Skip to main content

Cordgrass Invasions in Mediterranean Marshes: Past, Present and Future

  • Chapter
  • First Online:
Book cover Histories of Bioinvasions in the Mediterranean

Part of the book series: Environmental History ((ENVHIS,volume 8))

Abstract

The invasion of natural communities by non-indigenous species (NIS) represents one of the most serious threats to biodiversity . While these invasive processes are rather well studied in river corridors and riparian communities, the invasiveness of non-indigenous aquatic plants in wetlands has received far less attention. Many NIS plants have been introduced more than 100 years ago, while others are more recent arrivals, with most of the introductions occurring at the end of the 19th and at the beginning of the 20th centuries. The Spartina genus (the cordgrasses) is one of the most successful among halophytes (species that can survive and complete their life cycle under saline conditions), being present in a wide range of latitudes across the globe. Typically, Mediterranean systems are inhabited by the endemic small cordgrass Spartina maritima, native from the Atlantic African and European Atlantic coasts. Alongside, and with very similar geographical distribution ranges, two invasive species from the Spartina genus have been detected in Mediterranean systems. Spartina versicolor was first described in the Mediterranean region during the 19th century. This taxon is considered to be originated in America, and was introduced to Europe in the 19th century. It is probable that this species was introduced as packing material in crates to various ports around the Mediterranean Sea . Denseflower cordgrass Spartina densiflora is an invasive grass species of South American origin that has colonized salt marshes in the Gulf of Cadiz in the southwestern Iberian Peninsula , North Africa and North America . This is a facultative halophyte species (plants that avoid the effects of high salt even though they live in a saline environment) with an amazing physiological and morphological flexibility, enabling it to cope with a very wide range of environment constraints (salinity, tidal submergence, soil types, drainage and nutrient availability). Having this knowledge in mind becomes important to review the history of the introduction of these NIS along with their current colonization status and physiological characteristics. In the present chapter, this approach will be integrated with future scenarios of global change and increased anthropogenic pressures to achieve a better understanding of the impact of these NIS in Mediterranean estuarine systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    By definition, a neophyte is a plant species species which is not native to a geographical region, and was introduced in recent history.

  2. 2.

    Annual or perennial succulent halophytic or xerophytic herbs or shrubs that include most of the species present in Mediterranean and Atlantic marshes.

References

  • Abbas AM, Lambert AM, Rubio-Casal AE, De Cires A, Figueroa ME, Castillo JM (2015) Competition from hydrophytes reduces establishment and growth of invasive dense flowered cordgrass (Spartina densiflora). Peer J 3:e1260

    Article  CAS  PubMed  Google Scholar 

  • Ainouche M, Baumel A, Salmon A, Yannic G (2003) Hybridization, polyploidy and speciation in Spartina (Poaceae). New Phytol 161:165–172

    Article  CAS  Google Scholar 

  • Allen JRL (2000) Morphodynamics of Holocene salt marshes: a review sketch from the Atlantic and Southern North Sea coasts of Europe. Quat Sci Rev 19:1155–1231

    Article  Google Scholar 

  • Álvarez R, Castillo JM, Mateos-Naranjo E, Gandullo J, Rubio-Casal AE, Moreno FJ, Figuero ME (2010) Ecotypic variations in phosphoenolpyruvate carboxylase activity of the cordgrass Spartina densiflora throughout its latitudinal distribution range. Plant Biol 12:154–160

    Article  CAS  PubMed  Google Scholar 

  • An SQ, Gu BH, Zhou CF, Wang ZS, Deng ZF, Zhi YB, Li HL, Chen L, Yu DH, Liu YH (2007) Spartina invasion in China: implications for invasive species management and future research Weed Res 47:183–191

    Article  Google Scholar 

  • Anderson LWJ (2005) Potential for sediment-applied acetic acid for control of invasive Spartina alterniflora. J Aquat Plant Manage 45:100–105

    Google Scholar 

  • Ayres DR, Smith DL, Zaremba K, Klohr S, Strong DR (2004) Spread of exotic cordgrasses and hybrids (Spartina sp.) in the tidal marshes of San Francisco Bay, California, USA. Biol Invasions 6:221–231

    Article  Google Scholar 

  • Baumel A, Rousseau-Gueutin M, Sapienza-Bianchi C, Gareil A, Duong N, Rousseau H, Coriton O, Amirouche R, Sciandrello S, Duarte B, Caçador I, Castillo JM, Ainouche M (2016) Spartina versicolor Fabre: another case of Spartina trans-Atlantic introduction? Biol Invasions 18:2123

    Article  Google Scholar 

  • Bolòs O, Vigo J (2001) Flora dels Pa¨ısos Catalans 4 (Monocotiled`onies). Editorial Barcino, Barcelona

    Google Scholar 

  • Borja A, Dauer DM (2008) Assessing the environmental quality status in estuarine and coastal systems: comparing methodologies and indices. Ecol Ind 8:331–337

    Article  Google Scholar 

  • Bortolus A (2006) The austral cordgrass Spartina densiflora Brong.: its taxonomy, biogeography and natural history. J Biogeogr 33:158–168

    Article  Google Scholar 

  • Bridgham SD, Megonigal JP, Keller JK, Bliss NB, Trettin C (2006) The carbon balance of North American wetlands. Wetlands 26:889–916

    Article  Google Scholar 

  • Bueno A (1997) Flora y vegetación de los estuarios asturianos. Cuadernos de Medio Ambiente. Naturaleza 3. Consejería de Agricultura, Principado de Asturias

    Google Scholar 

  • Cabezudo B, Talavera S, Blanca G, Salazar C, Cueto M, Valdés B, Hernández-Bermejo JE, Herrera C, Rodríguez-Hiraldo C, Nava D (2005) Lista roja de la flora vascular de Andalucía. Consejería de Medio Ambiente, Junta de Andalucía, Sevilla

    Google Scholar 

  • Caçador I, Tibério S, Cabral H (2007) Species zonation in Corroios salt marsh in the Tagus estuary (Portugal) and its dynamics in the past fifty years. Hydrobiologia 587:205–211

    Article  Google Scholar 

  • Caçador I, Caetano M, Duarte B, Vale C (2009) Stock and losses of trace metals from salt marsh plants. Mar Environ Res 67:75–82

    Article  CAS  PubMed  Google Scholar 

  • Caçador I, Costa JL, Duarte B, Silva G, Medeiros JP, Azeda C, Castro N, Freitas J, Cabral H, Costa MJ (2012) Macroinvertebrates and fishes as biomonitors of heavy metal concentration in the Seixal Bay (Tagus estuary): which species perform better? Ecol Ind 19:184–190

    Article  CAS  Google Scholar 

  • Caçador I, Neto JM, Duarte B, Barroso DV, Pinto M, Marques JC (2013) Development of an Angiosperm Quality Assessment Index (AQuA—Index) for ecological quality evaluation of Portuguese water bodies—a multi-metric approach. Ecol Ind 25:141–148

    Article  Google Scholar 

  • Callaway JC (2005) The challenge of restoring functioning salt marsh ecosystems. J Coast Res 40:24–36

    Google Scholar 

  • Cambrollé J, Redondo-Gómez S, Mateos-Naranjo E, Figueroa ME (2008) Comparison of the role of two Spartina species in terms of phytostabilization and bioaccumulation of metals in the estuarine sediment. Mar Poll Bull 56:2037–2042

    Article  CAS  Google Scholar 

  • Castellanos EM, Figueroa ME, Davy AJ (1994) Nucleation and facilitation in saltmarsh succession: interactions between Spartina matitima and Arthrocnemum perenne. J Ecol 82:239–248

    Article  Google Scholar 

  • Castellanos EM, Heredia C, Figueroa M, Davy AJ (1998) Tiller dynamics of Spartina maritima in successional and non-successional mediterranean salt marsh. Plant Ecol 137:213–225

    Article  Google Scholar 

  • Castellanos EM, Luque CJ, Mateos-Naranjo E, Redondo-Gómez S, Figueroa ME (2002) Ecological implications of the invasion of the alien cordgrass Spartina densiflora in the tidal marshes of the Gulf of Cádiz. Neobiota, pp 192–200

    Google Scholar 

  • Castillo JM, Figueroa ME (2009) Effect of abiotic factors on the life span of the invasive cordgrass Spartina densiflora and the native Spartina maritima at low salt marshes. Aquat Ecol 43:1–60

    Article  Google Scholar 

  • Castillo JM, Fernández-Baco L, Castellanos EM, Luque CJ, Figueroa ME, Davy AJ (2000) Lower limits of Spartina densiflora and S. maritima in a Mediterranean salt marsh determined by different ecophysiological tolerances. J Ecol 88:801–812

    Article  Google Scholar 

  • Castillo JM, Rubio-Casal AE, Redondo S, Álvarez-López AA, Luque T, Luque CJ, Nieva FJ, Castellanos EM, Figueroa ME (2005) Short-term response to salinity of an invasive cordgrass. Biol Inv 7:29–35

    Article  Google Scholar 

  • Castillo JM, Leira-Doce P, Rubio-Casal AE, Figueroa ME (2008) Spatial and temporal variations in aboveground and belowground biomass of Spartina maritima (small cordgrass) in created and natural marshes. Estuar Coast Mar Sci 78:819–826

    Article  Google Scholar 

  • Castillo JM, Ayres DR, Leira-Doce P, Bailey J, Blum M, Strong DR, Luque T, Figueroa ME (2010) The production of hybrids with high ecological amplitude between exotic Spartina densiflora and native S. maritima in the Iberian Peninsula. Divers Distrib 16:547–558

    Article  Google Scholar 

  • Castillo JM, Grewell BJ, Pickart A, Bortolus A, Pena C, Figueroa ME, Systma M (2014) Phenotypic plasticity of invasive Spartina densiflora (Poaceae) along a broad latitudinal gradient on the pacific coast of North America. Am J Bot 101:448–458

    Article  PubMed  Google Scholar 

  • Chen ZY, Li B, Chen ZY, Chen JK (2004) Local competitive effects of introduced Spartina alterniflora on Scirpus mariqueter at Dongtan of Chongming Island, the Yangtze River estuary and their potential ecological consequences. Hydrobiologia 528:99–106

    Article  Google Scholar 

  • Chevalier A (1923) Note sur les Spartina de la flore française. Bulletin de la Société botanique de France 70:54–63

    Article  Google Scholar 

  • Cobo MD, Sánchez-Gullón E, García Murillo, P (2003) Datos acerca de la presencia y gestión de especies invasoras y xenófitas en un espacio protegido europeo paradigmático. En Contribuciones al conocimiento de las especies invasoras en España G.E.I., Serie Técnica

    Google Scholar 

  • Cooper MA (1993) The status of Spartina maritima in Suffolk. Suffolk Naturalist´ Society. Transactions 29:48–54

    Google Scholar 

  • Cosson E, de Maisonneuve MCD (1867) Introduction á la flore d’Algérie. Phanérogamie. Groupe des Glumacées (seu descriptio glumacearum in Algeria nascentium). Exploration Scientifique de l’Algérie, publiée par ordre du Gouvernement. Sciences Naturelles, Botanique. Imprimerie Impériale, Paris

    Google Scholar 

  • Coste H-J (1906) Flore descriptive et illustrée de la France 3. Librairie des Sciences naturelles Paul Klincksieck, Paris

    Google Scholar 

  • Craft C, Clough J, Ehman J, Joye S, Park R, Pennings S, Guo H, Machmuller M (2009) Forecasting the effects of accelerated sea-level rise on tidal marsh ecosystem services. Front Ecol Environ 7:73–78

    Article  Google Scholar 

  • Curado G, Figueroa E, Sanchez MI, Castillo JM (2013) Avian communities in Spartina maritima restored and non-restored salt marshes. Bird Study 60:185–194

    Article  Google Scholar 

  • Curado G, Sanchez-Moyano JE, Figueroa ME, Castillo JM (2014) Do Spartina maritima plantations enhance the macroinvertebrate community in European salt marshes? Estuaries Coasts 37:589–601

    Article  CAS  Google Scholar 

  • Daehler C, Anttila C, Ayres D, Strong D (1999) Evolution of a new ecotype of Spartina alterniflora (Poaceae) in San Francisco Bay, California, USA. Am J Bot 86:543–546

    Article  CAS  PubMed  Google Scholar 

  • Daveau J (1897) La flore littorale du Portugal. Boletim da Sociedade Broteriana 14:4–54

    Google Scholar 

  • Duarte B, Raposo P, Caçador I (2009) Spartina maritima (cordgrass) rhizosediment extracellular enzymatic activity and its role on organic matter dec omposition and metal speciation processes. Mar Ecol 30:65–73

    Article  Google Scholar 

  • Duarte B, Caetano M, Almeida P, Vale C, Caçador I (2010) Accumulation and biological cycling of heavy metal in the root-sediment system of four salt marsh species, from Tagus estuary (Portugal). Environ Poll 158:1661–1668

    Article  CAS  Google Scholar 

  • Duarte B, Freitas J, Caçador I (2011) The role of organic acids in assisted phytoremediation processes of salt marsh sediments. Hydrobiologia 674:169–177

    Article  CAS  Google Scholar 

  • Duarte B, Couto T, Freitas J, Valentim J, Silva H, Marques JC, Dias JM, Caçador I (2013a) Abiotic modulation of Spartina maritima photosynthetic ecotypic variations in different latitudinal populations. Estuar Coast Mar Sci 130:127–137

    Article  CAS  Google Scholar 

  • Duarte B, Caçador I, Marques JC, Croudace I (2013b) Tagus Estuary salt marshes feedback to sea level rise over a 40-year period: insights from the application of geochemical indices. Ecol Ind 34:268–276

    Article  CAS  Google Scholar 

  • Duarte B, Santos D, Marques JC, Caçador I (2013c) Ecophysiological adaptations of two halophytes to salt stress: photosynthesis, PS II photochemistry and anti-oxidant feedback—implications for resilience in climate change. Plant Physiol Biochem 67:178–188

    Article  CAS  PubMed  Google Scholar 

  • Duarte B, Santos D, Silva H, Marques JC, Caçador I (2014) Photochemical and Biophysical feedbacks of C3 and C4 Mediterranean halophytes to atmospheric CO2 enrichment confirmed by their stable isotope signatures. Plant Physiol Biochem 80:10–22

    Article  CAS  PubMed  Google Scholar 

  • Duarte B, Baeta A, Rousseau-Gueutin M, Ainouche M, Marques JC, Caçador I (2015a) A tale of two Spartinas: Climatic, photobiological and isotopic insights on the fitness of non-indigenous versus native species. Estuar Coast Mar Sci 167:178–190

    Article  CAS  Google Scholar 

  • Duarte B, Santos D, Marques JC, Caçador I (2015b) Ecophysiological constraints of two invasive plant species under a saline gradient: halophytes versus glycophytes. Estuar Coast Mar Sci 167:154–165

    Article  Google Scholar 

  • Duarte B, Marques JC, Caçador I (2015c) Impact of extreme heat and cold events on the energetic metabolism of the C3 halophyte Halimione portulacoides. Estuar Coast Mar Sci 167:166–177

    Article  CAS  Google Scholar 

  • Duarte B, Goessling JW, Marques JC, Caçador I (2015d) Ecophysiological constrains of Aster tripolium under extreme thermal events impacts: merging biophysical, biochemical and genetic insights. Plant Physiol Biochem 97:217–228

    Article  CAS  PubMed  Google Scholar 

  • Duarte B, Marques JC, Caçador I (2016) Ecophysiological responses of native and invasive Spartina species to extreme temperature events in Mediterranean marshes. Biol Inv 18:2189–2205

    Article  Google Scholar 

  • Dukes JS, Mooney HA (1999) Does global change increase the success of biological invaders? Trends Ecol Evolut 14:135–139

    Article  CAS  Google Scholar 

  • Espinar JL (2009) Pastizales de Spartina (Spartinion maritime). Ministerio de Medio Ambiente, y Medio Rural y Marino, Madrid

    Google Scholar 

  • Fabre ME (1849) Description d’une nouvelle espèce de Spartina, abondante sur une portion du littoral méditerranéen. Annales des Sciencies Naturelles 3:22–125

    Google Scholar 

  • Fenu G, Bacchetta G (2008) La flora vascolare della Penisola del Sinis (Sardegna Occidentale). Acta Bot Malacitana 33:1–34

    Google Scholar 

  • Ferrandis Pomés C (2002) Ampliación del aeropuerto de Barcelona. Medidas de integración ambiental en la 3S¸ pista. I Congreso de Ingeniería Civil, Territorio y Medio Ambiente, Madrid, 13–15 Feb 2002, pp 1349–1362

    Google Scholar 

  • Figueroa ME, Castellanos EM (1988) Vertical structure of Spartina maritima and Spartina densiflora in mediterranean marshes. Plant form and vegetation structure. In: Werger MJA, van der Aart PJM, During HJ, Verhoeven JTA (eds) SPB Academic Publishing, The Hague, The Netherlands, pp 105–108

    Google Scholar 

  • Figueroa ME, Castillo JM, Redondo S, Luque T, Castellanos EM, Nieva FJ, Luque CJ, Rubio-Casal AE, Davy AJ (2003) Facilitated invasion by hybridization of Sarcocornia species in a salt-marsh succession. J Ecol 91:616–626

    Article  Google Scholar 

  • Fiori A, Paoletti G (1896–1908) Flora analitica d’Italia 1. Tipografia del Seminario. Padua

    Google Scholar 

  • Fraga P, García O, Pons M (2003) Notes i contribucions al coneixement de la flora de Menorca (V). Bolletí de la Societat d’Història Natural de les Balears 46:51–66

    Google Scholar 

  • Gallego-Fernández JB, García-Novo F (2007) High-intensity versus low-intensity restoration alternatives of a tidal marsh in Guadalquivir estuary, SW Spain. Ecol Eng 30:112–121

    Article  Google Scholar 

  • Gamisans J, Deschâtres R, Paradis G, Lambinon J (1989) Spartina versicolor Fabre. In: Jeanmonod D, Burdet HM (eds) Notes et contributions à la flore de Corse, IV, vol 44. Candollea, pp 367–368

    Google Scholar 

  • Goulletquer P, Bachelet G, Sauriau PG, Noel P (2002) Open Atlantic coast of Europe—A century of introduced species into French waters. In: Leppakoski E et al (eds) Invasive aquatic species of Europe. Kluwer Academie Publishers, Netherlands

    Chapter  Google Scholar 

  • Gray A (2004) Will Spartina anglica invade northwards with changing climate? Third international conference on invasive Spartina, San Francisco, CA, 8–10 Nov 2004

    Google Scholar 

  • Guinochet M, Vilmorin R (1978) Flore de France, 3rd edn. Éditions du Centre National de la Recherche Scientifique, Paris

    Google Scholar 

  • Hammond MER, Cooper A (2002) Spartina anglica eradication and inter-tidal recovery in Northern Ireland estuaries. Turning the tide: the Eeradication of invasive species. Proceedings of the International Conference On Eradication of Island Invasives. Veitch CR, Clout MN (eds), IUCN SSC Invasive Species Specialist Group. IUCN, Gland, Switzerland and Cambridge (UK)

    Google Scholar 

  • Han B, Wang XK, Ouyang ZY (2005) Saturation levels and carbon sequestration potentials of soil carbon pools in farmland ecosystems of China. Rural Eco-Environment 21:6–11

    CAS  Google Scholar 

  • Hatch M (1992) C4 photosynthesis: an unlikely process full of surprise. Plant Cell Physiol 33:333–342

    CAS  Google Scholar 

  • Hedge P, Kriwoken LK, Patten K (2003) A review of Spartina management in Washington State US. J Aquat Plant Manage 41:82–90

    Google Scholar 

  • Heide O (2005) Ecotypic variation among European arctic and alpine populations of Oxyda digyna. Arctic Antarctic Alpine Res 37:233–238

    Article  Google Scholar 

  • Hodgkin E, Hamilton B (1998) Changing estuarine wetlands: a long term perspective for management. In A. J. McComb and J. A. Davis (eds), Wetlands for the Future. 243–255 Adelaide, Gleneagles

    Google Scholar 

  • Hughes RG, Paramor OLA (2004) The effects of bioturbation and herbivory by the polychaete Nereis diversicolor on loss of saltmarsh in south-east England. J Appl Ecol 41:440–448

    Article  Google Scholar 

  • Idazkin YL, Bortolus A, Bouza P (2010) Ecological processes shaping Central Patagonian salt marsh landscapes. Austral Ecology 36(1):59–67

    Google Scholar 

  • Intergovernmental Panel on Climate Change (IPCC) (2012) Managing the risks of extreme events and disasters to advance climate change adaptation. A special report of Working Groups I and II of the intergovernmental panel on climate change. In: Field CB, Barros V, Stocker TF, Qin D, Dokken DJ, Ebi KL, Mastrandrea MD, Mach KJ, Plattner G.-K, Allen SK., Tignor M and Midgley PM (eds) Cambridge University Press, Cambridge

    Google Scholar 

  • Intergovernmental Panel on Climate Change (IPCC) (2014) Climate change 2014: impacts, adaptation and vulnerability. Contribution of working group II to the fifth assessment report of the IPCC

    Google Scholar 

  • Kittelson PM, Boyd MJ (1997) Mechanisms of expansion for an introduced species of cordgrass, Spartina densiflora, in Humboldt Bay, California. Estuaries 20:770–778

    Article  Google Scholar 

  • Kriwoken LK, Hedge P (2000) Exotic species and estuaries: managing Spartina anglica in Tasmania, Australia. Ocean Coast Manag 43:573–584

    Article  Google Scholar 

  • Kueffer C, Kull CA (2017) Non-native species and the Aesthetics of nature. In: Vilà M, Hulme PE (eds) Impact of biological invasions on ecosystem services, invading nature—Springer series in invasion ecology, vol 12. Springer International Publishing Switzerland

    Chapter  Google Scholar 

  • Lefeuvre JC, Laffaille P, Feunteun E, Bouchard V, Radureau A (2003) Biodiversity in salt marshes: from patrimonial value to ecosystem functioning. The case study of the Mont-Saint-Michel bay. C R Biol 326:125–131

    Article  Google Scholar 

  • Lessmann J, Mendelssohn I, Hester M, McKee K (1997) Population variation in growth response to flooding of three marsh grasses. Ecol Eng 8:31–47

    Article  Google Scholar 

  • Li H, Zhang L (2008) An experimental study on physical controls of an exotic plant Spartina alterniflora in Shanghai, China. Ecol Eng 32:11–21

    Article  Google Scholar 

  • Liebhold AM, Tobin PC (2008) Population ecology of insect invasions and their management. Annu Rev Entomol 53:387–408

    Article  CAS  PubMed  Google Scholar 

  • Luque CJ, Alvarez AA, Rubio AE, Muñoz J, Redondo S, Castillo J, Castellanos EM, Figueroa ME (2004) Memoria de Vegetación: Parque Natural Bahía de Cádiz. Informe para la Consejería de Medio Ambiente, Junta de Andalucía, Sevilla

    Google Scholar 

  • Magenheimer JF, Moore TR, Chmura GL, Daoust RJ (1996) Methane and carbon dioxide flux from a macrotidal salt marsh, Bay of Fundy, New Brunswick. Estuaries 19:139–145

    Article  CAS  Google Scholar 

  • Major III WW, Crue CE, Grassley JM, Conquest LL, (2003) Mechanical and chemical control of smooth cordgrass in Willapa Bay, Washington. J Aquat Plant Manag 41:6–12

    Google Scholar 

  • Marchant C, Goodman P (1969) Spartina maritima (Curtis) Fernald. J Ecol 57:287–291

    Article  Google Scholar 

  • Marinucci AC (1982) Trophic importance of Spartina alterniflora production and decomposition to the marsh estuarine ecosystem. Biol Conserv 22:35–58

    Article  Google Scholar 

  • Mateos-Naranjo E (2008) Hacia una metodología de gestión de la especie invasora Spartina densiflora Brongn.: Estado de invasión, avances ecofisiológicos y control. Universidad de Sevilla, Sevilla

    Google Scholar 

  • Mateos-Naranjo E, Redondo-Gómez S, Silva J, Santos R, Figueroa ME (2007) Effect of prolonged flooding on the invader Spartina densiflora Brong. J Aquat Plant Manage 45:121–123

    Google Scholar 

  • Mateos-Naranjo E, Redondo-Gomez S, Cambrolle J, Luque T, Figueroa ME (2008) Growth and photosynthetic responses to zinc stress of an invasive cordgrass, Spartina densiflora. Plant Biol 10:754–762

    Article  CAS  PubMed  Google Scholar 

  • Mateos-Naranjo E, Redondo-Gómez S, Andrades-Moreno L Davy A (2010a) Growth and photosynthetic responses of the cordgrass Spartina maritima to CO2 enrichment and salinity. Chemosphere 81:725–731

    Article  CAS  PubMed  Google Scholar 

  • Mateos-Naranjo E, Redondo-Gómez S, Alvarez R, Cambrollé J, Gandullo J, Figueroa E (2010b) Synergic effect of salinity and CO2 enrichment on growth and photosynthetic responses of the invasive cordgrass Spartina densiflora. J Exp Bot 61:1643–1654

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mateos-Naranjo E, Andrades-Moreno L, Redondo-Gómez S (2011) Comparison of germination, growth, photosynthetic responses and metal uptake between three populations of Spartina densiflora under different soil pollution conditions. Ecotox Environ Safety 74:2040–2049

    Article  CAS  Google Scholar 

  • Nieva FJ (1996) Aspectos ecológicos en Spartina densiflora Brongn. Tesis Doctoral. Universidad de Sevilla, España

    Google Scholar 

  • Nieva FJ, Díaz-Espejo A, Castellanos EM, Figueroa ME (2001) Field variability of invading populations of Spartina densiflora Brongn. In different habitats of the Odiel Marshes (SW Spain). Estuar Coast Mar Sci 52:515–527

    Article  CAS  Google Scholar 

  • Otero X, Sanchez J, Macías F (2000) Nutrient status in tall and short forms of Spartina maritima in the salt marshes of Ortigueira (NW Iberian Peninsula) as related to physicochemical properties of the soils. Wetlands 20:461–469

    Article  Google Scholar 

  • Page HM, Lastra M, Rodil IF, Briones MJI MJI, Garrido J (2010) Effects of non-native Spartina patens on plant and sediment organic matter carbon incorporation into the local invertebrate community. Biol Inv 12:3825–3838

    Article  Google Scholar 

  • Parlatore F (1848–1850) Flora italiana I. Tipografia Le Monnier. Firenze

    Google Scholar 

  • Pignatti S (1982) Flora d’Italia 3. Edagricole, Bologna

    Google Scholar 

  • Proffitt C, Chiasson R, Owens A, Edwards K, Travis S (2005) Spartina alterniflora genotype influences facilitation and suppression of high marsh species colonizing an early successional salt marsh. J Ecol 93:404–416

    Article  Google Scholar 

  • Riddin T, van Wyk E, Adams J (2016) The rise and fall of an invasive estuarine grass. S Afr J Bot 107:74–79

    Article  Google Scholar 

  • Rubio JC (1985) Ecología de las Marismas del Odiel. Tesis doctoral. Departamento de Biología Vegetal y Ecología, Universidad de Sevilla, España

    Google Scholar 

  • Saarela JM (2012) Taxonomic synopsis of invasive and native Spartina (Poaceae, Chloridoideae) in the Pacific Northwest (British Columbia, Washington and Oregon), including the first report of Spartina x townsendii for British Columbia, Canada. Phytokeys 10:25–82

    Article  Google Scholar 

  • Saint-Yves A (1932) Monographia Spartinarum. Candollea 5:19–100

    Google Scholar 

  • Salgueiro N, Caçador I (2007) Short-term sedimentation in Tagus estuary, Portugal: influence of salt marsh plants. Hydrobiologia 587:187–193

    Article  Google Scholar 

  • SanLeon DG, Izco J, Sanchez JM (1999) Spartina patens: a weed in Galician saltmarshes (NW Iberian Peninsula). Hydrobiologia 15:213–222

    Article  Google Scholar 

  • Seliskar D, Gallagher J, Burdick D, Mutz L (2002) The regulation of ecosystem functions by ecotypic variation in the dominant plant: a Spartina alterniflora salt-marsh case study. J Ecol 90:1–11

    Article  Google Scholar 

  • Sousa AI, Lillebo AI, Pardal MA, Caçador I (2010) The influence of S. maritima on carbon retention capacity in salt marshes from warm-temperate estuaries. Mar Poll Bull 61:215–223

    Article  CAS  Google Scholar 

  • Stephenson D, Oliver L, Burgos N, Gbur E (2006) Identification and characterization of pitted morning glory (Ipomoea lacunose) ecotypes. Weed Sci 54:78–86

    Article  CAS  Google Scholar 

  • Taylor CM, Hastings A (2004) Finding optimal control strategies for invasive species: a density-structured model for Spartina alterniflora. J Appl Ecol 41:1049–1057

    Article  Google Scholar 

  • Teixeira A, Duarte B, Caçador I (2014) Salt marshes and Biodiversity. In: Khan MA, Böer B, Öztürk M, Al Abdessalaam TZ, Clüsener-Godt M, Gul B (eds) Tasks for vegetation science, vol 47. Sabkha ecosystems: volume IV: cash crop halophytes and biodiversity conservation. Springer, Berlin

    Google Scholar 

  • Tutin TG (1980) Spartina Schreber. In: Tutin TG et al (eds) Flora Europaea vol 5. Cambridge University Press, Cambridge, pp 259–260

    Google Scholar 

  • Yannic G, Baumel A, Ainouche M (2004) Uniformity of the nuclear and chloroplast genomes of Spartina maritima (Poaceae), a salt-marsh species in decline along the Western European Coast. Heredity 93:182–188

    Article  CAS  PubMed  Google Scholar 

  • Zhang RS, Shen YM, Lu LY, Yan SG, Wang YH, Li JL, Zhang ZL (2004) Formation of Spartina alterniflora salt marshes on the coast of Jiangsu Province, China. Ecol Eng 23:95–105

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work has been co-funded by Oficina de Cooperación Universidad de Sevilla (Conv. Ay. Act. y Proy. Coop. Des. Mod. 2, 2014/15-2015/2016) and Ministerio de Economía y Competitividad (MINECO Project CGL2016-75550-R cofunded by FEDER). The authors would also like to thank to the “Fundação para a Ciência e Tecnologia (FCT)” for funding the research in the Marine and Environmental Sciences Centre (MARE) throughout the project UID/MAR/04292/2013. The authors would also like thank to the MAR 2020 program through the project RESTAURA2020 (16-01-04-FMP-0014). B. Duarte investigation was supported by FCT throughout a Posdoctoral grant (SFRH/BPD/115162/2016).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernardo Duarte .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Duarte, B., Mateos-Naranjo, E., Goméz, S.R., Marques, J.C., Caçador, I. (2018). Cordgrass Invasions in Mediterranean Marshes: Past, Present and Future. In: Queiroz, A., Pooley, S. (eds) Histories of Bioinvasions in the Mediterranean. Environmental History, vol 8. Springer, Cham. https://doi.org/10.1007/978-3-319-74986-0_8

Download citation

Publish with us

Policies and ethics