Skip to main content

Biotechnology and Apogamy in Dryopteris affinis spp. affinis: The Influence of Tissue Homogenization, Auxins, Cytokinins, Gibberellic Acid, and Polyamines

  • Chapter
  • First Online:
Current Advances in Fern Research

Abstract

Apomixis in ferns combines apogamy (the formation of sporophytes from somatic cells of prothallium) and agamospermy (the formation of unreduced diplo spores). This chapter evaluates the effects of phytohormones and their inhibitors on cellular regeneration, vegetative development, and apogamy in the gametophyte of the fern Dryopteris affinis spp. affinis. For this purpose, two type of explants—spores and homogenized gametophytes—were cultured in presence of the following compounds and concentrations: (a) spores: indole-3-butyric acid (IBA; 0.5–5–25 μM), gibberellic acid (GA3; 0.3–3 and 15 μM), 6-benzyladenine (BA; 0.4–4.4–22 μM), 2,3,5-triiodobenzoic acid (TIBA; 0.2–2–10 μM), flurprimidol (F; 0.3–3–15 μM), and cyclohexylamine (CHA; 0.06–0.6–5.6–55.5 μM); (b) homogenized gametophytes: IBA 0.5 μM + BA 4.4 μM; IBA 0.5 μM + BA 0.4 μM; IBA 5 μM + BA 0.4 μM; naphthalenacetic acid (NAA) 0.5 μM + BA 4.4 μM; NAA 2.7 μM + BA 2.2 μM; NAA 5.3 + BA μM 0.4; GA3 1.5 and 3 μM; TIBA 1 and 2 μM; and CHA 2.8 and 5.6 μM. Our results revealed that homogenate cultures from gametophytic tissue may be a good experimental system for manipulating the apogamy event. Apogamy may be accelerated in the regenerated gametophytes of D. affinis spp. affinis by cellular disruption or the addition of NAA/BA, GA3, or the spermidine synthase inhibitor CHA to the medium in a certain combination. Moreover, developing embryos were found to take a spatula shape before the meristematic area and lobulated wings are defined, which is typical of a heart-shaped gametophyte.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

BA:

6-benzyladenine

CHA:

Bromohydrate-cyclohexylamine

F:

Flurprimidol

GA3 :

Gibberellic acid

IBA:

Indole-3-butyric acid

MS:

Murashige and Skoog mineral medium (1962)

TIBA:

2,3,5-triiodobenzoic acid

References

  • von Aderkas P (1984) Promotion of Apogamy in Matteuccia struthiopteris, the Ostrich Fern. Am Fern J 74(1):1–6

    Article  Google Scholar 

  • Amaki W, Higuchi H (1991) A possible propagation system of Nephrolepis, Asplenium, Pteris, Adiantum and Rumora through tissue culture. Acta Hortic 300:237–243

    Google Scholar 

  • Barcaccia G, Albertini E (2013) Apomixis in plant reproduction: a novel perspective on an old dilemma. Plant Reprod 26:159–179. https://doi.org/10.1007/s00497-013-0222-y

    Article  PubMed  PubMed Central  Google Scholar 

  • Beck MJ, Caponetti JD (1983) The effects of kinetin and naphthalenacetic acid in vitro shoot multiplication and rooting in the fishtail fern. Am J Bot 70:1–7

    Article  CAS  Google Scholar 

  • Bouchereau A, Aziz A, Larher F, Martin-Tanguy J (1999) Polyamines and environmental challenges: recent development. Plant Sci 140:103–125

    Article  CAS  Google Scholar 

  • Camloh M (2006) In vitro culture of the fern Platycerium bifurcatum as a tool for various physiological and developmental studies. In: Floriculture, ornamental and plant biotechnology advances and topical issues. Springer, New York, pp 163–170

    Google Scholar 

  • Cetin E, Yildirim C, Palavan Unsal N, Unal M (2000) Effect of spermine and cyclohexylamine on in vitro pollen germination and tube growth in Helianthus annuus. Can J Plant Sci 80:241–245

    Article  CAS  Google Scholar 

  • Cooke RC (1979) Homogenization as an aid in tissue cultura propagation of Platycerium and Davallia. HortSci 14:21–22

    Google Scholar 

  • Cordle AR, Irish EE, Cheng CL (2007) Apogamy induction in Ceratopteris richardii. Int J Plant Sci 168:361–369. https://doi.org/10.1086/511049

    Article  Google Scholar 

  • Cordle AR, Bui LT, Irish EE, Cheng CL (2010) Laboratory-induced apogamy and apospory in Ceratopteris Richardii. In: Fernández H, Kumar A, Revilla MA (eds) Working with ferns: issues and applications. Springer, New York/Dordretch-Heidelberg/London, pp 25–36

    Google Scholar 

  • Cordle AR, Irish EE, Cheng CL (2012) Gene expression associated with apogamy commitment in Ceratopteris richardii. Sex Plant Reprod 25:293–304

    Article  CAS  PubMed  Google Scholar 

  • Deeb F, van der Weele CM, Wolniak SM (2010) Spermidine is a morphogenetic determinant for cell fate specification in the male gametophyte of the Water Fern Marsilea vestita. The Plant Cell Online 22:3678–3691. https://doi.org/10.1105/tpc.109.073254

    Article  CAS  Google Scholar 

  • De-la-Peña C, Galaz-Avalos RM, Loyola-Vargas VM (2008) Possible role of light and polyamines in the onset of somatic embryogenesis of Coffea canephora. Mol Biotechnol 39:215–224

    Article  PubMed  Google Scholar 

  • Domżalska L, Kędracka-Krok S, Jankowska U, Grzyb M, Sobczak M, Rybczyński JJ, Mikuła A (2017) Proteomic analysis of stipe explants reveals differentially expressed proteins involved in early direct somatic embryogenesis of the tree fern Cyathea delgadii Sternb. Plant Sci 258:61–76. https://doi.org/10.1016/j.plantsci.2017.01.017

    Article  PubMed  Google Scholar 

  • Dutra N, Silveira V, Gonçalves I, Ribeiro Gomes-Neto J, Façanha A, Steiner N, Santa-Catarina C (2013) Polyamines affect the cellular growth and structure of pro-embryogenic masses in Araucaria angustifolia embryogenic cultures through the modulation of proton pump activities and endogenous levels of polyamines. Physiol Plant 148(1):121–132

    Article  CAS  PubMed  Google Scholar 

  • Eeckhout S, Leroux O, Willats WGT, Popper ZA, Viane RLL (2014) Comparative glycan profiling of Ceratopteris richardii C-Fern` gametophytes and sporophytes links cell-wall composition to functional specialization. Ann Bot 114:1295–1307

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ekrt L, Koutecký P (2016) Between sexual and apomictic: unexpectedly variable sporogenesis and production of viable polyhaploids in the pentaploid fern of the Dryopteris affinis agg. (Dryopteridaceae). Ann Bot 117:97–106. https://doi.org/10.1093/aob/mcv152

    Article  PubMed  Google Scholar 

  • Elmore HW, Whittier DP (1975a) The involvement of ethylene and sucrose in the inductive and developmental phases of apogamous bud formation in Pteridium gametophytes. Can J Bot 53:375–381

    Article  CAS  Google Scholar 

  • Elmore HW, Whittier DP (1975b) Ethylene and carbohydrate requirements for apogamous bud induction in Pteridium gametophytes. Can J Bot 52:2089–2096

    Article  Google Scholar 

  • Emigh VD, Farrar DR (1977) Gemmae: a role in sexual reproduction in the fern gnus Vittaria. Science 198:297–298

    Article  CAS  PubMed  Google Scholar 

  • Fernández H, Revilla MA (2003) In vitro culture of ornamental ferns. Plant Cell Tissue Org Cult 73:1–13. https://doi.org/10.1023/A:1022650701341

    Article  Google Scholar 

  • Fernández H, Bertrand AM, Sánchez-Tamés R (1993) In vitro regeneration of Asplenium nidus L. from gametophytic and sporophytic tissue. Sci Hortic 56:71–77

    Article  Google Scholar 

  • Fernández H, Bertrand AM, Sánchez-Tamés R (1996) Influence of tissue culture conditions on apogamy in Dryopteris affinis ssp. Affinis. Plant Cell Tissue Organ Cult 45(1):93–97

    Article  Google Scholar 

  • Fernández H, Bertrand A, Sánchez-Tamés R (1997) Plantlet regeneration in Asplenium nidus l. and Pteris ensiformis l. by homogenization of Ba treated rhizomes. Sci Hortic 68:243–247. https://doi.org/10.1016/S0304-4238(96)00986-7

    Article  Google Scholar 

  • Fernández H, Bertrand AM, Sierra MI, Sánchez-Tamés R (1999) An apolar GA-like compound responsible for the antheridiogen activity in Blechnum spicant. Plant Growth Regul 28:143–144. https://doi.org/10.1023/A:1006263326546

    Article  Google Scholar 

  • Finnie JF, Van Staden J (1987) Multiplication of the tree fern Cyathea degrei. HortSci 22:665

    Google Scholar 

  • Gastony GJ, Windham MD (1989) Species concepts in pteridophytes: the treatment and definition of agamosporous species. Amer Fern J 79:65–77

    Article  Google Scholar 

  • Germanà MA (2011) Gametic embryogenesis and haploid technology as valuable support to plant breeding. Plant Cell Rep 30:839–857

    Article  PubMed  Google Scholar 

  • Grossmann J, Fernández H, Chaubey PM, Valdés AE, Gagliardini V, Cañal MJ, Russo G, Grossniklaus U (2017) Proteogenomic analysis greatly expands the identification of proteins related to reproduction in the Apogamous Fern Dryopteris affinis ssp. affinis. Front Plant Sci 8. https://doi.org/10.3389/fpls.2017.00336

  • Grossniklaus U, Nogler GA, van Dijk PJ (2001) How to avoid sex: the genetic control of developmental aspects. Plant Cell 13(7):1491–1497

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Harper K (1976) Asexual multiplication of Leptosporangiatae ferns through tissue culture. Dissertation, University of California.

    Google Scholar 

  • Hicks G, von Aderkas P (1986) A tissue culture of the ostrich fern Matteuccia struthiopteris L. Todaro. Plant Cell Tissue Organ Cult 5:199–204

    Article  CAS  Google Scholar 

  • Higuchi H, Amaki W (1989) Effects of 6-benzyladenine on the organogenesis of Asplenium nidus L. through in vitro propagation. Sci Hortic 37:351–359

    Article  CAS  Google Scholar 

  • Higuchi H, Amaki W, Suzuki S (1987) In vitro propagation of Nephrolepis cordifolia Prsel. Sci Hortic 32:105–113

    Article  Google Scholar 

  • Kandemi̇r N, Saygili I (2015) Apomixis: new horizons in plant breeding. Turk J Agric For 39(4):549–556. http://journals.tubitak.gov.tr/havuz/tar-1409-74.pdf

    Article  Google Scholar 

  • Kato Y (1970) Physiological and morphogenetic studies of fern gametophytes and sporophytes in aseptic culture. XII. Sporophyte formation in the dark cultured gametophyte of Pteris vittata L. Bot Gaz 121:205–210

    Google Scholar 

  • Kawakami, S.M., Kawakami, S., Kondo, K., Kato, J, and Ito, M. 2003. Sporogenesis in haploid sporophytes ofOsmunda japonica (Osmundaceae). Int. J. Plant Sci. 164:527–534

    Google Scholar 

  • Kazmierczak A (2010) Gibberellic acid and ethylene control male sex determination and development of Anemia phyllititdis gametophytes. In: Fernández H, Kumar A, Revilla MA (eds) Working with ferns. Issues and applications. Springer, New York, pp 49–65

    Google Scholar 

  • Knauss JF (1976) A partial tissue culture method for pathogen-free propagation of selected ferns from spores. Proc Fla State Hort 89:363–365

    Google Scholar 

  • Koltunow AM, Grossniklaus U (2003) Apomixis: a developmental perspective. Annu Rev Plant Biol 54:547–574

    Article  CAS  PubMed  Google Scholar 

  • Lee K, Seo PJ (2014) The Arabidopsis E3 ubiquitin ligase HOS1 contributes to auxin biosynthesis in the control of hypocotyl elongation. Plant Growth Regul 76:157–165. https://doi.org/10.1007/s10725-014-9985-x

    Article  Google Scholar 

  • Liu HM, Dyer RJ, Guo ZY, Meng Z, Li JH, Schneider H (2012) The evolutionary dynamics of apomixis in ferns: a case study from Polystichoid ferns. J Bot 11:510478. https://doi.org/10.1155/2012/510478

    Google Scholar 

  • Loescher WH, Alberch CN (1979) Development in vitro of Nephrolepsis exaltata cv. Bostoniennsis runner tissues. Physiol Plant 47:250–254

    Article  CAS  Google Scholar 

  • Lopez RA, Renzaglia KS (2014) Multiflagellated sperm cells of Ceratopteris richardii are bathed in arabinogalactan proteins throughout development. Am J Bot 101:2052–2061

    Article  CAS  PubMed  Google Scholar 

  • Lovis JD (1977) Evolutionary patterns and processes in ferns. Adv Bot Res 4:229–415

    Article  Google Scholar 

  • Manton I (1950) Problems of cytology and evolution in the Pteridophyta. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Mehra PN, Sulklyan DS (1969) In vitro studies on apogamy, apospory, and controlled differentiation of rhizome segments of the fern, Ampelopteris prolifera (Retz.) Copel. Bot J Linn Soc 62:431–443

    Article  CAS  Google Scholar 

  • Menéndez V, Revilla MA, Bernard P, Gotor V, Fernández H (2006b) Gibberellins and antheridiogen on sex in Blechnum spicant L. Plant Cell Rep 25(10):1104. https://doi.org/10.1007/s00299-006-0149-y

  • Menéndez V, Villacorta NF, Revilla MA, Gotor V, Bernard P, Fernández H (2006a) Exogenous and endogenous growth regulators on apogamy in Dryopteris affinis (Lowe) Fraser-Jenkins sp. affinis. Plant Cell Rep 25:85–91. https://doi.org/10.1007/s00299-005-0041-1

  • Menéndez V, Revilla MA, Fal MA, Fernández H (2009) The effect of cytokinins on growth and sexual organ development in the gametophyte of Blechnum spicant L. Plant Cell Tissue Org Cult 96:245–250. https://doi.org/10.1007/s11240-008-9481-y

    Article  Google Scholar 

  • Mikuła A, Pożoga M, Tomiczak K, Rybczyński JJ (2015) Somatic embryogenesis in ferns: a new experimental system. Plant Cell Rep 34:783–794

    Article  PubMed  PubMed Central  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue culture. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Rademacher 2000. Growth retardants: Effects on gibberellin biosynthesis and other metabolic pathways. Ann.Rev. Plant Physiol. and Mol. Biol. 51: 501–531

    Google Scholar 

  • Salmi ML, Bushart TJRS (2010) Cellular, molecular, and genetic changes during the development of Ceratopteris richardii gametophytes. In: Fernández AK H, Revilla MA (eds) Working with Ferns. Issues and applications. Springer, New York, pp 11–24

    Google Scholar 

  • Salmi ML, Bushart TJ, Stout SC, Roux SJ (2005) Profile and analysis of gene expression changes during early development in germinating spores of Ceratopteris richardii. Plant Physiol 138:1734–1745

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Salmi ML, Morris KE, Roux SJ, Porterfield DM (2007) Nitric oxide and cGMP signaling in calcium-dependent development of cell polarity in Ceratopteris richardii. Plant Physiol 144:94–104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Salvo E (1990) Guía de helechos de la Península Ibérica y Baleares. Ediciones Pirámide S.A.

    Google Scholar 

  • Schmidt A, Schmid MW, Klostermeier UC, Qi E, Guthörl D, Saliler C, Waller M, Rosenstiel P, Grossniklaus U (2014) Apomictic and sexual germline development differ with respect to cell cycle, transcriptional, hormonal and epigenetic regulation. PLoS Genet 10:e1004476

    Article  PubMed  PubMed Central  Google Scholar 

  • Schmidt A, Schmid MW, Grossniklaus U (2015) Plant germline formation: common concepts and developmental flexibility in sexual and asexual reproduction. Development 142:229–241

    Article  CAS  PubMed  Google Scholar 

  • Seguí-Simarro JM (2010) Androgenesis Revisited. Bot Rev 76:377–404

    Article  Google Scholar 

  • Somer M, Arbesú R, Menéndez V, Revilla MA, Fernández H (2010) Sporophyte induction studies in ferns in vitro. Euphytica 171:203–210. https://doi.org/10.1007/s10681-009-0018-1

  • Suo J, Zhao Q, Zhang Z, Chen S, Cao J, Liu G, Wei X, Wang T, Yang C, Dai S (2015) Cytological and proteomic analyses of Osmunda cinnamomea germinating spores reveal characteristics of Fern spore germination and rhizoid tip growth. Mol Cell Proteomics 14:2510–2534

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Valledor L, Menéndez V, Canal MJ, Revilla A, Fernández H (2014) Proteomic approaches to sexual development mediated by antheridiogen in the fern Blechnum spicant L. Proteomics 14(17–18):1–11

    Google Scholar 

  • de Vries J, Fischer AM, Roettger M, Rommel S, Schluepmann H (2015) Cytokinin-induced promotion of root meristem size in the fern Azolla supports a shoot-like origin of euphyllophyte roots. New Phytol 209(2):705–720. https://doi.org/10.1111/nph.13630

    Article  PubMed  PubMed Central  Google Scholar 

  • Wada M (2007) The fern as a model system to study photomorphogenesis. J Plant Res 120:3–16

    Article  CAS  PubMed  Google Scholar 

  • Wen CK, Smith R, Banks JA (1999) ANI1. A sex pheromone-induced gene in Ceratopteris gametophytes and its possible role in sex determination. Plant Cell 11:1307–1318

    CAS  PubMed  PubMed Central  Google Scholar 

  • Whittier DP (1964) The influence of cultural conditions on the induction of apogamy in Pteridium gametophytes. Am J Bot 51:730–736

    Article  Google Scholar 

  • Whittier DP (1965) Obligate apogamy in Cheilantes tomentosa and C. alabamiensis. Bot Gaz 126:275–281

    Article  Google Scholar 

  • Whittier DP (1966) The influence of growth substances on the induction of apogamy in Pteridium gametophytes. Am J Bot 53:882–886

    Article  CAS  Google Scholar 

  • Whittier DP (1975) The influence of osmotic conditions on induced apogamy in Pteridium gametophytes. Phytomorphology 25:246–249

    CAS  Google Scholar 

  • Whittier DP, Steeves TA (1960) The induction of apogamy in the bracken fern. Can J Bot 38:925–930

    Article  CAS  Google Scholar 

  • Whittier DP, Steeves TA (1962) Further studies on induced apogamy in ferns. Can J Bot 40:1525–1531

    Article  CAS  Google Scholar 

  • Yang HY, Zhou C (1982) In vitro induction of haploid plants from unpollinated ovaries and ovules. Theor Appl Genet 63:97–104

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Helena Fernández .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rivera, A., Conde, P., Cañal, M.J., Fernández, H. (2018). Biotechnology and Apogamy in Dryopteris affinis spp. affinis: The Influence of Tissue Homogenization, Auxins, Cytokinins, Gibberellic Acid, and Polyamines. In: Fernández, H. (eds) Current Advances in Fern Research. Springer, Cham. https://doi.org/10.1007/978-3-319-75103-0_7

Download citation

Publish with us

Policies and ethics