Skip to main content

Discriminant Twins

  • Conference paper
  • First Online:
Women in Numbers Europe II

Part of the book series: Association for Women in Mathematics Series ((AWMS,volume 11))

  • 389 Accesses

Abstract

The conductor and minimal discriminant are two invariants that measure the bad reduction of an elliptic curve. The conductor of an elliptic curve E over \(\mathbb {Q}\) is an arithmetic invariant. It is an integer N that measures the ramification in the extensions \(\mathbb {Q}(E[p^{\infty }])/\mathbb {Q}\). The minimal discriminant Δ is a geometric invariant. It counts the number of irreducible components of \(\tilde {E}(\mathbb {F}_p)\). When two elliptic curves have the same conductor and discriminant, we call them discriminant twins. In this paper, we explore when discriminant twins occur. In particular, we prove there are only finitely many semistable isogenous discriminant twins.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. S. Anni, S. Siksek, On Serre’s uniformity conjecture for semistable elliptic curves over totally real fields. arXiv e-prints (2016)

    Google Scholar 

  2. J.E. Cremona, Algorithms for Modular Elliptic Curves (Cambridge University Press, Cambridge, 1997)

    MATH  Google Scholar 

  3. J. González, On the division polynomials of elliptic curves. Rev. R. Acad. Cienc. Exactas Fís. Nat. (Esp.) 94, 377–381 (2000)

    MathSciNet  MATH  Google Scholar 

  4. S. Howe, K. Joshi, Elliptic curves of almost-prime conductor. arXiv e-prints (2012)

    Google Scholar 

  5. M.A. Kenku, On the number of Q-isomorphism classes of elliptic curves in each Q-isogeny class. J. Number Theory. 15, 199–202 (1982)

    Article  MathSciNet  Google Scholar 

  6. A. Kraus, Quelques remarques à propos des invariants c 4, c 6 et Δ d’une courbe elliptique. Acta Arith. 54, 75–80 (1989)

    Article  MathSciNet  Google Scholar 

  7. D.S. Kubert, Universal bounds on the torsion of elliptic curves. Compos. Math. 38, 121–128 (1979)

    MathSciNet  MATH  Google Scholar 

  8. B. Mazur, Rational isogenies of prime degree. Invent. Math. 44, 129–162 (1978)

    Article  MathSciNet  Google Scholar 

  9. K.A. Ribet, S. Takahashi, Parametrizations of elliptic curves by Shimura curves and by classical modular curves. Proc. Natl. Acad. Sci. USA 94, 11110–11114 (1997)

    Article  MathSciNet  Google Scholar 

  10. J.-P. Serre, Propriétés galoisiennes des points d’ordre fini des courbes elliptiques. Invent. Math. 15, 259–331 (1972)

    Article  MathSciNet  Google Scholar 

  11. B. Setzer, Elliptic curves of prime conductor. J. Lond. Math. Soc. (2) 10, 367–378 (1975)

    Article  MathSciNet  Google Scholar 

  12. J.H. Silverman, Advanced Topics in the Arithmetic of Elliptic Curves. Graduate Texts in Mathematics (Springer, New York, 1994)

    Book  Google Scholar 

  13. The LMFDB Collaboration: LMFDB: The L-functions and Modular Forms Database (2017). http://www.lmfdb.org

  14. W.A. Stein et al, The Sage Development Team: Sage Mathematics Software (Version 7.3) (2017). http://www.sagemath.org

  15. J. Vélu, Isogénies entre courbes elliptiques. C. R. Acad. Sci. Paris Sér. A-B. 273, A238–A241 (1971)

    MATH  Google Scholar 

Download references

Acknowledgements

The author would like to thank Ben Lundell for many helpful discussions and the referee for pointing out a hole in Proposition 6.3, noting simpler Weierstrass equations, and other useful comments.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 The Author(s) and the Association for Women in Mathematics

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Deines, A. (2018). Discriminant Twins. In: Bouw, I., Ozman, E., Johnson-Leung, J., Newton, R. (eds) Women in Numbers Europe II. Association for Women in Mathematics Series, vol 11. Springer, Cham. https://doi.org/10.1007/978-3-319-74998-3_6

Download citation

Publish with us

Policies and ethics