Skip to main content

Nonlinear Theory: Optical Mode Analysis

  • Chapter
  • First Online:
Principles of Free Electron Lasers

Abstract

The previous chapter dealt with the nonlinear theory in the steady-state regime based on the slowly varying envelope approximation (SVEA). Most of the time-dependent free-electron laser simulation codes that are in use at the present time deal either with an extension of the SVEA in order to solve the wave equation or a particle-in-cell simulation where Maxwell’s equations are solved using a finite-difference time-domain (FDTD) algorithm. The time-dependent formulation presented in this chapter is an extension of the SVEA, in which the SVEA is extended by allowing the slowly varying amplitude to vary in both axial position and time. A time-dependent formulation is necessary to simulate short-wavelength free-electron lasers employing radio-frequency linear accelerators (RF linacs) or storage rings. RF linacs produce high-energy beams with picosecond pulse times and bunch charges of at most several nano-Coulombs. In X-ray free-electron lasers, the actual bunch charge used is about 250 pC or less. Since the growth rate depends upon the peak current, it is desirable to produce bunches with peak currents of several hundred to several thousand amperes, and this requires compression of the bunch to sub-picosecond pulse times. As a result, the slippage of the optical field relative to the electrons can be significant. In addition to describing the slippage of the optical pulse, time dependence is also needed to study the spectral properties of the optical field such as the temporal coherence, linewidth, sideband production, etc. Furthermore, in contrast to the guided-mode analysis used for the steady-state formulation presented in the preceding chapter, the three-dimensional formulations presented in this chapter make use of superpositions of Gaussian optical modes to represent the radiation fields.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. S. Reiche, Genesis 1.3: a fully time-dependent FEL simulation code. Nucl. Inst. Methods A429, 243 (1999)

    Article  Google Scholar 

  2. E.L. Saldin, E.A. Schneidmiller, M. Yurkov, FAST: three-dimensional time-dependent FEL simulation code. Nucl. Inst. Methods Phys. Res. A429, 233 (1999)

    Article  Google Scholar 

  3. H.P. Freund, S.G. Biedron, S.V. Milton, Nonlinear harmonic generation in free-electron lasers. IEEE J. Quantum Electron. 36, 275 (2000)

    Article  Google Scholar 

  4. L. Giannessi, in Proceedings of the 2006 FEL Conference (http://www.jacow.org, 2006), p. MOPPH026

  5. W. Fawley, An Informal Manual for GINGER and Its Post-Processor XPLOTGIN. LBID-2141, CBP Tech Note-104, UC-414 (1995)

    Google Scholar 

  6. H.P. Freund, Time-dependent simulation of free-electron laser amplifiers and oscillators. Phys. Rev. ST-AB 8, 110701 (2005)

    Google Scholar 

  7. L.T. Campbell, B.W.J. McNeil, PUFFIN: a three-dimensional, unaveraged free-electron laser simulation code. Phys. Plasmas 19, 093119 (2012)

    Article  Google Scholar 

  8. C.K. Birdsall, A.B. Langdon, Plasma Physics Via Computer Simulation (McGraw-Hill, New York, 1985)

    Google Scholar 

  9. N. Piovella, High gain free electron laser amplifiers starting from coherent and incoherent spontaneous emission. Phys. Plasmas 6, 3358 (1999)

    Article  Google Scholar 

  10. E.T. Scharlemann, A.M. Sessler, J.S. Wurtele, Optical guiding in a free-electron laser. Phys. Rev. Lett. 54, 1925 (1985)

    Article  Google Scholar 

  11. G.T. Moore, High-gain and large-diffraction regimes of the free-electron laser. Nucl. Inst. Methods A250, 381 (1986)

    Article  Google Scholar 

  12. J.E. LaSala, D.A.G. Deacon, E.T. Scharlemann, Optical guiding simulations for high-gain short-wavelength free-electron lasers. Nucl. Inst. Methods A250, 389 (1986)

    Article  Google Scholar 

  13. A. Amir, Y. Greenzweig, Three-dimensional free-electron laser gain and evolution of optical modes. Nucl. Inst. Methods A250, 404 (1986)

    Article  Google Scholar 

  14. P. Luchini, S. Solimeno, Optical guiding in a free-electron laser. Nucl. Inst. Methods A250, 413 (1986)

    Article  Google Scholar 

  15. M. Xie, D.A.G. Deacon, Theoretical study of free-electron laser active guiding in the small signal regime. Nucl. Inst. Methods A250, 426 (1986)

    Article  Google Scholar 

  16. J. Gallardo, L.R. Elias, Multimode dynamics in a free-electron laser with energy shift. Nucl. Inst. Methods A250, 438 (1986)

    Article  Google Scholar 

  17. B.D. McVey, Three-dimensional simulations of free-electron laser physics. Nucl. Inst. Methods A250, 449 (1986)

    Article  Google Scholar 

  18. R.H. Pantell, J. Feinstein, Free-electron laser mode propagation at saturation. IEEE J. Quantum Electron. QE–23, 1534 (1987)

    Article  Google Scholar 

  19. P. Sprangle, A. Ting, C.M. Tang, Analysis of radiation focusing and steering in the free-electron laser by use of a source dependent expansion technique. Phys. Rev. A 36, 2773 (1987)

    Article  Google Scholar 

  20. S.Y. Cai, A. Bhattacharjee, T.C. Marshall, Optical guiding in a Raman free-electron laser. IEEE J. Quantum Electron. QE–23, 1651 (1987)

    Article  Google Scholar 

  21. P. Luchini, More on optical guiding in a free-electron laser. Nucl. Inst. Methods A259, 150 (1987)

    Article  Google Scholar 

  22. R.W. Warren, B.D. McVey, Bending and focusing effects in a free-electron laser oscillator I: simple models. Nucl. Inst. Methods A259, 154 (1987)

    Article  Google Scholar 

  23. B.D. McVey, R.W. Warren, Bending and focusing effects in a free-electron laser oscillator II: numerical simulations. Nucl. Inst. Methods A259, 158 (1987)

    Article  Google Scholar 

  24. A. Bhattacharjee, S.Y. Cai, S.P. Chang, J.W. Dodd, T.C. Marshall, Observations of optical guiding in a Raman free-electron laser. Phys. Rev. Lett. 60, 1254 (1988)

    Article  Google Scholar 

  25. G. Bourianoff, B. Moore, M. Rosenbluth, F. Waelbroeck, H. Waelbroeck, H.V. Wong, Adaptive eigenmode expansion for 3-D free-electron laser simulations. Nucl. Inst. Methods A272, 340 (1988)

    Article  Google Scholar 

  26. T.M. Antonsen, B. Levush, Optical guiding in the separable beam limit. Nucl. Inst. Methods A272, 472 (1988)

    Article  Google Scholar 

  27. A. Fruchtman, Optical guiding in a sheet-beam free-electron laser. Phys. Rev. A 37, 2989 (1988)

    Article  Google Scholar 

  28. M.H. Whang, S.P. Kuo, Self-focusing of laser pulses in magnetized relativistic electron beams. Nucl. Inst. Methods A272, 477 (1988)

    Article  Google Scholar 

  29. Y.J. Chen, S. Solimeno, L. Carlomusto, Optical guiding in a free-electron laser with full account of electron wiggling and 3-D propagation. Nucl. Inst. Methods A272, 490 (1988)

    Article  Google Scholar 

  30. J.C. Gallardo, G. Dattoli, A. Renieri, T. Hermsen, Integral equation for the laser field: multimode description of a free-electron laser oscillator. Nucl. Inst. Methods A272, 516 (1988)

    Article  Google Scholar 

  31. A. Bhowmik, S. Bitterly, R.A. Cover, P. Kennedy, R.H. Labbe, Transverse mode control in high gain free-electron lasers with grazing incidence, unstable ring resonators. Nucl. Inst. Methods A272, 524 (1988)

    Article  Google Scholar 

  32. M. Xie, D.A.G. Deacon, J.M.J. Madey, The guided mode expansion in free-electron lasers. Nucl. Inst. Methods A272, 528 (1988)

    Article  Google Scholar 

  33. T.M. Antonsen, G. Laval, Suppression of sidebands by diffraction in a free-electron laser. Phys. Fluids B 1, 1721 (1989)

    Article  Google Scholar 

  34. M. Lontano, A.M. Sergeev, A. Cardinali, Dynamical self-focusing of high-power free-electron laser radiation in a magnetized plasma. Phys. Fluids B 1, 901 (1989)

    Article  Google Scholar 

  35. A. Bhattacharjee, S.Y. Cai, S.P. Chang, J.W. Dodd, A. Fruchtman, T.C. Marshall, Theory and observation of optical guiding in a free-electron laser. Phys. Rev. A 40, 5081 (1989)

    Article  Google Scholar 

  36. N. Metzler, T.M. Antonsen, B. Levush, Nonlinear optical guiding in the separable beam limit. Phys. Fluids B 2, 1038 (1990)

    Article  Google Scholar 

  37. B. Hafizi, A. Ting, P. Sprangle, C.M. Tang, Effect of tapering on optical guiding and sideband growth in a finite-pulse free-electron laser. Nucl. Inst. Methods A296, 442 (1990)

    Article  Google Scholar 

  38. H.P. Freund, C.L. Chang, Effect of the lower beat wave on optical guiding in planar wiggler free-electron lasers. Phys. Rev. A 42, 6737 (1990)

    Article  Google Scholar 

  39. H.P. Freund, T.M. Antonsen Jr., The relationship between optical guiding and the relative phase in free-electron lasers. IEEE J. Quantum Electron. QE–27, 2539 (1991)

    Article  Google Scholar 

  40. T.J. Orzechowski, E.T. Scharlemann, D.B. Hopkins, Measurement of the phase of the electromagnetic wave in a free-electron laser amplifier. Phys. Rev. A 35, 2184 (1987)

    Article  Google Scholar 

  41. H.P. Freund, Multimode nonlinear analysis of free-electron laser amplifiers in three dimensions. Phys. Rev. A 37, 3371 (1988)

    Article  Google Scholar 

  42. C. Penman, B.W.J. McNeil, Simulation of input electron noise in the free-electron laser. Opt. Commun. 90, 82 (1992)

    Article  Google Scholar 

  43. B.W.J. McNeil, M.W. Poole, G.R.M. Robb, Unified model of electron beam shot noise and coherent spontaneous emission in the helical wiggler free-electron laser. Phys. Rev. ST-AB 6, 070701 (2003)

    Google Scholar 

  44. L. Giannessi, Harmonic generation and linewidth narrowing in seeded free-electron lasers, in Proceedings of the 26th International Conference on Free-Electron Lasers (www.JACoW.org, 2004), p. 37

  45. H.P. Freund, L. Giannessi, W.H. Miner Jr., The effect of shot noise on the start up of the fundamental and harmonics in free-electron lasers. J. Appl. Phys. 104, 123114 (2008)

    Article  Google Scholar 

  46. W.M. Fawley, Algorithm for loading shot noise microbunching in multidimensional free-electron laser simulation codes. Phys. Rev. ST-AB 5, 070701 (2002)

    Google Scholar 

  47. J. Bahrdt, W. Frentrup, A. Gaupp, M. Scheer, W. Gudat, G. Ingold, S. Sasaki, Elliptically polarized insertion devices at BESSY II. Nucl. Inst. Methods A467-468, 21 (2001)

    Article  Google Scholar 

  48. A.A. Lutman et al., Polarization control in an x-ray free-electron laser. Nat. Photonics 10, 468 (2016)

    Article  Google Scholar 

  49. H.P. Freund, P.J.M. van der Slot, D.L.A.G. Grimminck, I.D. Setya, P. Falgari, Three-dimensional, time-dependent simulation of free-electron lasers with planar, helical, and elliptical undulators. New J. Phys. 19, 023020 (2017)

    Article  Google Scholar 

  50. J.R. Henderson, L.T. Campbell, H.P. Freund, B.W.J. McNeil, Modelling elliptically polarized free electron lasers. New J. Phys. 18, 062003 (2016)

    Article  Google Scholar 

  51. M. Xie, Design optimization for an X-ray free electron laser driven by the SLAC linac. in Proc. IEEE 1995 Particle Accelerator Conference, vol 183, IEEE Cat. No. 95CH35843 (1995)

    Google Scholar 

  52. A. Yariv, Quantum Electronics, 2nd edn. (John Wiley & Sons, New York, 1967)

    Google Scholar 

  53. P.A. Sprangle, A. Ting, C.M. Tang, Analysis of radiation focusing and steering in the free-electron laser by use of a source-dependent expansion. Phys. Rev. A 36, 2773 (1987)

    Article  Google Scholar 

  54. X.J. Wang, T. Watanabe, Y. Shen, R. Li, J.B. Murphy, T. Tsang, H.P. Freund, Efficiency enhancement using electron energy detuning in a laser seeded free electron laser amplifier. Appl. Phys. Lett. 91, 181115 (2007)

    Article  Google Scholar 

  55. X.J. Wang, H.P. Freund, D. Harder, W.H. Miner Jr., J.B. Murphy, H. Qian, Y. Shen, X. Yang, Efficiency and spectrum enhancement in a tapered free-electron laser amplifier. Phys. Rev. Lett. 103, 154801 (2009)

    Article  Google Scholar 

  56. D.C. Quimby, S.C. Gottschalk, F.E. James, K.E. Robinson, J.M. Slater, A.S. Valla, Development of a 10-meter, wedged-pole undulator. Nucl. Inst. Methods A285, 281 (1989)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Freund, H.P., Antonsen, T.M. (2018). Nonlinear Theory: Optical Mode Analysis. In: Principles of Free Electron Lasers . Springer, Cham. https://doi.org/10.1007/978-3-319-75106-1_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-75106-1_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-75105-4

  • Online ISBN: 978-3-319-75106-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics