Skip to main content

Urban Form and Road Safety: Public and Active Transport Enable High Levels of Road Safety

  • Chapter
  • First Online:
Integrating Human Health into Urban and Transport Planning

Abstract

In this chapter we explore literature on the relationship between road safety and urban form. The latter can be described by the “5Ds”: density, diversity, design, distance to transit, and destination accessibility. Dense and diverse land use and networks designed for active transport encourage walking and cycling. These conditions are also favourable for public transport, especially with public transport stops close to many origins and destinations. Dense and diverse land use, and development oriented towards public and active transport are associated with high levels of road safety. The relationship between urban form and road safety is indirect via mobility. The aforementioned urban form characteristics are likely to contribute by creating favourable preconditions for road safety (and public health in general). Increased volumes of walking and cycling are associated with reduced vehicular operating speeds as driver awareness of pedestrians and cyclists increases. Increased active transport volumes are also likely to increase public support for protected neighbourhood cores, area-wide traffic calming, and comprehensive pedestrian and cycling networks. Moreover, dense and diverse land uses enable more community finances to be invested in (sustainably) safer transport systems such as metro and rail. Achieving higher levels of road safety and public health requires a ‘bottom-up’ design process of development patterns that focus on the human-scale needs of pedestrians and cyclists first, supported with convenient, high quality public transport, services, and parks. Only in the last stages should motor traffic be carefully designed for, and then only as a ‘guest’ to this otherwise sustainability-oriented community.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alam, A. (2010). Quantifying the road safety benefits of sustainable transportation: Transit. Kelowna: University of British Columbia.

    Google Scholar 

  • American Public Transportation Association. (2016). The hidden traffic safety solution: Public transportation. Washington: APTA.

    Google Scholar 

  • Bach, B., Van Hal, E., Jong, M. I., & De Jong, T. M. (2006). Urban design and traffic; a selection form bach’s toolbox. Ede: CROW.

    Google Scholar 

  • Bayliss, D. (2009). Accident trends by road type. London: Royal Automobile Club Foundation.

    Google Scholar 

  • Birth, S., Pflaumbaum, M., Potzel, D., & Sieber, G. (2009). Human factors guideline for safer road infrastructure. Paris: World Road Association.

    Google Scholar 

  • Brundtland Commission. (1987). Our common future: Report of the world commission on environment and development. UN Documents Gatheringa Body of Global Agreements. Oxford: Oxford University Press.

    Google Scholar 

  • Buchanan, C. (1963). Traffic in towns. London: Her Majesty’s Stationery Office.

    Google Scholar 

  • Cervero, R., & Day, J. (2008). Suburbanization and transit-oriented development in china. Transport Policy, 15(5), 315–323.

    Article  Google Scholar 

  • Cervero, R., & Kockelman, K. (1997). Travel demand and the 3ds: Density, diversity, and design. Transportation Research Part D, 2(3), 199–219.

    Article  Google Scholar 

  • De La Bruhèze, A. A., & Veraart, F. C. A. (1999). Het fietsgebruik in negen west-europese steden in de twintigste eeuw (historical comparison of bicycle use in 9 European towns). Eindhoven: Stichting Historie der Techniek.

    Google Scholar 

  • Department for Transport. (2016). Reported road casualties great britain: 2011–2015. London: DFT.

    Google Scholar 

  • Dhondt, S., Macharis, C., Terryn, N., Van Malderen, F., & Putman, K. (2013). Health burden of road traffic accidents, an analysis of clinical data on disability and mortality exposure rates in flanders and brussels. Accident Analysis and Prevention, 50, 659–666.

    Article  Google Scholar 

  • Dijkstra, A. (2011). En route to safer roads; how road structure and road classification can affect road safety. Leidschendam: Institute for Road Safety Research.

    Google Scholar 

  • Dijkstra, A. (2013). Assessing the safety of routes in a regional network. Transportation Research Part C, 32, 103–115.

    Article  Google Scholar 

  • Dumbaugh, E., & Rae, R. (2009). Safe urban form: Revisiting the relationship between community design and traffic safety. Journal of the American Planning Association, 75(3), 309–329.

    Article  Google Scholar 

  • Ebert, A. K. (2004). Cycling towards the nation: The use of the bicycle in germany and the netherlands, 1880–1940. European Review of History, 11(3), 347–364.

    Article  Google Scholar 

  • Elvik, R. (2001). Area-wide urban traffic calming schemes: A meta-analysis of safety effects. Accident Analysis and Prevention, 33(3), 327–336.

    Article  CAS  Google Scholar 

  • Elvik, R. (2009). The non-linearity of risk and the promotion of environmentally sustainable transport. Accident Analysis and Prevention, 41(4), 849–855.

    Article  Google Scholar 

  • Elvik, R. (2013). Can a safety-in-numbers effect and a hazard-in-numbers effect co-exist in the same data? Accident Analysis and Prevention, 60, 57–63.

    Article  Google Scholar 

  • Elvik, R., & Bjørnskau, T. (2017). Safety-in-numbers: A systematic review and meta-analysis of evidence. Safety Science, 92, 274–282.

    Article  Google Scholar 

  • Elvik, R., Høye, A., Vaa, T., & Sørensen, M. (2009). The handbook of road safety measures. Bingley: Emerald.

    Book  Google Scholar 

  • Evers, D. (2002). The rise (and fall?) of national retail planning. Journal of Economic and Social Geography, 91(1), 107–113.

    Google Scholar 

  • Ewing, R., & Cervero, R. (2010). Travel and the built environment: A meta-analysis. Journal of the American Planning Association, 76(3), 265–294.

    Article  Google Scholar 

  • Ewing, R., & Dumbaugh, E. (2009). The built environment and traffic safety a review of empirical evidence. Journal of Planning Literature, 23(4), 347–367.

    Article  Google Scholar 

  • Fabriek, E., De Waard, D., & Schepers, J. P. (2012). Improving the visibility of bicycle infrastructure. International Journal of Human Factors and Ergonomics, 1, 98–115.

    Article  Google Scholar 

  • Fahlquist, J. N. (2006). Responsibility ascriptions and vision zero. Accident Analysis and Prevention, 38(6), 1113–1118.

    Article  Google Scholar 

  • Fietsberaad. (2010). Cijfers over fietsgebruik per gemeente 2004–2008. Utrecht: CROW/Fietsberaad.

    Google Scholar 

  • Fishman, E., Schepers, P., & Kamphuis, C. B. M. (2015). Dutch cycling: Quantifying the health and related economic benefits. American Journal of Public Health, 105(8), e13–e15.

    Article  Google Scholar 

  • Frank, L., & Hawkins, C. (2008). Assessing travel and environmental impacts of contrasting levels of vehicular and pedestrian connectivity: Assessing aspects of the fused grid. Ottawa: Canada Mortgage and Housing Corporation.

    Google Scholar 

  • Frank, L., Kavage, S., & Litman, T. (2005). Promoting public health through smart growth: Building healthier communities through transportation and land use policies and practices. Vancouver: SmartGrowthBC.

    Google Scholar 

  • Goodwin, P. B. (1996). Empirical evidence on induced traffic. Transportation, 23(1), 35–54.

    Article  Google Scholar 

  • Götschi, T., Garrard, J., & Giles-Corti, B. (2016). Cycling as a part of daily life: A review of health perspectives. Transport Reviews, 36(1), 45–71.

    Article  Google Scholar 

  • Grammenos, F., & Lovegrove, G. (2015). Remaking the city street grid: A model for urban and suburban development. Jefferson: McFarland.

    Google Scholar 

  • Hakkert, A. S., & Braimaister, L. (2002). The uses of exposure and risk in road safety studies. Leidschendam: Institute for Road Safety Research.

    Google Scholar 

  • Handy, S. (2017). Thoughts on the meaning of mark stevens’s meta-analysis. Journal of the American Planning Association, 83(1), 26–28.

    Article  Google Scholar 

  • Handy, S. L., Boarnet, M. G., Ewing, R., & Killingsworth, R. E. (2002). How the built environment affects physical activity: Views from urban planning. American Journal of Preventive Medicine, 23(2), 64–73.

    Article  Google Scholar 

  • Heinen, E., Van Wee, B., & Maat, K. (2010). Commuting by bicycle: An overview of the literature. Transport Reviews, 30(1), 59–96.

    Article  Google Scholar 

  • Houwing, S., Aarts, L. T., Reurings, M. C. B., & Bax, C. A. (2012). Verkennende studie naar regionale verschillen in relatie tot verkeersveiligheid (exploratory study on regional differences in relation with road safety). Leidschendam: SWOV Institute for Road Safety Research.

    Google Scholar 

  • Jacobsen, P. L. (2003). Safety in numbers: More walkers and bicyclists, safer walking and bicycling. Injury Prevention, 9, 205–209.

    Article  CAS  Google Scholar 

  • Karou, S., & Hull, A. (2014). Accessibility modelling: Predicting the impact of planned transport infrastructure on accessibility patterns in Edinburgh, UK. Journal of Transport Geography, 35, 1–11.

    Article  Google Scholar 

  • Kegler, S. R., Beck, L. F., & Sauber-Schatz, E. K. (2012). Motor vehicle crash deaths in metropolitan areas—united states, 2009. Morbidity and Mortality Weekly Report (MMWR), 61(28), 523–528.

    Google Scholar 

  • Khreis, H., Warsow, K. M., Verlinghieri, E., Guzman, A., Pellecuer, L., Ferreira, A., Jones, I., Heinen, E., Rojas-Rueda, D., Mueller, N., Schepers, P., Lucas, K., & Nieuwenhuijsen, M. (2016). The health impacts of traffic-related exposures in urban areas: Understanding real effects, underlying driving forces and co-producing future directions. Journal of Transport and Health, 3(3), 249–267.

    Article  Google Scholar 

  • Koornstra, M., Lynam, D., Nilsson, G., Noordzij, P., Pettersson, H. E., Wegman, F., & Wouters, P. (2002). Sunflower: A comparative study of the development of road safety in sweden, the United Kingdom, and the Netherlands. Leidschendam: SWOV Institute for Road Safety Research.

    Google Scholar 

  • Levine, J., & Frank, L. D. (2007). Transportation and land-use preferences and residents’ neighborhood choices: The sufficiency of compact development in the atlanta region. Transportation, 34(2), 255–274.

    Article  Google Scholar 

  • Levinson, D. (2012). Network structure and city size. PLoS One, 7(1), e29721.

    Article  CAS  Google Scholar 

  • Li, J., Precht, D. H., Mortensen, P. B., & Olsen, J. (2003). Mortality in parents after death of a child in denmark: A nationwide follow-up study. The Lancet, 361(9355), 363–367.

    Article  Google Scholar 

  • Litman, T. (2012). Evaluating public transit benefits and costs. Victoria: Victoria Transport Policy Institute.

    Google Scholar 

  • Lovegrove, G., Lim, C., & Sayed, T. (2010). Community-based, macrolevel collision prediction model use with a regional transportation plan. Journal of Transportation Engineering, 136(2), 120–128.

    Article  Google Scholar 

  • Lovegrove, G., & Sayed, T. (2006). Using macrolevel collision prediction models in road safety planning applications. Transportation Research Record, 1950, 73–82.

    Article  Google Scholar 

  • Lovegrove, G. R. (2007). Road safety planning: New tools for sustainable road safety and community development. Berlin: VDM Verlag Dr. Müller.

    Google Scholar 

  • Marshall, W. E., & Garrick, N. W. (2011). Does street network design affect traffic safety? Accident Analysis and Prevention, 43(3), 769–781.

    Article  Google Scholar 

  • Masoud, A. R., Idris, A. O., & Lovegrove, G. (2017). Modelling the influence of fused grid neighborhood design principles on active transportation use: Part 1–street connectivity. Washington: Annual General Meeting of the Transportation Research Board.

    Google Scholar 

  • Masoud, A. R., Lee, A., Faghihi, F., & Lovegrove, G. (2015). Building sustainably safe and healthy communities with the fused grid development layout. Canadian Journal of Civil Engineering, 42(12), 1063–1072.

    Article  Google Scholar 

  • Mavoa, S., Witten, K., Mccreanor, T., & O’sullivan, D. (2012). Gis based destination accessibility via public transit and walking in auckland, new zealand. Journal of Transport Geography, 20(1), 15–22.

    Article  Google Scholar 

  • Methorst, R., Schepers, P., Christie, N., Dijst, M., Risser, R., Sauter, D., & Van Wee, B. (2017). ‘Pedestrian falls’ as necessary addition to the current definition of traffic crashes for improved public health policies. Journal of Transport and Health, 6, 10–12.

    Article  Google Scholar 

  • Miranda-Moreno, L. F., Morency, P., & El-Geneidy, A. M. (2011). The link between built environment, pedestrian activity and pedestrian–vehicle collision occurrence at signalized intersections. Accident Analysis and Prevention, 43(5), 1624–1634.

    Article  Google Scholar 

  • Mokhtarian, P. L., & Chen, C. (2004). Ttb or not ttb, that is the question: A review and analysis of the empirical literature on travel time (and money) budgets. Transportation Research Part A, 38(9–10), 643–675.

    Google Scholar 

  • Mueller, N., Rojas-Rueda, D., Cole-Hunter, T., De Nazelle, A., Dons, E., Gerike, R., Götschi, T., Int Panis, L., Kahlmeier, S., & Nieuwenhuijsen, M. (2015). Health impact assessment of active transportation: A systematic review. Preventive Medicine, 76, 103–114.

    Article  Google Scholar 

  • Nacto. (2013). Urban street design guide. Washington: National Association of City Transportation Officials.

    Book  Google Scholar 

  • Nieuwenhuijsen, M. J., & Khreis, H. (2016). Car free cities: Pathway to healthy urban living. Environment International, 94, 251–262.

    Article  CAS  Google Scholar 

  • NSW Centre for Road Safety. (2015). Road traffic casualty crashes in new south wales; statistical statement for the year ended 2011–2015. Sydney: Centre for Road Safety, Haymarket.

    Google Scholar 

  • Oecd/Itf. (2014). Road safety annual report 2014. Paris: OECD Publishing.

    Google Scholar 

  • Oecd/Itf. (2016). Road safety annual report 2016. Paris: OECD Publishing.

    Google Scholar 

  • Office for National Statistics. (2015). Estimated resident population mid-year by single year of age 1999–2015. London: ONS.

    Google Scholar 

  • Perry, C. A. (1939). Housing for the machine age. New York: Russel Sage Foundation.

    Google Scholar 

  • Préfecture De Police, 2013. Bilan sécurité routière de la préfecture de police 2013; blessés graves.

    Google Scholar 

  • Pucher, J. (2004). Public transportation. In S. Hanson & G. Giuliano (Eds.), The geography of urban transportation (pp. 199–236). New York: The Guilford Press.

    Google Scholar 

  • Räsänen, M., & Summala, H. (1998). Attention and expectation problems in bicycle–car collisions: An in-depth study. Accident Analysis and Prevention, 30(5), 657–666.

    Article  Google Scholar 

  • Rietveld, P., & Daniel, V. (2004). Determinants of bicycle use: Do municipal policies matter? Transportation Research Part A, 38(7), 531–550.

    Google Scholar 

  • Ryb, G. E., Dischinger, P. C., Mcgwin, G., Jr., & Griffin, R. L. (2012). Degree of urbanization and mortality from motor vehicular crashes. Annals of Advances in Automotive Medicine, 56, 183–190.

    Google Scholar 

  • Salter, E., & Stallard, P. (2004). Posttraumatic growth in child survivors of a road traffic accident. Journal of Traumatic Stress, 17(4), 335–340.

    Article  Google Scholar 

  • Schepers, J. P., Hagenzieker, M. P., Methorst, R., Van Wee, G. P., & Wegman, F. (2014). A conceptual framework for road safety and mobility applied to cycling safety. Accident Analysis and Prevention, 62, 331–340.

    Article  Google Scholar 

  • Schepers, J. P., & Heinen, E. (2013). How does a modal shift from short car trips to cycling affect road safety? Accident Analysis and Prevention, 50(1), 1118–1127.

    Article  CAS  Google Scholar 

  • Schepers, J. P., Heinen, E., Methorst, R., & Wegman, F. C. M. (2013). Road safety and bicycle usage impacts of unbundling vehicular and cycle traffic in dutch urban networks. European Journal of Transport and Infrastructure Research, 13(3), 221–238.

    Google Scholar 

  • Schepers, J. P., Kroeze, P. A., Sweers, W., & Wust, J. C. (2011). Road factors and bicycle-motor vehicle crashes at unsignalized priority intersections. Accident Analysis and Prevention, 43(3), 853–861.

    Article  CAS  Google Scholar 

  • Schepers, P., Agerholm, N., Amoros, E., Benington, R., Bjørnskau, T., Dhondt, S., De Geus, B., Hagemeister, C., Loo, B. P. Y., & Niska, A. (2015a). An international review of the frequency of single-bicycle crashes (sbcs) and their relation to bicycle modal share. Injury Prevention, 21, e138–e143.

    Article  Google Scholar 

  • Schepers, P., Den Brinker, B., Methorst, R., & Helbich, M. (2017a). Pedestrian falls: A review of the literature and future research directions. Journal of Safety Research, 62, 227–234.

    Article  Google Scholar 

  • Schepers, P., Fishman, E., Beelen, R., Heinen, E., Wijnen, W., & Parkin, J. (2015b). The mortality impact of bicycle paths and lanes related to physical activity, air pollution exposure and road safety. Journal of Transport and Health, 2(4), 460–473.

    Article  Google Scholar 

  • Schepers, P., Twisk, D., Fishman, E., Fyhri, A., & Jensen, A. (2017b). The dutch road to a high level of cycling safety. Safety Science, 92, 264–273.

    Article  Google Scholar 

  • Slop, M., & Van Minnen, J. (1994). Duurzaam veilig voetgangers-en fietsverkeer (sustainable safe pedestrian and cycle traffic). Leidschendam: Institute for Road Safety Research.

    Google Scholar 

  • Smeed, R. J. (1949). Some statistical aspects of road safety research. Journal of the Royal Statistical Society A, 112(1), 1–34.

    Article  Google Scholar 

  • Statistics Belgium. (2017). Loop van de bevolking; verkeersongevallen 2011–2015. Brussel: FOD Economie; Algemene Directie Statistiek en Economische Informatie.

    Google Scholar 

  • Statistics Denmark. (2017). Statbank. Copenhagen: Statistics Denmark.

    Google Scholar 

  • Statistics Netherlands, 2017. Statline.

    Google Scholar 

  • Stipdonk, H., & Reurings, M. (2012). The effect on road safety of a modal shift from car to bicycle. Traffic Injury Prevention, 13(4), 412–421.

    Article  Google Scholar 

  • Sun, G., Gwee, E., Chin, L. S., & Low, A. (2014). Passenger transport mode shares in world cities. Journeys; Sharing Urban Transport Solutions, 12, 54–64.

    Google Scholar 

  • Sun, J., & Lovegrove, G. (2013). Comparing the road safety of neighbourhood development patterns: Traditional versus sustainable communities. Canadian Journal of Civil Engineering, 40(1), 35–45.

    Article  Google Scholar 

  • Swov. (2010a). Factsheet background of the five sustainable safety principles. Leidschendam: Institute for Road Safety Research.

    Google Scholar 

  • Swov. (2010b). Factsheet international comparability of road safety data. Leidschendam: Institute for Road Safety Research.

    Google Scholar 

  • Swov. (2010c). Factsheet zones 30: Urban residential areas. Leidschendam: Institute for Road Safety Research.

    Google Scholar 

  • Swov. (2011a). Cognos. Leidschendam: Institute for Road Safety Research.

    Google Scholar 

  • Swov. (2011b). Road safety hazards of public transport. Leidschendam: SWOV Institute for Road Safety Research.

    Google Scholar 

  • Swov. (2014). Factsheet road crash costs. The Hague: SWOV Institute for Road Safety Research.

    Google Scholar 

  • Swov. (2017). Cognos. Leidschendam: Institute for Road Safety Research.

    Google Scholar 

  • Tingvall, C., Haworth, N. (1999). Vision zero – an ethical approach to safety and mobility. 6th ITE International Conference Road Safety & Traffic Enforcement: Beyond 2000, Melbourne.

    Google Scholar 

  • Transport Accident Commission. (2015). Road safety statistical summary 2013/2015. Geelong: TAC.

    Google Scholar 

  • Transport Accident Commission. (2016). Road safety quarterly statistics – June 2016. Geelong: TAC.

    Google Scholar 

  • Transport Analysis, 2017. Road traffic injuries. Stockholm.

    Google Scholar 

  • Transport Department Hong Kong, 2015. Road traffic accident statistics; year 2015. Hong Kong.

    Google Scholar 

  • Ukkusuri, S., Miranda-Moreno, L. F., Ramadurai, G., & Isa-Tavarez, J. (2012). The role of built environment on pedestrian crash frequency. Safety Science, 50(4), 1141–1151.

    Article  Google Scholar 

  • Van Beek, P., & Schreuders, M. (2002). Opstap naar de mobiliteitstoets: Ruimtelijke ordening in relatie tot verkeersveiligheid. Rotterdam: Rijkswaterstaat.

    Google Scholar 

  • Van Wee, B. (2009). Verkeer en transport (traffic and transport). In B. Van Wee & J. Anne Annema (Eds.), Verkeer en vervoer in hoofdlijnen (outlining traffic and transport). Bussum: Coutinho.

    Google Scholar 

  • Van Wee, B., & Ettema, D. (2016). Travel behaviour and health: A conceptual model and research agenda. Journal of Transport and Health, 3(3), 240–248.

    Article  Google Scholar 

  • Wagenaar, C., Mens, N., Singelenberg, J., Visser, A., & Sparenberg, S. (2008). De toekomst van de bloemkoolwijken (the future of cauliflower neighbourhoods). Rotterdam: SEV.

    Google Scholar 

  • Wegman, F. (2014). Sustainable communities: The dutch example. Canadian Civil Engineer, Canadian Society of Civil Engineers Winter, 2014, 17–19.

    Google Scholar 

  • Wei, V. F., & Lovegrove, G. (2012). An empirical tool to evaluate the safety of cyclists: Community based, macro-level collision prediction models using negative binomial regression. Accident Analysis and Prevention, 61, 129–137.

    Article  Google Scholar 

  • Weijermars, W. A. M., & Wegman, F. C. M. (2011). Ten years of sustainable safety in the netherlands. Transportation Research Record, 2213, 1–6.

    Article  Google Scholar 

  • WHO. (2004). World report on road traffic injury prevention. In M. Peden, R. Scurfield, D. Sleet, D. Mohan, A. A. Hyder, E. Jarawan, & C. Mathers (Eds.), World report on road traffic injury prevention. Geneva: World Health Organization.

    Google Scholar 

  • WHO. (2015). Global status report on road safety 2015. Geneva: World Health Organization.

    Google Scholar 

  • Wikipedia, 2017. Modal share.

    Google Scholar 

  • Witteveen+Bos. (2015). Effectstudie verkeersveiligheid blankenburgverbinding. Rotterdam: Rijkswaterstaat.

    Google Scholar 

  • World Road Association. (2014). Road safety manual; guide for practitioners. Paris: PIARC.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul Schepers .

Editor information

Editors and Affiliations

Appendix: Description of the Data Used for Fig. 19.1 and Table 19.1

Appendix: Description of the Data Used for Fig. 19.1 and Table 19.1

Recorded deaths per 100,000 population in 2011–2015 in Fig. 19.1 are either calculated using road death and population statistics from governments such as statistical agencies or taken from OECD (OECD/ITF 2014, 2016) or WHO (WHO 2015). Phoenix or San Diego rates were from Kegler et al. (2012) and adjusted for the reduction in the USA between 2009 and 2011–2015.

Modal share of trips in Table 19.1 data was taken from the Wikipedia (2017) page about modes of transport in large cities (https://en.wikipedia.org/wiki/Modal_share) and supplemented with data for Hong Kong from Sun et al. (2014), Fietsberaad (2010) for cycling in Dutch new towns, and Statistics Netherlands (2017) for the average modal split in the Netherlands. Population densities from the Wikipedia pages of the cities are also added to Table 19.1.

Sources Table 19.1 and Fig. 19.1: Fietsberaad (2010), SWOV (2011a), Kegler et al. (2012), Préfecture de Police (2013), OECD/ITF (2014), Sun et al. (2014), NSW Centre for Road Safety (2015), Office for National Statistics (2015), Transport Accident Commission (2015), Transport Department Hong Kong (2015), WHO (2015), Department for Transport (2016), OECD/ITF (2016), Transport Accident Commission (2016), Statistics Belgium (2017), Statistics Denmark (2017), Statistics Netherlands (2017), Transport Analysis (2017).

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Schepers, P., Lovegrove, G., Helbich, M. (2019). Urban Form and Road Safety: Public and Active Transport Enable High Levels of Road Safety. In: Nieuwenhuijsen, M., Khreis, H. (eds) Integrating Human Health into Urban and Transport Planning. Springer, Cham. https://doi.org/10.1007/978-3-319-74983-9_19

Download citation

Publish with us

Policies and ethics