Skip to main content

Microwave Technology for Brain Imaging and Monitoring: Physical Foundations, Potential and Limitations

  • Chapter
  • First Online:
Emerging Electromagnetic Technologies for Brain Diseases Diagnostics, Monitoring and Therapy

Abstract

This chapter provides an introduction to the physical principles underlying the adoption of microwave technology as a biomedical imaging modality for diagnosis and follow-up of neurological diseases and injuries (e.g., stroke, haematoma). In particular, a theoretical analysis, supported by numerical simulations and experiments, will be given to describe the physical constraints that arise in this kind of application and the relevant limitations. In addition, we discuss the main aspects to be faced when implementing microwave imaging technology in a clinical scenario, by exploiting a design procedure to determine the number of antennas needed to capture, in a non-redundant way, the largest part of the available data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    For simplicity, the usual case of single-polarisation probes is considered. The extension to the full polarimetric case is straightforward.

  2. 2.

    The “continuous” radiation operator \(\mathscr {S}\) has been computed by considering a number of probes equal to 200, which is well above the degrees of freedom of the field for the scenario described in this example (\(N_0 \simeq 90\)).

References

  1. Dielectric properties of body tissues in the frequency range 10 Hz–100 GHz. http://niremf.ifac.cnr.it/tissprop/

  2. Balanis, C.A.: Advanced Enginnering Electromagnetics. Wileys (1989)

    Google Scholar 

  3. Bertero, M., Boccacci, P.: Introduction to Inverse Problems in Imaging. Institute of Physics, Bristol, UK (1998)

    Google Scholar 

  4. Botha, M.M.: Solving the volume integral equations of electromagnetic scattering. J. Comput. Phys. 218(1), 141–158 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bucci, O.M., Crocco, L., Scapaticci, R.: On the optimal measurement configuration for magnetic nanoparticles-enhanced breast cancer microwave imaging. IEEE Trans. Biomed. Eng. 62, 407–414 (2015)

    Article  Google Scholar 

  6. Bucci, O.M., Crocco, L., Scapaticci, R., Bellizzi, G.: On the design of phased arrays for medical applications. Proc. IEEE 104(3), 633–648 (2016). https://doi.org/10.1109/JPROC.2015.2504266

  7. Catapano, I., Donato, L.D., Crocco, L., Bucci, O., Morabito, A., Isernia, T., Massa, R.: On quantitative microwave tomography of female breast. Prog. Electromagn. Res. 97, 75–93 (2009)

    Article  Google Scholar 

  8. Cavallini, A., Micieli, G., Marcheselli, S., Quaglini, S.: Role of monitoring in management of acute ischemic stroke patients. Stroke 34, 2599–2603 (2003)

    Article  Google Scholar 

  9. Cayoren, M., Akduman, I.: Emerging Electromagnetic Technologies for brain diseases diagnostics, monitoring and therapy, chap. Springer, Microwave Imaging for Continuous Monitoring of Brain Stroke (2018)

    Google Scholar 

  10. Choi, S.T.: Minimal residual methods for complex symmetric, skew symmetric, and skew hermitian systems. arXiv:1304.6782v2 [cs.MS] (2014)

  11. Choi, S.T., Page, C., Saunders, M.: MINRES-QLP: a Krylov subspace method for indefinite or singular symmetric systems. arXiv:1003.4042v3 [math.NA] (2015)

  12. Christ, A., et al.: The virtual family—development of surface-based anatomical models of two adults and two children for dosimetric simulations. Phys. Med. Biol. 55(2), N23–38 (2010)

    Article  Google Scholar 

  13. Donnan, G.A., Fisher, M., Macleod, M., Davis, S.M.: Stroke. Lancet 371(9624), 1612–1623 (2008)

    Article  Google Scholar 

  14. Gabriel, S., Lau, R.W., Gabriel, C.: The dielectric properties of biological tissues: III. Parametric models for the dielectric spectrum of tissues. Phys. Med. Biol. 41, 2271–2293 (1996)

    Article  Google Scholar 

  15. Gan, H., Chew, W.: A discrete BCG-FFT algorithm for solving 3D inhomogeneous scatterer problems. J. Electromagn. Waves Appl. 9(10), 1339–1357 (2012)

    Google Scholar 

  16. Geyik, C., Wei, F., Massey, J., Yilmaz, A.: FDTD versus AIM for bioelectromagnetic analysis. In: Antennas and Propagation Society International Symposium (APSURSI), pp. 1–2 (2012)

    Google Scholar 

  17. Gubbi, J., Rao, A.S., Fang, K., Yan, B., Palaniswami, M.: Motor recovery monitoring using acceleration measurements in post acute stroke patients. Biomed Eng. OnLine 12(33) (2013)

    Google Scholar 

  18. Hamidipour, A., Henriksson, T., Hopfer, M., Planas, R., Semenov, S.: Emerging Electromagnetic Technologies for brain diseases diagnostics, monitoring and therapy, chap. Progress Towards Clinical Application. Electromagnetic Tomography for Brain Imaging and Stroke Diagnostics. Springer (2018)

    Google Scholar 

  19. Joachimowicz, N., Conessa, C., Henriksson, T., Duchêne, B.: Breast phantoms for microwave imaging. IEEE Antennas Wirel. Propag. Lett. 13, 1333–1336 (2014). https://doi.org/10.1109/LAWP.2014.2336373

  20. Markkanen, J., Lu, C.C., Cao, X., Yla-Oijala, P.: Analysis of volume integral equation formulations for scattering by high-contrast penetrable objects. IEEE Trans. Antennas Propag. 60(5), 2367–2374 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  21. Markkanen, J., Yla-Oijala, P., Sihvola, A.: Discretization of volume integral equation formulations for extremely anisotropic materials. IEEE Trans. Antennas Propag. 60(11), 5195–5202 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  22. Olesen, J., Gustavsson, A., Svensson, M., Jonsson, B., Wittchen, H.U.: CDBE2010 study group, European Brain Council. The economic cost of brain disorders in Europe. Eur. J. Neurol. 19(1), 155–162 (2012)

    Article  Google Scholar 

  23. Persson, M., Fhager, A., Trefna, H.D., Yu, Y., McKelvey, T., Pegenius, G., Karlsson, J.E., Elam, M.: Microwave-based stroke diagnosis making global prehospital thrombolytic treatment possible. IEEE Trans. Biomed. Eng. 61(11), 2806–2817 (2014)

    Article  Google Scholar 

  24. Polimeridis, A., Villena, J., Daniel, L., White, J.: Stable FFT-JVIE solvers for fast analysis of highly inhomogeneous dielectric objects. J. Comput. Phys. 269, 280–296 (2014)

    Article  MATH  Google Scholar 

  25. Rocco, A., Pasquini, M., Cecconi, E., Sirimarco, G., Ricciardi, M.C., Vicenzini, E., Altieri, M., Piero, V.D., Lenzi, G.L.: Monitoring after the acute stage of stroke: a prospective study. Stroke 38, 1225–1228 (2007)

    Article  Google Scholar 

  26. Rodrigues, D.B., Stauffer, P.R., Pereira, P.J.S., Maccarini, P.F.: Emerging Electromagnetic Technologies for brain diseases diagnostics, monitoring and therapy, chap. Microwave radiometry for noninvasive monitoring of brain temperature. Springer (2018)

    Google Scholar 

  27. Scapaticci, R., Donato, L.D., Catapano, I., Crocco, L.: A feasibility study on Microwave Imaging for brain stroke monitoring. Prog. Electromagn. Res. B 40, 305–324 (2012)

    Article  Google Scholar 

  28. Schwartz, J.T.: Nonlinear Functional Analysis. Gordon and Breach Science Publisher, New York (1987)

    Google Scholar 

  29. Shore, R.A.: Scattering of an electromagnetic linearly polarized plane wave by a multilayered sphere. IEEE Antennas Propag. Mag. 69–116 (2015)

    Google Scholar 

  30. Slaney, M., Kak, A., Larsen, L.: Limitations of imaging with first-order diffraction tomography. IEEE Trans. Microw. Theory Tech. 32, 860–874 (2009)

    Article  Google Scholar 

  31. Yaghjian, A.: Electric dyadic Green’s functions in the source region. Proc. IEEE 68(2), 248–263 (1980)

    Article  Google Scholar 

Download references

Acknowledgements

This work has been developed in the framework of COST Action TD1301 Development of a European-based Collaborative Network to Accelerate Technological, Clinical and Commercialisation Progress in the Area of Medical Microwave Imaging. It has been partially supported by Hasler Foundation, Switzerland, under Contract No. 13075 High accuracy volume integral equation solver for MRI grids and by the Italian Ministry of University and Research (MIUR) under the program MiBraScan—Microwave Brain Scanner for Cerebrovascular Diseases Monitoring.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Rosa Scapaticci or Lorenzo Crocco .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Scapaticci, R., Bjelogrlic, M., Tobon Vasquez, J.A., Vipiana, F., Mattes, M., Crocco, L. (2018). Microwave Technology for Brain Imaging and Monitoring: Physical Foundations, Potential and Limitations. In: Crocco, L., Karanasiou, I., James, M., Conceição, R. (eds) Emerging Electromagnetic Technologies for Brain Diseases Diagnostics, Monitoring and Therapy. Springer, Cham. https://doi.org/10.1007/978-3-319-75007-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-75007-1_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-75006-4

  • Online ISBN: 978-3-319-75007-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics