CAS  PubMed  Google Scholar 

  62. Vestergaard P, Lindholm J, Jorgensen JO, et al. Increased risk of osteoporotic fractures in patients with Cushing’s syndrome. Eur J Endocrinol. 2002;146:51–6.

    Article  CAS  PubMed  Google Scholar 

  63. Valassi E, Santos A, Yaneva M, the ERCUSYN Study Group, et al. The European registry on Cushing’s syndrome: 2-year experience. Baseline demographic and clinical characteristics. Eur J Endocrinol. 2011;165:383–92.

    Article  CAS  PubMed  Google Scholar 

  64. Tauchmanova L, Pivonello R, De Martino MC, et al. Effects of sex steroids on bone in women with subclinical or overt endogenous hypercortisolism. Eur J Endocrinol. 2007;157:359–66.

    Article  CAS  PubMed  Google Scholar 

  65. Tauchmanova L, Pivonello R, Di Somma C, et al. Bone demineralization and vertebral fractures in endogenous cortisol excess: role of disease etiology and gonadal status. J Clin Endocrinol Metab. 2006;91:1779–84.

    Article  CAS  PubMed  Google Scholar 

  66. Karavitaki N, Ioannidis G, Giannakopoulos F, Mavrokefalos P, Thalassinos N. Evaluation of bone mineral density of the peripheral skeleton in pre- and postmenopausal women with newly diagnosed endogenous Cushing’s syndrome. Clin Endocrinol. 2004;60:264–70.

    Article  CAS  Google Scholar 

  67. Mazziotti G, Angeli A, Bilezikian JP, Canalis E, Giustina A. Glucocorticoid-induced osteoporosis: an update. Trends Endocrinol Metab. 2006;17:144–9.

    Article  CAS  PubMed  Google Scholar 

  68. Pivonello R, De Leo M, Vitale P, et al. Pathophysiology of diabetes mellitus in Cushing’s syndrome. Neuroendocrinology. 2010;92:77–81.

    Article  CAS  PubMed  Google Scholar 

  69. Thrailkill KM, Lumpkin CK Jr, Bunn RC, et al. Is insulin an anabolic agent in bone? Dissecting the diabetic bone for clues. Am J Phys Endocrinol Metab. 2005;289:E735–45.

    Article  CAS  Google Scholar 

  70. Manolagas SC. Corticosteroids and fractures: a close encounter of the third cell kind. J Bone Miner Res. 2000;15:1001–5.

    Article  CAS  PubMed  Google Scholar 

  71. Abu EO, Horner A, Kusec V, et al. The localization of the functional glucocorticoid receptor alpha in human bone. J Clin Endocrinol Metab. 2000;85:883–9.

    CAS  PubMed  Google Scholar 

  72. Cooper MS, Walker EA, Bland R, et al. Expression and functional consequences of 11beta-hydroxysteroid dehydrogenase activity in human bone. Bone. 2000;27:375–81.

    Article  CAS  PubMed  Google Scholar 

  73. Morrison NA, Shine J, Fragonas JC, et al. 1,25- dihydroxyvitamin D-responsive element and glucocorticoid repression in the osteocalcin gene. Science. 1989;246:1158–61.

    Article  CAS  PubMed  Google Scholar 

  74. Seibel MJ, Cooper MS, Zhou H. Glucocorticoid-induced osteoporosis: mechanisms, management, and future perspectives. Lancet Diabetes Endocrinol. 2013;1:59–70.

    Article  CAS  PubMed  Google Scholar 

  75. Yaneva M, Kalinov K, Zacharieva S. Mortality in Cushing’s syndrome: data from 386 patients from a single tertiary referral center. Eur J Endocrinol. 2013;169:621–7.

    Article  CAS  PubMed  Google Scholar 

  76. Ntali G, Asimakopoulou A, Siamatras T, et al. Mortality in Cushing’s syndrome: systematic analysis of a large series with prolonged follow-up. Eur J Endocrinol. 2013;169:715–23.

    Article  CAS  PubMed  Google Scholar 

  77. Hochberg Z, Pacak K, Chrousos GP. Endocrine withdrawal syndromes. Endocr Rev. 2003;24:523–38.

    Article  PubMed  Google Scholar 

  78. Brandi ML. Microarchitecture, the key to bone quality. Rheumatology (Oxford). 2009;48(Suppl 4):iv3–8.

    Article  Google Scholar 

  79. Nicks KM, Amin S, Atkinson EJ, et al. Relationship of age to bone microstructure independent of areal bone mineral density. J Bone Miner Res. 2012;27:637–44.

    Article  PubMed  Google Scholar 

  80. Nishiyama KK, Macdonald HM, Buie HR, et al. Postmenopausal women with osteopenia have higher cortical porosity and thinner cortices at the distal radius and tibia than women with normal aBMD: an in vivo HR-pQCT study. J Bone Miner Res. 2010;25:882–90.

    PubMed  Google Scholar 

  81. Stein EM, Liu XS, Nickolas TL, et al. Abnormal microarchitecture and reduced stiffness at the radius and tibia in postmenopausal women with fractures. J Bone Miner Res. 2010;25:2572–81.

    Article  PubMed Central  PubMed  Google Scholar 

  82. Genant HK, Delmas PD, Chen P, et al. Severity of vertebral fracture reflects deterioration of bone microarchitecture. Osteoporos Int. 2007;18:69–76.

    Article  CAS  PubMed  Google Scholar 

  83. Scommegna S, Greening JP, Storr HL, et al. Bone mineral density at diagnosis and following successful treatment of pediatric Cushing’s disease. J Endocrinol Investig. 2005;28:231–5.

    Article  CAS  Google Scholar 

  84. Acharya SV, Gopal RA, Lila A, et al. Bone age and factors affecting skeletal maturation at diagnosis of paediatric Cushing’s disease. Pituitary. 2010;13:355–60.

    Article  PubMed  Google Scholar 

  85. Lodish MB, Hsiao HP, Serbis A, et al. Effects of Cushing disease on bone mineral density in a pediatric population. J Pediatr. 2010;156:1001–5.

    Article  PubMed Central  PubMed  Google Scholar 

  86. Leong GM, Abad V, Charmandari E, et al. Effects of child- and adolescent-onset endogenous Cushing syndrome on bone mass, body composition, and growth: a 7-year prospective study into young adulthood. J Bone Miner Res. 2007;22:110–8.

    Article  PubMed  Google Scholar 

  87. Bolland MJ, Holdaway IM, Berkeley JE, et al. Mortality and morbidity in Cushing’s syndrome in New Zealand. Clin Endocrinol. 2011;75:436–42.

    Article  Google Scholar 

  88. Di Somma C, Pivonello R, Loche S, et al. Effect of 2 years of cortisol normalization on the impaired bone mass and turnover in adolescent and adult patients with Cushing’s disease: a prospective study. Clin Endocrinol. 2003;58:302–8.

    Article  Google Scholar 

  89. Hermus AR, Smals AG, Swinkels LM, et al. Bone mineral density and bone turnover before and after surgical cure of Cushing’s syndrome. J Clin Endocrinol Metab. 1995;80:2859–65.

    CAS  PubMed  Google Scholar 

  90. Randazzo ME, Grossrubatscher E, Dalino Ciaramella P, Vanzulli A, Loli P. Spontaneous recovery of bone mass after cure of endogenous hypercortisolism. Pituitary. 2012;15:193–201.

    Article  CAS  PubMed  Google Scholar 

  91. Kristo C, Jemtland R, Ueland T, Godang K, Bollerslev J. Restoration of the coupling process and normalization of bone mass following successful treatment of endogenous Cushing’s syndrome: a prospective, long-term study. Eur J Endocrinol. 2006;154:109–18.

    Article  CAS  PubMed  Google Scholar 

  92. Futo L, Toke J, Patocs A, et al. Skeletal differences in bone mineral area and content before and after cure of endogenous Cushing’s syndrome. Osteoporos Int. 2008;19:941–9.

    Article  CAS  PubMed  Google Scholar 

  93. Barahona MJ, Sucunza N, Resmini E, et al. Deleterious effects of glucocorticoid replacement on bone in women after long-term remission of Cushing’s syndrome. J Bone Miner Res. 2009;24:1841–6.

    Article  CAS  PubMed  Google Scholar 

  94. Castinetti F, Morange I, Jaquet P, Conte-Devolx B, Brue T. Ketoconazole revisited: a preoperative or postoperative treatment in Cushing’s disease. Eur J Endocrinol. 2008;158:91–9.

    Article  CAS  PubMed  Google Scholar 

  95. Di Somma C, Colao A, Pivonello R, et al. Effectiveness of chronic treatment with alendronate in the osteoporosis of Cushing’s disease. Clin Endocrinol. 1998;48:655–62.

    Article  Google Scholar 

  96. Luisetto G, Zangari M, Camozzi V, Boscaro M, Sonino N, Fallo F. Recovery of bone mineral density after surgical cure, but not by ketoconazole treatment, in Cushing’s syndrome. Osteoporos Int. 2001;12:956–60.

    Article  CAS  PubMed  Google Scholar 

  97. van Rossum EF, Voorhoeve PG, de Velde SJ, Koper JW, Delemarre-van de Waal HA, Kemper HC, Lamberts SW. The ER22/23EK polymorphism in the glucocorticoid receptor gene is associated with a beneficial body composition and muscle strength in young adults. J Clin Endocrinol Metab. 2004;89:4004–9.

    Article  CAS  PubMed  Google Scholar 

  98. Szappanos A, Patocs A, Toke J, Boyle B, Sereg M, Majnik J, Borgulya G, Varga I, Liko´ I, Racz K, et al. BclI polymorphism of the glucocorticoid receptor gene is associated with decreased bone mineral density in patients with endogenous hypercortisolism. Clin Endocrinol (Oxf). 2009;71:636–43.

    Article  CAS  Google Scholar 

  99. Peng YM, Lei SF, Guo Y, Xiong DH, Yan H, Wang L, Guo YF, Deng HW. Sex-specific association of the glucocorticoid receptor gene with extreme BMD. J Bone Miner Res. 2008;23:247–52.

    Article  CAS  PubMed  Google Scholar 

  100. Trementino L, Appolloni G, Ceccoli L, Marcelli G, Concettoni C, Boscaro M, Arnaldi G. Bone complications in patients with Cushing's syndrome: looking for clinical, biochemical, and genetic determinants. Osteoporos Int. 2014;25:913–21.

    Article  CAS  PubMed  Google Scholar 

  101. Morelli V, Donadio F, Eller-Vainicher C, Cirello V, Olgiati L, Savoca C, Cairoli E, Salcuni AS, Beck-Peccoz P, Chiodini I. Role of glucocorticoid receptor polymorphism in adrenal incidentalomas. Eur J Clin Investig. 2010;40:803–11.

    Article  CAS  Google Scholar 

  102. Tzanela M, Mantzou E, Saltiki K, Tampourlou M, Kalogeris N, Hadjidakis D, Tsagarakis S, Alevizaki M. Clinical and biochemical impact of BCL1 polymorphic genotype of the glucocorticoid receptor gene in patients with adrenal incidentalomas. J Endocrinol Investig. 2012;35:395–400.

    CAS  Google Scholar 

  103. Tomlinson JW, Walker EA, Bujalska IJ, Draper N, Lavery GG, Cooper MS, Hewison M, Stewart PM. 11β-Hydroxysteroid dehydrogenase type 1: a tissue specific regulator of glucocorticoid response. Endocr Rev. 2004;25:831–66.

    Article  CAS  PubMed  Google Scholar 

  104. Cooper MS. 11beta-Hydroxysteroid dehydrogenase: a regulator of glucocorticoid response in osteoporosis. J Endocrinol Investig. 2008;31:16–21.

    Article  CAS  Google Scholar 

  105. Diederich S, Eigendorff E, Burkhardt P, et al. 11-Hydroxysteroid dehydrogenase types 1and 2:an important pharmacokinetic determinant for the activity of synthetic mineralo- and glucocorticoids. J Clin Endocrinol Metab. 2002;87:5695–701.

    Article  CAS  PubMed  Google Scholar 

  106. Park JS, Bae SJ, Choi SW, Son YH, Park SB, Rhee SD, Kim HY, Jung WH, Kang SK, Ahn JH, et al. A novel 11β-HSD1 inhibitor improves diabesity and osteoblast differentiation. J Mol Endocrinol. 2014;52:191–202.

    Article  CAS  PubMed  Google Scholar 

  107. Wu L, Qi H, Zhong Y, Lv S, Yu J, Liu J, Wang L, Bi J, Kong X, Di W, Zha J, et al. 11β-Hydroxysteroid dehydrogenase type 1 selective inhibitor BVT.2733 protects osteoblasts against endogenous glucocorticoid induced dysfunction. Endocr J. 2013;60:1047–58.

    Article  CAS  PubMed  Google Scholar 

  108. Hwang JY, Lee SH, Kim GS, Koh JM, Go MJ, Kim YJ, Kim HC, Kim TH, Hong JM, Park EK, et al. HSD11β1 polymorphisms predicted bone mineral density and fracture risk in postmenopausal women without clinically apparent hypercortisolemia. Bone. 2009;45:1098–103.

    Article  CAS  PubMed  Google Scholar 

  109. Feldman K, Szappanos A, Butz H, Grolmusz V, Majnik J, Likó I, Kriszt B, Lakatos P, Tóth M, Rácz K, et al. The rs4844880 polymorphism in the promoter region of the HSD11B1 gene associates with bone mineral density in healthy and postmenopausal osteoporotic women. Steroids. 2012;77:1345–51.

    Article  CAS  PubMed  Google Scholar 

  110. Szappanos A, Patócs A, Gergics P, Bertalan R, Kerti A, Acs B, Feldmann K, Rácz K, Tóth M. The 83,557insA variant of the gene coding 11β-hydroxysteroid dehydrogenase type 1 enzyme associates with serum osteocalcin in patients with endogenous Cushing's syndrome. J Steroid Biochem Mol Biol. 2011;123:79–84.

    Article  CAS  PubMed  Google Scholar 

  111. Speiser PW, Azziz R, Baskin LS, Ghizzoni L, Hensle TW, Merke DP, Meyer-Bahlburg HF, Miller WL, Montori VM, Oberfield SE, Ritzen M, White PC, Endocrine Society. Congenital adrenal hyperplasia due to steroid 21-hydroxylase deficiency: an Endocrine Society clinical practice guideline. J Clin Endocrinol Metab. 2010;95(9):4133–60.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  112. Mora S, Saggion F, Russo G, Weber G, Bellini A, Prinster C, Chiumello G. Bone density in young patients with congenital adrenal hyperplasia. Bone. 1996;18(4):337–40.

    Article  CAS  PubMed  Google Scholar 

  113. Ceccato F, Barbot M, Albiger N, Zilio M, De Toni P, Luisetto G, Zaninotto M, Greggio NA, Boscaro M, Scaroni C, Camozzi V. Long-term glucocorticoid effect on bone mineral density in patients with congenital adrenal hyperplasia due to 21-hydroxylase deficiency. Eur J Endocrinol. 2016;175(2):101–6.

    Article  CAS  PubMed  Google Scholar 

  114. Falhammar H, Filipsson H, Holmdahl G, Janson PO, Nordenskjöld A, Hagenfeldt K, Thorén M. Fractures and bone mineral density in adult women with 21-hydroxylase deficiency. J Clin Endocrinol Metab. 2007;92(12):4643–9.

    Article  CAS  PubMed  Google Scholar 

  115. Raizada N, Jyotsna VP, Upadhyay AD, Gupta N. Bone mineral density in young adult women with congenital adrenal hyperplasia. Indian J Endocrinol Metab. 2016;20(1):62–6.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  116. Falhammar H, Filipsson Nyström H, Wedell A, Brismar K, Thorén M. Bone mineral density, bone markers, and fractures in adult males with congenital adrenal hyperplasia. Eur J Endocrinol. 2013;168(3):331–41.

    Article  CAS  PubMed  Google Scholar 

  117. Garcia Alves Junior PA, Schueftan DL, de Mendonça LM, Farias ML, Beserra IC. Bone mineral density in children and adolescents with congenital adrenal hyperplasia. Int J Endocrinol. 2014;2014:806895.

    Article  PubMed Central  PubMed  Google Scholar 

  118. Zimmermann A, Sido PG, Schulze E, Al Khzouz C, Lazea C, Coldea C, Weber MM. Bone mineral density and bone turnover in Romanian children and young adults with classical 21-hydroxylase deficiency are influenced by glucocorticoid replacement therapy. Clin Endocrinol. 2009;71(4):477–84.

    Article  CAS  Google Scholar 

  119. Hatton R, Stimpel M, Chambers TJ. Angiotensin II is generated from angiotensin I by bone cells and stimulates osteoclastic bone resorption in vitro. J Endocrinol. 1997;152:5–10.

    Article  CAS  PubMed  Google Scholar 

  120. Asaba Y, Ito M, Fumoto T, Watanabe K, Fukuhara R, Takeshita S, Nimura Y, Ishida J, Fukamizu A, Ikeda K. Activation of renin-angiotensin system induces osteoporosis independently of hypertension. J Bone Miner Res. 2009;24:241–50.

    Article  CAS  PubMed  Google Scholar 

  121. Hagiwara H, Hiruma Y, Inoue A, Yamaguchi A, Hirose S. Deceleration by angiotensin II of the differentiation and bone formation of rat calvarial osteoblastic cells. J Endocrinol. 2006;156:543–50.

    Article  Google Scholar 

  122. Lamparter S, Kling L, Schrader M, Ziegler R, Pfeilschifter J. Effects of angiotensin II on bone cells in vitro. J Cell Physiol. 1998;175:89–98.

    Article  CAS  PubMed  Google Scholar 

  123. Yamamoto S, Kido R, Onishi Y, Fukuma S, Akizawa T, Fukugawa M, Kazama JJ, Narita I, Fukuhara S. Use of renin-angiotensin system inhibitors is associated with reduction of fracture risk in hemodialysis patients. PLoS One. 2015;10:e01222691.

    Google Scholar 

  124. Aoki M, Kawahata H, Sotobayashi D, Yu H, Moriguchi A, Nakagami H, Ogihara T, Morishita R. Effect of angiotensin II receptor blocker, olmesartan, on turnover of bone metabolism in bedridden elderly hypertensive women with disuse syndrome. Geriatr Gerontol Int. 2015;15:1064–72.

    Article  PubMed  Google Scholar 

  125. Ghosh M, Majumda SR. Antihypertensive medications, bone mineral density, and fractures: a review of old cardiac drugs that provides new insights into osteoporosis. Endocrine. 2014;46:397–405.

    Article  CAS  PubMed  Google Scholar 

  126. Nakagami H, Osako MK, Morishita R. Potential effect of angiotensin II receptor blockade in adipose tissue and bone. Curr Pharm Des. 2013;19:3049–53.

    Article  CAS  PubMed  Google Scholar 

  127. Shimizu H, Nakagami H, Osako MK, Nakagami F, Kunugiza Y, Tomita T, Yoshikawa H, Rakugi H, Ogihara T, Morishita R. Prevention of osteoporosis by angiotensin-converting enzyme inhibitor in spontaneous hypertensive rats. Hypertens Res. 2009;32:786–90.

    Article  CAS  PubMed  Google Scholar 

  128. Donmez BO, Ozdemir S, Sarikanat M, Yaras N, Koc P, Demir N, Karayalcin B, Oguz N. Effect of angiotensin II type 1 receptor blocker on osteoporotic rat femurs. Pharmacol Rep. 2012;64:878–88.

    Article  CAS  PubMed  Google Scholar 

  129. Garcia P, Schwenzer S, Slotta JE, Scheuer C, Tami AE, Holstein JH, Histing T, Burkhardt M, Pohlemann T, Menge MD. Inhibition of angiotensin-converting enzyme stimulates fracture healing and periosteal callus formation – role of a local renin-angiotensin system. Br J Pharmacol. 2010;159:1672–80.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  130. Tylavsky FA, Johnson KC, Wan JY, Harshfield G. Plasma renin activity is associated with bone mineral density in premenopausal women. Osteoporos Int. 1998;8:136–40.

    Article  CAS  PubMed  Google Scholar 

  131. Altun B, Kiykim AA, Seyrantepe V, Usalana C, Arici M, Çağlar M, Erdem Y, Yasavul U, Turgan C, Çağlar S. Association between activated renin angiotensin system and bone formation in hemodialysis patients: is the bone mass genetically determined by ACE gene polymorphism? Ren Fail. 2004;26:425–31.

    Article  CAS  PubMed  Google Scholar 

  132. Kuipers AL, Kammerer CM, Pratt JH, Bunker CH, Wheeler VW, Patrick AL, Zmuda JM. Association of circulating renin and aldosterone with osteocalcin and bone mineral density in African ancestry families. Hypertension. 2016;67:977–82.

    Article  PubMed  CAS  Google Scholar 

  133. Gu SS, Zhang Y, Li HL, Wu SY, Diao TY, Hai R, Deng HW. Involvement of the skeletal renin-angiotensin system in age-related osteoporosis of ageing mice. Biosci Biotechnol Biochem. 2012;76:1367–71.

    Article  CAS  PubMed  Google Scholar 

  134. Yongtao Z, Kunzheng W, Jingjing Z, Hu S, Jianqiang K, Ruiyu L, Chunsheng W. Glucocorticoids activate the local renin–angiotensin system in bone: possible mechanism for glucocorticoid-induced osteoporosis. Endocrine. 2014;47:598–608.

    Article  CAS  PubMed  Google Scholar 

  135. Chhokar VS, Sun Y, Bhattacharya SK, Ahokas RA, Myers LK, Xing Z, Smith RA, Gerling IC, Weber KT. Loss of bone minerals and strength in rats with aldosteronism. Am J Physiol Heart Circ Physiol. 2004;287:H2023–6.

    Article  CAS  PubMed  Google Scholar 

  136. Pilz S, Kienreich K, Drechsler C, Ritz E, Fahrleitner-Pammer A, Gaksch M, Meinitzer A, März W, Pieber TR, Tomaschitz A. Hyperparathyroidism in patients with primary aldosteronism: cross-sectional and interventional data from the GECOH study. J Clin Endocrinol Metab. 2012;97:E75–9.

    Article  CAS  PubMed  Google Scholar 

  137. Law PH, Sun Y, Bhattacharya SK, Chhokar VS, Weber KT. Diuretics and bone loss in rats with aldosteronism. J Am Coll Cardiol. 2005;46:142–6.

    Article  CAS  PubMed  Google Scholar 

  138. Salcuni AS, Palmieri S, Carnevale V, Morelli V, Battista C, Guarnieri V, Guglielmi G, Desina G, Eller-Vainicher C, Beck-Peccoz P, Scillitani A, Chiodini I. Bone involvement in aldosteronism. J Bone Miner Res. 2012;27:2217–22.

    Article  CAS  PubMed  Google Scholar 

  139. Ceccoli L, Ronconi V, Giovannini L, Marcheggiani M, Turchi F, Boscaro M, Giacchetti G. Bone health and aldosterone excess. Osteoporos Int. 2013;24:2801–7.

    Article  CAS  PubMed  Google Scholar 

  140. Petramala L, Zinnamosca L, Settevendemmie A, Marinelli C, Nardi M, Concistrè A, Corpaci F, Tonnarini G, De Toma G, Letizia C. Bone and mineral metabolism in patients with primary aldosteronism. Int J Endocrinol. 2014;2014:836529.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  141. Gupta M, Cheung CL, Hsu YH, Demissie S, Cupples LA, Kiel DP, Karasi D. Identification of homogeneous genetic architecture of multiple genetically correlated traits by block clustering of genome-wide associations. J Bone Miner Res. 2011;26:1261–71.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  142. Beavan S, Horner A, Bord S, Ireland D, Compston J. Colocalization of glucocorticoid and mineralocorticoid receptors in human bone. J Bone Miner Res. 2001;16:1496–504.

    Article  CAS  PubMed  Google Scholar 

  143. Fumoto T, Ishii KA, Ito M, Berger S, Schütz G, Ikeda K. Mineralocorticoid receptor function in bone metabolism and its role in glucocorticoid-induced osteopenia. Biochem Biophys Res Commun. 2014;447:407–12.

    Article  CAS  PubMed  Google Scholar 

  144. Zhang B, Umbach AT, Chen H, Yana J, Fakhri H, Fajol A, Salker MS, Spichtig D, Daryadel A, Wagner CA, Föller M, Lang F. Up-regulation of FGF23 release by aldosterone. Biochem Biophys Res Commun. 2016;470:384–90.

    Article  CAS  PubMed  Google Scholar 

  145. Lang F, Ritz E, Voelkl J, Alesutan I. Vascular calcification—is aldosterone a culprit? Nephrol Dial Transplant. 2013;28:1080–4.

    Article  CAS  PubMed  Google Scholar 

  146. Ma TK, Szeto CC. Mineralocorticoid receptor antagonist for renal protection. Ren Fail. 2012;34:810–7.

    Article  CAS  PubMed  Google Scholar 

  147. Ritz E, Koleganova N, Piecha G. Is there an obesity-metabolic syndrome related glomerulopathy? Curr Opin Nephrol Hypertens. 2011;20:44–9.

    Article  PubMed  Google Scholar 

  148. Mihailidou AS. Aldosterone in heart disease. Curr Hypertens Rep. 2012;14:125–9.

    Article  CAS  PubMed  Google Scholar 

  149. Sarraf M, Masoumi A, Schrier RW. Cardiorenal syndrome in acute decompensated heart failure. Clin J Am Soc Nephrol. 2009;4:2013–26.

    Article  CAS  PubMed  Google Scholar 

  150. Schrier RW. Water and sodium retention in edematous disorders: role of vasopressin and aldosterone. Am J Med. 2006;119:S47–53.

    Article  CAS  PubMed  Google Scholar 

  151. Schrier RW, Masoumi A, Elhassan E. Aldosterone: role in edematous disorders, hypertension, chronic renal failure, and metabolic syndrome. Clin J Am Soc Nephrol. 2010;5:1132–40.

    Article  CAS  PubMed  Google Scholar 

  152. Imazu M, Takahama H, Asanuma H, Funada A, Sugano Y, Ohara T, Hasegawa T, Asakura M, Kanzaki H, Anzai T, Kitakaze M. Pathophysiological impact of serum fibroblast growth factor 23 in patients with non-ischemic cardiac disease and early chronic kidney disease. Am J Physiol Heart Circ Physiol. 2014;307:H1504–11.

    Article  CAS  PubMed  Google Scholar 

  153. Hu MC, Shiizaki K, Kuro-o M, Moe OW. Fibroblast growth factor 23 and Klotho: physiology and pathophysiology of an endocrine network of mineral metabolism. Annu Rev Physiol. 2013;75:503–33.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  154. Evenepoel P, Meijers B, Viaene L, Bammens B, Claes K, Kuypers D, Vanderschueren D, Vanrenterghem Y. Fibroblast growth factor-23 in early chronic kidney disease: additional support in favor of a phosphate-centric paradigm for the pathogenesis of secondary hyperparathyroidism. Clin J Am Soc Nephrol. 2010;5:1268–76.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  155. Faul C, Amaral AP, Oskouei B, Hu MC, Sloan A, Isakova T, Gutierrez OM, Aguillon-Prada R, Lincoln J, Hare JM, Mundel P, Morales A, Scialla J, Fischer M, Soliman EZ, Chen J, Go AS, Rosas SE, Nessel L, Townsend RR, Feldman HI, St John Sutton M, Ojo A, Gadegbeku C, Di Marco GS, Reuter S, Kentrup D, Tiemann K, Brand M, Hill JA, Moe OW, Kuro OM, Kusek JW, Keane MG, Wolf M. FGF23 induces left ventricular hypertrophy. J Clin Invest. 2011;121:4393–408.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  156. Zanchi C, Locatelli M, Benigni A, Corna D, Tomasoni S, Rottoli D, Gaspari F, Remuzzi G, Zoja C. Renal expression of FGF23 in progressive renal disease of diabetes and the effect of ace inhibitor. PLoS One. 2013;8:e70775.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  157. Prie D, Forand A, Francoz C, Elie C, Cohen I, Courbebaisse M, Eladari D, Lebrec D, Durand F, Friedlander G. Plasma fibroblast growth factor 23 concentration is increased and predicts mortality in patients on the liver-transplant waiting list. PLoS One. 2013;8:e66182.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Iacopo Chiodini .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chiodini, I. et al. (2018). Adrenal Function and Skeletal Regulation. In: Lenzi, A., Migliaccio, S. (eds) Multidisciplinary Approach to Osteoporosis. Springer, Cham. https://doi.org/10.1007/978-3-319-75110-8_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-75110-8_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-75108-5

  • Online ISBN: 978-3-319-75110-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics