Skip to main content

Genetics of Osteoporosis

  • Chapter
  • First Online:
Book cover Multidisciplinary Approach to Osteoporosis

Abstract

Genetic components are known to strongly influence bone mineral density (BMD) and bone architecture and turnover, playing an important role in determining risk of osteoporosis and fragility fractures. Twin and family linkage studies confirmed the importance of genetic factors in the individual variance of bone mass peak, BMD, bone geometry, and metabolism and, thus, in predisposition to osteoporosis and related fractures.

Osteoporosis is a complex, multifactorial disorder whose pathogenesis is due to the addictive effects of various genetic determinants interacting with environmental influences and lifestyle habits. Several genes have been associated with bone mass and other determinants of fracture risk, each of them exerting a relatively modest single effect on the bone tissue. The synergic action of various predisposing alleles, within different genes, in association with environmental and lifestyle risk factors is presumably responsible for osteoporosis development and fragility fracture occurrence.

This chapter aims to review the current knowledge on major genetic factors involved in the regulation of bone mass, architecture, and turnover, thus exerting a possible role also in the pathophysiology of osteoporosis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ralston SH. Genetic determinants of susceptibility to osteoporosis. Curr Opin Pharmacol. 2003;3:286–90.

    Article  CAS  PubMed  Google Scholar 

  2. Guéguen R, Jouanny P, Guillemin F, Kuntz C, Pourel J, Siest G. Segregation analysis and variance components analysis of bone mineral density in healthy families. J Bone Miner Res. 1995;10(12):2017–22.

    Article  PubMed  Google Scholar 

  3. Krall EA, Dawson-Hughes B. Heritable and life-style determinants of bone mineral density. J Bone Miner Res. 1993;8(1):1–9.

    Article  CAS  Google Scholar 

  4. Arden NK, Baker J, Hogg C, Baan K, Spector TD. The heritability of bone mineral density, ultrasound of the calcaneus and hip axis length: a study of postmenopausal twins. J Bone Miner Res. 1996;11(4):530–4.

    Article  CAS  PubMed  Google Scholar 

  5. Garnero P, Arden NK, Griffiths G, Delmas PD, Spector TD. Genetic influence on bone turnover in postmenopausal twins. J Clin Endocrinol Metab. 1996;81(1):140–6.

    PubMed  CAS  Google Scholar 

  6. Eisman JA. Genetics of osteoporosis. Endocr Rev. 1999;20:788–4.

    Article  CAS  PubMed  Google Scholar 

  7. MacGregor A, Snieder H, Spector TD. Genetic factors and osteoporotic fractures in elderly people. Twin data support genetic contribution to risk of fracture. BMJ. 2000;320(7250):1669–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Yavropoulou MP, Yovos JG. The role of the Wnt signaling pathway in osteoblast commitment and differentiation. Hormones. 2007;6(4):279–94.

    Article  PubMed  Google Scholar 

  9. Ferrari SL, Deutsch S, Choudhury U, Chevalley T, Bonjour JP, Dermitzakis ET, Rizzoli R, Antonarakis SE. Polymorphisms in the low-density lipoprotein receptor-related protein 5 (LRP5) gene are associated with variation in vertebral bone mass, vertebral bone size, and stature in whites. Am J Hum Genet. 2004;74(5):866–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Koh JM, Jung MH, Hong JS, Park HJ, Chang JS, Shin HD, Kim SY, Kim GS. Association between bone mineral density and LDL receptor-related protein 5 gene polymorphisms in young Korean men. J Korean Med Sci. 2004;19(3):407–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Ferrari SL, Deutsch S, Baudoin C, Cohen-Solal M, Ostertag A, Antonarakis SE, Rizzoli R, de Vernejoul MC. LRP5 gene polymorphisms and idiopathic osteoporosis in men. Bone. 2005;37(6):770–5.

    Article  CAS  PubMed  Google Scholar 

  12. van Meurs JB, Rivadeneira F, Jhamai M, et al. Common genetic variation of the low-density lipoprotein receptor-related protein 5 and 6 genes determined fracture risk in elderly white men. J Bone Miner Res. 2006;21(1):141–50.

    Article  CAS  PubMed  Google Scholar 

  13. Tran BNH, Nguyen ND, Eisman JA, Nguyen TV. Association between LRP5 polymorphism and bone mineral density: a Bayesian meta-analysis. BMC Med Genet. 2008;9:55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. van Meurs JBJ, Trikalinos TA, Ralston SH, et al. Large-scale analysis of association between LRP5 and LRP6 variants and osteoporosis. JAMA. 2008;299(11):1277–90.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Morrison NA, Qi JC, Tokita A, Kelly PJ, Crofts L, Nguyen TV, Sambrook PN, Eisman JA. Prediction of bone density from vitamin D receptor alleles. Nature. 1994;367(6460):284–7.

    Article  CAS  PubMed  Google Scholar 

  16. Uitterlinden AG, Ralston SH, Brandi ML, Carey AH, Grinberg D, Langdahl BL, Lips P, Lorenc R, et al. The association between common vitamin D receptor gene variations and osteoporosis: a participant-level meta-analysis. Ann Intern Med. 2006;145(4):255–64.

    Article  CAS  PubMed  Google Scholar 

  17. Thakkinstian A, D’Este C, Attia J. Haplotype analysis of VDR gene polymorphisms: a meta-analysis. Osteoporos Int. 2004;15(9):729–34.

    Article  CAS  PubMed  Google Scholar 

  18. Ferrari S, Rizzoli R, Chevalley T, et al. Vitamin-D-receptor-gene polymorphisms and change in lumbar-spine bone mineral density. Lancet. 1995;345(8947):423–4.

    Article  CAS  PubMed  Google Scholar 

  19. Ferrari S. Genetics, nutrition and bone health. In: Holick M, Dawson-Hughes E, editors. Nutrition and bone health. Totowa: The Humana press Inc; 2004. p. 19–41.

    Chapter  Google Scholar 

  20. Herrington DM, Howard TD, Brosnihan KB, McDonnell DP, Li X, Hawkins GA, et al. Common estrogen receptor polymorphism augments effects of hormone replacement therapy on E-selectin but not C-reactive protein. Circulation. 2002;105:1879–82.

    Article  CAS  PubMed  Google Scholar 

  21. Maruyama H, Toji H, Harrington CR, Sasaki K, Izumi Y, Ohnuma T, et al. Lack of an association of estrogen receptor α gene polymorphisms and transcriptional activity with Alzheimer disease. Arch Neurol. 2000;57:236–40.

    Article  CAS  PubMed  Google Scholar 

  22. Ioannidis JP, Stravrou I, Trikalinos TA, Zois C, Brandi ML, Gennari L, et al. Association of polymorphisms of the estrogen receptor α gene with bone mineral density and fracture risk in women: a meta-analysis. J Bone Miner Res. 2002;17:2048–60.

    Article  CAS  PubMed  Google Scholar 

  23. Ioannidis JP, Ralston SH, Bennett ST, Brandi ML, Grinberg D, Karassa FB, et al. Differential genetic effects of ESR1 gene polymorphisms on osteoporosis outcomes. JAMA. 2004;292(17):2105–14.

    Article  CAS  PubMed  Google Scholar 

  24. Shearman AM, Karasik D, Gruenthal KM, Demissie S, Cupples LA, Housman DE, et al. Estrogen receptor beta polymorphisms are associated with bone mass in women and men: the Framingham Study. J Bone Miner Res. 2004;19(5):773–81.

    Article  CAS  PubMed  Google Scholar 

  25. Scariano JK, Simplicio SG, Montoya GD, Garry PJ, Baumgartner RN. Estrogen receptor beta dinucleotide (CA) repeat polymorphism is significantly associated with bone mineral density in postmenopausal women. Calcif Tissue Int. 2004;74(6):501–8.

    Article  CAS  PubMed  Google Scholar 

  26. Rivadeneira F, van Meurs JB, Kant J, Zillikens MC, Stolk L, Beck TJ, et al. Estrogen receptor beta (ESR2) polymorphisms in interaction with estrogen receptor alpha (ESR1) and insulin-like growth factor I (IGF1) variants influence the risk of fracture in postmenopausal women. J Bone Miner Res. 2006;21(9):1443–56.

    Article  CAS  PubMed  Google Scholar 

  27. Masi L, Becherini L, Gennari L, Amedei A, Colli E, Falchetti A, et al. Polymorphism of the aromatase gene in postmenopausal Italian women: distribution and correlation with bone mass and fracture risk. J Clin Endocrinol Metab. 2001;86:2263–9.

    PubMed  CAS  Google Scholar 

  28. Gennari L, Masi L, Merlotti D, Picariello L, Falchetti A, Tanini A, et al. A polymorphic CYP19 TTTA repeat influences aromatase activity and estrogen levels in elderly men: effects on bone metabolism. J Clin Endocrinol Metab. 2004;89(6):2803–10.

    Article  CAS  PubMed  Google Scholar 

  29. Salmen T, Heikkinen AM, Mahonen A, Kröger H, Komulainen M, Pallonen H, et al. Relation of aromatase gene polymorphism and hormone replacement therapy to serum estradiol levels, bone mineral density, and fracture risk in early postmenopausal women. Ann Med. 2003;35(4):282–8.

    Article  PubMed  Google Scholar 

  30. Zarrabeitia MT, Hernández JL, Valero C, Zarrabeitia AL, García-Unzueta M, Amado JA, et al. A common polymorphism in the 5′-untranslated region of the aromatase gene influences bone mass and fracture risk. Eur J Endocrinol. 2004;150(5):699–704.

    Article  CAS  PubMed  Google Scholar 

  31. Riancho JA, Zarrabeitia MT, Valero C, Sañudo C, Hernández JL, Amado JA, et al. Aromatase gene and osteoporosis: relationship of ten polymorphic loci with bone mineral density. Bone. 2005;36(5):917–25.

    Article  CAS  PubMed  Google Scholar 

  32. Enjuanes A, Garcia-Giralt N, Supervía A, Nogués X, Ruiz-Gaspà S, Bustamante M, et al. A new SNP in a negative regulatory region of the CYP19A1 gene is associated with lumbar spine BMD in postmenopausal women. Bone. 2006;38(5):738–43.

    Article  CAS  PubMed  Google Scholar 

  33. Lorentzon M, Swanson C, Eriksson AL, Mellström D, Ohlsson C. Polymorphisms in the aromatase gene predict areal BMD as a result of affected cortical bone size: the GOOD study. J Bone Miner Res. 2006;21(2):332–9.

    Article  CAS  PubMed  Google Scholar 

  34. Mullin BH, Carter KW, Lewis JR, Ingley E, Wilson SG, Prince RL. Significant association between common polymorphisms in the aromatase gene CYP19A1 and bone mineral density in postmenopausal women. Calcif Tissue Int. 2011;89(6):464–71.

    Article  CAS  PubMed  Google Scholar 

  35. Koudu Y, Onouchi T, Hosoi T, Horiuchi T. Association of CYP19 gene polymorphism with vertebral fractures in Japanese postmenopausal women. Biochem Genet. 2012;50(5-6):389–96.

    Article  CAS  PubMed  Google Scholar 

  36. Markatseli AE, Lazaros L, Markoula S, Kostoulas H, Sakaloglou P, Tigas S, et al. Association of the (TTTA)n repeat polymorphism of CYP19 gene with bone mineral density in Greek peri- and postmenopausal women. Clin Endocrinol. 2014;81(1):38–44.

    Article  CAS  Google Scholar 

  37. Casas-Avila L, Valdés-Flores M, Miranda-Duarte A, Ponce de León-Suárez V, Castro-Hernández C, Rubio-Lightbourn J, et al. Association of a (TTTA)n microsatellite and a TCT del/ins polymorphisms in the aromatase gene (CYP19) with hip fracture risk in Mexican postmenopausal women. Gynecol Endocrinol. 2015;31(12):987–91.

    Article  CAS  PubMed  Google Scholar 

  38. Mann V, Hobson EE, Li B, Stewart TL, Grant SF, Robins SP, et al. A COL1A1 Sp1 binding site polymorphism predisposes to osteoporotic fracture by affecting bone density and quality. J Clin Invest. 2001;107(7):899–907.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Uitterlinden AG, Burger H, Huang Q, Yue F, McGuigan FE, Grant SF, et al. Relation of alleles of the collagen type I alpha1 gene to bone density and the risk of osteoporotic fractures in postmenopausal women. N Engl J Med. 1998;338(15):1016–21.

    Article  CAS  PubMed  Google Scholar 

  40. Mann V, Ralston SH. Meta-analysis of COL1A1 Sp1 polymorphism in relation to bone mineral density and osteoporotic fracture. Bone. 2003;32(6):711–7.

    Article  CAS  PubMed  Google Scholar 

  41. Efstathiadou Z, Tsatsoulis A, Ioannidis JP. Association of collagen I alpha 1 Sp1 polymorphism with the risk of prevalent fractures: a meta-analysis. J Bone Miner Res. 2001;16(9):1586–92.

    Article  CAS  PubMed  Google Scholar 

  42. Ralston SH, Uitterlinden AG, Brandi ML, Balcells S, Langdahl BL, Lips P, et al. Large-scale evidence for the effect of the COLIA1 Sp1 polymorphism on osteoporosis outcomes: the GENOMOS study. PLoS Med. 2006;3(4):e90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Uitterlinden AG, Weel AE, Burger H, Fang Y, van Duijn CM, Hofman A, et al. Interaction between the vitamin D receptor gene and collagen type I alpha1 gene in susceptibility for fracture. J Bone Miner Res. 2001;16(2):379–85.

    Article  CAS  PubMed  Google Scholar 

  44. Uitterlinden AG, Arp PP, Paeper BW, Charmley P, Proll S, Rivadeneira F, et al. Polymorphisms in the sclerosteosis/van Buchem disease gene (SOST) region are associated with bone-mineral density in elderly whites. Am J Hum Genet. 2004;75(6):1032–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Massagué J, Chen YG. Controlling TGF-β signalling. Genes Dev. 2000;14:627–44.

    PubMed  Google Scholar 

  46. Yamada Y, Miyauchi A, Goto J, Takagi Y, Okuizumi H, Kanematsu M, et al. Association of a polymorphism of the transforming growth factor-beta1 gene with genetic susceptibility to osteoporosis in postmenopausal Japanese women. J Bone Miner Res. 1998;13(10):1569–76.

    Article  CAS  PubMed  Google Scholar 

  47. Langdahl BL, Knudsen JY, Jensen HK, Gregersen N, Eriksen EF. A sequence variation: 713-8delC in the transforming growth factor-beta 1 gene has higher prevalence in osteoporotic women than in normal women and is associated with very low bone mass in osteoporotic women and increased bone turnover in both osteoporotic and normal women. Bone. 1997;20(3):289–94.

    Article  CAS  PubMed  Google Scholar 

  48. Langdahl BL, Carstens M, Stenkjaer L, Eriksen EF. Polymorphisms in the transforming growth factor beta 1 gene and osteoporosis. Bone. 2003;32(3):297–310.

    Article  CAS  PubMed  Google Scholar 

  49. Langdahl BL, Uitterlinden AG, Ralston SH, Trikalinos TA, Balcells S, Brandi ML, et al. Large-scale analysis of association between polymorphisms in the transforming growth factor beta 1 gene (TGFB1) and osteoporosis: the GENOMOS study. Bone. 2008;42(5):969–81.

    Article  CAS  PubMed  Google Scholar 

  50. Sun J, Zhang C, Xu L, Yang M, Yang H. The transforming growth factor-β1 (TGF-β1) gene polymorphisms (TGF-β1 T869C and TGF-β1 T29C) and susceptibility to postmenopausal osteoporosis: a meta-analysis. Medicine. 2015;94(4):e461.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Huang QY, Li GH, Kung AW. The -9247 T/C polymorphism in the SOST upstream regulatory region that potentially affects C/EBP alpha and FOXA1 binding is associated with osteoporosis. Bone. 2009;45(2):289–94.

    Article  CAS  PubMed  Google Scholar 

  52. Valero C, Zarrabeitia MT, Hernández JL, Pineda B, Cano A, García-Pérez MA, Riancho JA. Relationship of sclerostin and secreted frizzled protein polymorphisms with bone mineral density: an association study with replication in postmenopausal women. Menopause. 2011;18(7):802–7.

    Article  PubMed  Google Scholar 

  53. Piters E, de Freitas F, Nielsen TL, Andersen M, Brixen K, Van Hul W. Association study of polymorphisms in the SOST gene region and parameters of bone strength and body composition in both young and elderly men: data from the Odense Androgen Study. Calcif Tissue Int. 2012;90(1):30–9.

    Article  CAS  PubMed  Google Scholar 

  54. He J, Zhang H, Wang C, Zhang Z, Yue H, Hu W, et al. Associations of serum sclerostin and polymorphisms in the SOST gene with bone mineral density and markers of bone metabolism in postmenopausal Chinese women. J Clin Endocrinol Metab. 2014;99(4):E665–73.

    Article  CAS  PubMed  Google Scholar 

  55. Zhang H, He JW, Wang C, Zhang Z, Yue H, Hu WW, et al. Associations of polymorphisms in the SOST gene and bone mineral density in postmenopausal Chinese Women. Osteoporos Int. 2014;25(12):2797–803.

    Article  CAS  PubMed  Google Scholar 

  56. Medici M, van Meurs JB, Rivadeneira F, Zhao H, Arp PP, Hofman A, Pols HA, Uitterlinden AG. BMP-2 gene polymorphisms and osteoporosis: the Rotterdam Study. J Bone Miner Res. 2006;21(6):845–54.

    Article  CAS  PubMed  Google Scholar 

  57. McGuigan FE, Larzenius E, Callreus M, Gerdhem P, Luthman H, Akesson K. Variation in the BMP2 gene: bone mineral density and ultrasound in young adult and elderly women. Calcif Tissue Int. 2007;81(4):254–62.

    Article  CAS  PubMed  Google Scholar 

  58. Styrkarsdottir U, Cazier JB, Kong A, Rolfsson O, Larsen H, Bjarnadottir E, et al. Linkage of osteoporosis to chromosome 20p12 and association to BMP2. PLoS Biol. 2003;1(3):E69.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Ramesh Babu L, Wilson SG, Dick IM, Islam FM, Devine A, Prince RL. Bone mass effects of a BMP4 gene polymorphism in postmenopausal women. Bone. 2005;36(3):555–61.

    Article  CAS  PubMed  Google Scholar 

  60. Langdahl BL, Carstens M, Stenkjaer L, Eriksen EF. Polymorphisms in the osteoprotegerin gene are associated with osteoporotic fractures. J Bone Miner Res. 2002;17(7):1245–55.

    Article  CAS  PubMed  Google Scholar 

  61. Arko B, Prezelj J, Komel R, Kocijancic A, Hudler P, Marc J. Sequence variations in the osteoprotegerin gene promoter in patients with postmenopausal osteoporosis. J Clin Endocrinol Metab. 2002;87(9):4080–4.

    Article  CAS  PubMed  Google Scholar 

  62. Zhao HY, Liu JM, Ning G, Zhao YJ, Zhang LZ, Sun LH, et al. The influence of Lys3Asn polymorphism in the osteoprotegerin gene on bone mineral density in Chinese postmenopausal women. Osteoporos Int. 2005;16(12):1519–24.

    Article  CAS  PubMed  Google Scholar 

  63. Arko B, Prezelj J, Kocijancic A, Komel R, Marc J. Association of the osteoprotegerin gene polymorphisms with bone mineral density in postmenopausal women. Maturitas. 2005;51(3):270–9.

    Article  CAS  PubMed  Google Scholar 

  64. Vidal C, Brincat M, Xuereb Anastasi A. TNFRSF11B gene variants and bone mineral density in postmenopausal women in Malta. Maturitas. 2006;53(4):386–95.

    Article  CAS  PubMed  Google Scholar 

  65. Mencej-Bedrač S, Preželj J, Marc J. TNFRSF11B gene polymorphisms 1181G > C and 245T > G as well as haplotype CT influence bone mineral density in postmenopausal women. Maturitas. 2011;69(3):263–7.

    Article  CAS  PubMed  Google Scholar 

  66. Zhang F, He C, Chen G, Li F, Gao H. Association analyses of osteoprotegerin gene polymorphisms with bone mineral density in Chinese postmenopausal women. Med Oncol. 2013;30(1):389.

    Article  CAS  PubMed  Google Scholar 

  67. Yu F, Huang X, Miao J, Guo L, Tao D. Association between osteoprotegerin genetic variants and osteoporosis in Chinese postmenopausal women. Endocr J. 2013;60(12):1303–7.

    Article  CAS  PubMed  Google Scholar 

  68. Lin H, Zhang G, Chen X, Wu X, Wu C, Ca H, et al. The relationship between the g.27450A>T genetic variant of OPG gene and osteoporosis in Chinese postmenopausal women. Int Immunopharmacol. 2014;21(2):464–7.

    Article  CAS  PubMed  Google Scholar 

  69. Boroňová I, Bernasovská J, Mačeková S, Petrejčíková E, Tomková Z, Kľoc J, et al. TNFRSF11B gene polymorphisms, bone mineral density, and fractures in Slovak postmenopausal women. J Appl Genet. 2015;56(1):57–63.

    Article  CAS  PubMed  Google Scholar 

  70. Koh JM, Park BL, Kim DJ, Kim GS, Cheong HS, Kim TH, et al. Identification of novel RANK polymorphisms and their putative association with low BMD among postmenopausal women. Osteoporos Int. 2007;18(3):323–31.

    Article  CAS  PubMed  Google Scholar 

  71. Işleten B, Durmaz B, Durmaz B, Onay H, Ozkınay F, Durmaz A, et al. The association of RANK gene C421T and C575T polymorphisms with bone mineral density in postmenopausal Turkish women. Arch Gynecol Obstet. 2013;288(4):917–23.

    Article  CAS  PubMed  Google Scholar 

  72. Tu P, Duan P, Zhang RS, Xu DB, Wang Y, Wu HP, et al. Polymorphisms in genes in the RANKL/RANK/OPG pathway are associated with bone mineral density at different skeletal sites in post-menopausal women. Osteoporos Int. 2015;26(1):179–85.

    Article  CAS  PubMed  Google Scholar 

  73. Mencej S, Prezelj J, Kocijancic A, Ostanek B, Marc J. Association of TNFSF11 gene promoter polymorphisms with bone mineral density in postmenopausal women. Maturitas. 2006;55(3):219–26.

    Article  CAS  PubMed  Google Scholar 

  74. Vaughan T, Pasco JA, Kotowicz MA, Nicholson GC, Morrison NA. Alleles of RUNX2/CBFA1 gene are associated with differences in bone mineral density and risk of fracture. J Bone Miner Res. 2002;17(8):1527–34.

    Article  CAS  PubMed  Google Scholar 

  75. Bustamante M, Nogués X, Agueda L, Jurado S, Wesselius A, Cáceres E, et al. Promoter 2 -1025 T/C polymorphism in the RUNX2 gene is associated with femoral neck bmd in Spanish postmenopausal women. Calcif Tissue Int. 2007;81(4):327–32.

    Article  CAS  PubMed  Google Scholar 

  76. Lee HJ, Koh JM, Hwang JY, Choi KY, Lee SH, Park EK, et al. Association of a RUNX2 promoter polymorphism with bone mineral density in postmenopausal Korean women. Calcif Tissue Int. 2009;84(6):439–45.

    Article  CAS  PubMed  Google Scholar 

  77. Pineda B, Hermenegildo C, Laporta P, Tarín JJ, Cano A, García-Pérez MÁ. Common polymorphisms rather than rare genetic variants of the Runx2 gene are associated with femoral neck BMD in Spanish women. J Bone Miner Metab. 2010;28(6):696–705.

    Article  CAS  PubMed  Google Scholar 

  78. Kim KC, Chun H, Lai C, Parnell LD, Jang Y, Lee J, et al. The association between genetic variants of RUNX2, ADIPOQ and vertebral fracture in Korean postmenopausal women. J Bone Miner Metab. 2015;33(2):173–9.

    Article  CAS  PubMed  Google Scholar 

  79. Kiel DP, Demissie S, Dupuis J, Lunetta KL, Murabito JM, Karasik D. Genome-wide association with bone mass and geometry in the Framingham Heart Study. BMC Med Genet. 2007;8(Suppl 1):S14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Richards JB, Rivadeneira F, Inouye M, Pastinen TM, Soranzo N, Wilson SG, et al. Bone mineral density, osteoporosis, and osteoporotic fractures: a genome-wide association study. Lancet. 2008;371(9623):1505–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Styrkarsdottir U, Halldorsson BV, Gretarsdottir S, Gudbjartsson DF, Walters GB, Ingvarsson T, et al. Multiple genetic loci for bone mineral density and fractures. N Engl J Med. 2008;358(22):2355–65.

    Article  CAS  PubMed  Google Scholar 

  82. Rivadeneira F, Styrkársdottir U, Estrada K, Halldórsson BV, Hsu YH, Richards JB, et al. Twenty bone-mineral-density loci identified by large-scale meta-analysis of genome-wide association studies. Nat Genet. 2009;41(11):1199–206.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Estrada K, Styrkarsdottir U, Evangelou E, Hsu YH, Duncan EL, Ntzani EE, et al. Genome-wide meta-analysis identifies 56 bone mineral density loci and reveals 14 loci associated with risk of fracture. Nat Genet. 2012;44(5):491–501.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Luisa Brandi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Marini, F., Masi, L., Marcucci, G., Cianferotti, L., Brandi, M.L. (2018). Genetics of Osteoporosis. In: Lenzi, A., Migliaccio, S. (eds) Multidisciplinary Approach to Osteoporosis. Springer, Cham. https://doi.org/10.1007/978-3-319-75110-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-75110-8_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-75108-5

  • Online ISBN: 978-3-319-75110-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics