Skip to main content

Introduction: Interfaces as an Object of Photoemission Spectroscopy

  • Chapter
  • First Online:
Book cover Spectroscopy of Complex Oxide Interfaces

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 266))

Abstract

In this short introductory chapter, basic concepts of photoemission techniques will be given. In particular, the importance of some parameters like probing depth, energy and momentum resolution will be tackled by comparing photoemission experiments in different photon energy ranges from ultraviolet to soft and hard X-rays. Buried system i.e. interfaces could be probed only by using high energy photoemission. Apart from the band structure resolved in electron momentum k, the photoemission technique directly probes the electron spectral function encoding information about how particles are dressed by their interactions with the remainder of the system. Many body effects and electron correlation can in this way be accessed, in particular, the electron-phonon interaction affecting electron mobility. Finally, the instrumental development of photoemission is described in connection with its scientific perspective.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. H. Bonzel, C. Kleint, On the history of photoemission. Prog. Surf. Sci. 48(1), 179 (1995), https://doi.org/10.1016/0079-6816(95)93425-7, http://www.sciencedirect.com/science/article/pii/0079681695934257

  2. F. Reinert, S. Hfner, Photoemission spectroscopy-from early days to recent applications. New J. Phys. 7(1), 97 (2005), http://stacks.iop.org/1367-2630/7/i=1/a=097

  3. W.E. Spicer, C.N. Berglund, \(d\) band of copper. Phys. Rev. Lett. 12, 9–11 (1964), https://doi.org/10.1103/PhysRevLett.12.9, http://link.aps.org/doi/10.1103/PhysRevLett.12.9

  4. G.W. Gobeli, F.G. Allen, Direct and indirect excitation processes in photoelectric emission from silicon. Phys. Rev. 127, 141–149 (1962), https://doi.org/10.1103/PhysRev.127.141, https://link.aps.org/doi/10.1103/PhysRev.127.141

  5. D.I. Khomskii, Transition Metal Compounds, (Cambridge University Press, Cambridge 2014), https://doi.org/10.1017/CBO9781139096782, https://www.cambridge.org/core/books/transition-metal-compounds/037907D3274F602D84CFECA02A493395

  6. A. Ohtomo, H. Hwang, A high-mobility electron gas at the LaAlO3/SrTiO3 heterointerface (vol 427, pg 423, 2004). Nature 441(7089), 120 (2006), https://doi.org/10.1038/nature04773

  7. S. Hüfner, Photoelectron spectroscopy: principles and applications, in Advanced Texts in Physics. (Springer, 2003), https://books.google.ch/books?id=WfOw6jP9-oIC

  8. A. Damascelli, Z. Hussain, Z.X. Shen, Angle-resolved photoemission studies of the cuprate superconductors. Rev. Mod. Phys. 75, 473–541 (2003), https://doi.org/10.1103/RevModPhys.75.473, http://link.aps.org/doi/10.1103/RevModPhys.75.473

  9. S. Kevan (ed.), Studies in Surface Science and Catalysis, vol. 74 (Elsevier 1992), https://doi.org/10.1016/S0167-2991(08)61767-X, http://www.sciencedirect.com/science/article/pii/S016729910861767X

  10. L. Perfetti, S. Mitrovic, M. Grioni, Fermi liquid and non-fermi liquid spectral lineshapes in low-dimensional solids. J. Electron Spectrosc. Relat. Phenom. 127(12), 77–84 (2002), https://doi.org/10.1016/S0368-2048(02)00175-5, http://www.sciencedirect.com/science/article/pii/S0368204802001755. IWASES 5 Special Issue

  11. G.D. Mahan, Many-particle physics [Elektronische Ressource], in Physics of Solids and Liquids (Springer, Boston, MA 2000), http://search.ebscohost.com/login.aspx?direct=true&AuthType=ip&db=cat04420a&AN=LIB.gbv744982855&site=eds-live

  12. A.S. Alexandrov, J.T. Devreese, Advances in polaron physics, in Springer series in solid-state sciences, vol. 159 (Springer, Berlin 2010), http://search.ebscohost.com/login.aspx?direct=true&AuthType=ip&db=cat04420a&AN=LIB.swissbib305572687&site=eds-live

  13. P.J. Feibelman, D.E. Eastman, Photoemission spectroscopy—correspondence between quantum theory and experimental phenomenology. Phys. Rev. B 10, 4932–4947 (1974), https://doi.org/10.1103/PhysRevB.10.4932, http://link.aps.org/doi/10.1103/PhysRevB.10.4932

  14. J. Hermanson, Final-state symmetry and polarization effects in angle-resolved photoemission spectroscopy. Solid State Communic. 22(1), 9–11 (1977), https://doi.org/10.1016/0038-1098(77)90931-0, http://www.sciencedirect.com/science/article/pii/0038109877909310

  15. V.N. Strocov, V.N. Petrov, J.H. Dil, Concept of a multichannel spin-resolving electron analyzer based on Mott scattering. J. Synchrotron Radiat. 22(3), 708–716 (2015), https://doi.org/10.1107/S160057751500363X, https://dx.doi.org/10.1107/S160057751500363X

  16. M.P. Seah, W.A. Dench, Quantitative electron spectroscopy of surfaces: a standard data base for electron inelastic mean free paths in solids. Surf. Interface Anal. 1(1), 2–11 (1979), https://doi.org/10.1002/sia.740010103, https://doi.org/10.1002/sia.740010103

  17. V.N. Strocov, P. Blaha, H.I. Starnberg, M. Rohlfing, R. Claessen, J.M. Debever, J.M. Themlin, Three-dimensional unoccupied band structure of graphite: very-low-energy electron diffraction and band calculations. Phys. Rev. B 61, 4994–5001 (2000), https://doi.org/10.1103/PhysRevB.61.4994, http://link.aps.org/doi/10.1103/PhysRevB.61.4994

  18. V. Strocov, Intrinsic accuracy in 3-dimensional photoemission band mapping. J. Electron Spectrosc. Relat. Phenom. 130(1–3), 65–78 (2003). https://doi.org/10.1016/S0368-2048(03)00054-9. http://www.sciencedirect.com/science/article/pii/S0368204803000549

  19. V.N. Strocov, T. Schmitt, U. Flechsig, T. Schmidt, A. Imhof, Q. Chen, J. Raabe, R. Betemps, D. Zimoch, J. Krempasky, X. Wang, M. Grioni, A. Piazzalunga, L. Patthey, High-resolution soft X-ray beamline adress at the swiss light source for resonant inelastic X-ray scattering and angle-resolved photoelectron spectroscopies. J. Synch. Rad. 17(5), 631–643 (2010). https://doi.org/10.1107/S0909049510019862

  20. S. Suga, A. Sekiyama, High energy photoelectron spectroscopy of correlated electron systems and recoil effects in photoelectron emission. European Phys. J. Spec. Top. 169(1), 227–235 (2009), https://doi.org/10.1140/epjst/e2009-00997-4, https://dx.doi.org/10.1140/epjst/e2009-00997-4

  21. M. Kobayashi, I. Muneta, T. Schmitt, L. Patthey, S. Ohya, M. Tanaka, M. Oshima, V.N. Strocov, Digging up bulk band dispersion buried under a passivation layer. Appl. Phys. Lett. 101(24), 242103 (2012), https://doi.org/10.1063/1.4770289, http://aip.scitation.org/doi/abs/10.1063/1.4770289

  22. M. Kobayashi, I. Muneta, Y. Takeda, Y. Harada, A. Fujimori, J. Krempaský, T. Schmitt, S. Ohya, M. Tanaka, M. Oshima, V.N. Strocov, Unveiling the impurity band induced ferromagnetism in the magnetic semiconductor (Ga, Mn)As. Phys. Rev. B 89, 205204 (2014), https://doi.org/10.1103/PhysRevB.89.205204, http://link.aps.org/doi/10.1103/PhysRevB.89.205204

  23. C. Cancellieri, M.L. Reinle-Schmitt, M. Kobayashi, V.N. Strocov, P.R. Willmott, D. Fontaine, P. Ghosez, A. Filippetti, P. Delugas, V. Fiorentini, Doping-dependent band structure of LaAlO\({}_{3}\)/SrTiO\({}_{3}\) interfaces by soft X-ray polarization-controlled resonant angle-resolved photoemission. Phys. Rev. B 89, 121412 (2014). https://doi.org/10.1103/PhysRevB.89.121412, http://link.aps.org/doi/10.1103/PhysRevB.89.121412

  24. S.L. Molodtsov, M. Richter, S. Danzenbächer, S. Wieling, L. Steinbeck, C. Laubschat, Angle-resolved resonant photoemission as a probe of spatial localization and character of electron states. Phys. Rev. Lett. 78, 142–145 (1997), https://doi.org/10.1103/PhysRevLett.78.142, http://link.aps.org/doi/10.1103/PhysRevLett.78.142

  25. P. Willmott, An introduction to synchrotron radiation [Elektronische Daten]: techniques and applications. (Wiley, Chichester, 2011), http://search.ebscohost.com/login.aspx?direct=true&AuthType=ip&db=cat04420a&AN=LIB.swissbib12226536X&site=eds-live

  26. J. Yeh, I. Lindau, Atomic subshell photoionization cross sections and asymmetry parameters: 1 \(\le \) z \(\le \) 103. At. Data Nucl. Data Tables 32(1), 1–155 (1985), https://doi.org/10.1016/0092-640X(85)90016-6, http://www.sciencedirect.com/science/article/pii/0092640X85900166

  27. N. Mårtensson, P. Baltzer, P. Brühwiler, J.O. Forsell, A. Nilsson, A. Stenborg, B. Wannberg, A very high resolution electron spectrometer. J. Electron Spectrosc. Relat. Phenom. 70(2), 117–128 (1994), https://doi.org/10.1016/0368-2048(94)02224-N, http://www.sciencedirect.com/science/article/pii/036820489402224N

  28. S. Suga, C. Tusche, Photoelectron spectroscopy in a wide h region from 6 ev to 8 kev with full momentum and spin resolution. J. Electron Spectrosc. Relat. Phenom. 200, 119–142 (2015), https://doi.org/10.1016/j.elspec.2015.04.019, http://www.sciencedirect.com/science/article/pii/S0368204815000912. Special Anniversary Issue: Volume 200

  29. B. Wannberg, Electron optics development for photo-electron spectrometers. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 601(1–2), 182–194 (2009). https://doi.org/10.1016/j.nima.2008.12.156. http://www.sciencedirect.com/science/article/pii/S0168900208020238. Special issue in honour of Prof. Kai Siegbahn

  30. G. Öhrwall, P. Karlsson, M. Wirde, M. Lundqvist, P. Andersson, D. Ceolin, B. Wannberg, T. Kachel, H. Dürr, W. Eberhardt, S. Svensson, A new energy and angle resolving electron spectrometer—first results. J. Electron Spectrosc. Relat. Phenom. 183(1–3), 125–131 (2011), https://doi.org/10.1016/j.elspec.2010.09.009, http://www.sciencedirect.com/science/article/pii/S0368204810002045. Electron Spectroscopy Kai Siegbahn Memorial Volume

  31. J. Krempasky, S. Muff, F. Bisti, M. Fanciulli, H. Volfová, A.P. Weber, N. Pilet, P. Warnicke, H. Ebert, J. Braun, F. Bertran, V. Volobuev, J. Minár, G. Springholz, J.H. Dil, V. Strocov, Entanglement and manipulation of the magnetic and spin-orbit order in multiferroic Rashba semiconductors (2016), arXiv:1606.00241

  32. N. Mannella, Measuring spins in photoemission experiments: old challenges and new opportunities. Synchrotron Radiat. News 27(2), 4–13 (2014), https://doi.org/10.1080/08940886.2014.889548, https://dx.doi.org/10.1080/08940886.2014.889548

  33. M. Kolbe, P. Lushchyk, B. Petereit, H.J. Elmers, G. Schönhense, A. Oelsner, C. Tusche, J. Kirschner, Highly efficient multichannel spin-polarization detection. Phys. Rev. Lett. 107, 207601 (2011), https://doi.org/10.1103/PhysRevLett.107.207601, http://link.aps.org/doi/10.1103/PhysRevLett.107.207601

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Cancellieri .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Cancellieri, C., Strocov, V.N. (2018). Introduction: Interfaces as an Object of Photoemission Spectroscopy. In: Cancellieri, C., Strocov, V. (eds) Spectroscopy of Complex Oxide Interfaces. Springer Series in Materials Science, vol 266. Springer, Cham. https://doi.org/10.1007/978-3-319-74989-1_1

Download citation

Publish with us

Policies and ethics