Skip to main content

Basic Open-Source Nonlinear Mixed Integer Programming Based Dynamic Economic Dispatch of Multi-chiller Plants

  • Chapter
  • First Online:

Abstract

During the extremely hot weather or sudden transient heat waves, air-conditioning systems are the most common energy consumers in the different residential, commercial, industrial, and administrative buildings especially in the tropical regions. Therefore, the economic operation of the cooling systems such as chiller plants will be an effective way to mitigate total electricity requirements of central air-conditioners.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Lo C-C, Tsai S-H, Lin B-S (2016) Economic dispatch of chiller plant by improved ripple bee swarm optimization algorithm for saving energy. Appl Therm Eng 100:1140–1148

    Article  Google Scholar 

  2. Niknam T, Golestaneh F (2013) Enhanced bee swarm optimization algorithm for dynamic economic dispatch. IEEE Syst J 7(4):754–762

    Article  Google Scholar 

  3. Lee W-S, Lin L-C (2009) Optimal chiller loading by particle swarm algorithm for reducing energy consumption. Appl Therm Eng 29(8):1730–1734

    Article  Google Scholar 

  4. Beghi A, Cecchinato L, Cosi G, Rampazzo M (2012) A PSO-based algorithm for optimal multiple chiller systems operation. Appl Therm Eng 32:31–40

    Article  Google Scholar 

  5. Askarzadeh A, dos Santos Coelho L (2015) Using two improved particle swarm optimization variants for optimization of daily electrical power consumption in multi-chiller systems. Appl Therm Eng 89:640–646

    Article  Google Scholar 

  6. Ardakani AJ, Ardakani FF, Hosseinian S (2008) A novel approach for optimal chiller loading using particle swarm optimization. Energy Build 40(12):2177–2187

    Article  Google Scholar 

  7. Powell KM, Cole WJ, Ekarika UF, Edgar TF (2013) Optimal chiller loading in a district cooling system with thermal energy storage. Energy 50:445–453

    Article  Google Scholar 

  8. dos Santos Coelho L, Klein CE, Sabat SL, Mariani VC (2014) Optimal chiller loading for energy conservation using a new differential cuckoo search approach. Energy 75:237–243

    Article  Google Scholar 

  9. Valian E, Tavakoli S, Mohanna S, Haghi A (2013) Improved cuckoo search for reliability optimization problems. Comput Ind Eng 64(1):459–468

    Article  Google Scholar 

  10. Chang Y-C, Lee C-Y, Chen C-R, Chou C-J, Chen W-H, Chen W-H (2009) Evolution strategy based optimal chiller loading for saving energy. Energy Convers Manag 50(1):132–139

    Article  Google Scholar 

  11. Chang Y-C (2005) Genetic algorithm based optimal chiller loading for energy conservation. Appl Therm Eng 25(17):2800–2815

    Article  Google Scholar 

  12. Chow T, Zhang G, Lin Z, Song C (2002) Global optimization of absorption chiller system by genetic algorithm and neural network. Energy Build 34(1):103–109

    Article  Google Scholar 

  13. Chang Y-C, Lin J-K, Chuang M-H (2005) Optimal chiller loading by genetic algorithm for reducing energy consumption. Energy Build 37(2):147–155

    Article  Google Scholar 

  14. Beghi A, Cecchinato L, Rampazzo M (2011) A multi-phase genetic algorithm for the efficient management of multi-chiller systems. Energy Convers Manag 52(3):1650–1661

    Article  Google Scholar 

  15. Chang Y-C (2006) An innovative approach for demand side management – optimal chiller loading by simulated annealing. Energy 31(12):1883–1896

    Article  Google Scholar 

  16. Chang Y-C, Chen W-H, Lee C-Y, Huang C-N (2006) Simulated annealing based optimal chiller loading for saving energy. Energy Convers Manag 47(15):2044–2058

    Article  Google Scholar 

  17. Lee W-S, Chen Y-T, Kao Y (2011) Optimal chiller loading by differential evolution algorithm for reducing energy consumption. Energy Build 43(2):599–604

    Article  Google Scholar 

  18. Chang Y-C, Chan T-S, Lee W-S (2010) Economic dispatch of chiller plant by gradient method for saving energy. Appl Energy 87(4):1096–1101

    Article  Google Scholar 

  19. Chang Y-C (2006) An outstanding method for saving energy-optimal chiller operation. IEEE Trans Energy Convers 21(2):527–532

    Article  Google Scholar 

  20. Wang H (2017) Empirical model for evaluating power consumption of centrifugal chillers. Energy Build 140:359–370

    Article  Google Scholar 

  21. Frey P, Fischer S, Drück H (2014) Artificial neural network modelling of sorption chillers. Sol Energy 108:525–537

    Article  Google Scholar 

  22. Wei X, Xu G, Kusiak A (2014) Modeling and optimization of a chiller plant. Energy 73: 898–907

    Article  Google Scholar 

  23. Labus J, Hernández J, Bruno J, Coronas A (2012) Inverse neural network based control strategy for absorption chillers. Renew Energy 39(1):471–482

    Article  Google Scholar 

  24. Čongradac V, Kulić F (2012) Recognition of the importance of using artificial neural networks and genetic algorithms to optimize chiller operation. Energy Build 47:651–658

    Article  Google Scholar 

  25. Chang Y-C, Chen W-H (2009) Optimal chilled water temperature calculation of multiple chiller systems using Hopfield neural network for saving energy. Energy 34(4):448–456

    Article  MathSciNet  Google Scholar 

  26. dos Santos Coelho L, Mariani VC (2013) Improved firefly algorithm approach applied to chiller loading for energy conservation. Energy Build 59:273–278

    Article  Google Scholar 

  27. https://www.gams.com/latest/docs/S_BONMIN

  28. Brooke A, Kendrick D, Meeraus A, Raman R, America U (1998) The general algebraic modeling system. GAMS Development Corporation, vol 1050

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Farkhondeh Jabari .

Editor information

Editors and Affiliations

Nomenclature

Nomenclature

α i , β i , γ i , ζ i :

Coefficients related to the operating characteristic of chiller i

CLt :

Cooling demand after implementation of DRPs at time horizon t

N :

Number of chillers

\( {P}_t^{\mathrm{ch}} \) :

Total electrical power consumed by all centrifugal chillers at time t

\( {\mathrm{PLR}}_i^t \) :

Partial load ratio (PLR) of chiller i at time horizon t

RT i :

Capacity of chiller i

\( {U}_i^t \) :

A binary decision variable that will be equal to 1, if ith chiller is on; otherwise it will be 0

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Jabari, F., Mohammadi-Ivatloo, B. (2018). Basic Open-Source Nonlinear Mixed Integer Programming Based Dynamic Economic Dispatch of Multi-chiller Plants. In: Mohammadi-Ivatloo, B., Jabari, F. (eds) Operation, Planning, and Analysis of Energy Storage Systems in Smart Energy Hubs. Springer, Cham. https://doi.org/10.1007/978-3-319-75097-2_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-75097-2_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-75096-5

  • Online ISBN: 978-3-319-75097-2

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics