Skip to main content

Computational Modeling of Multidrug-Resistant Bacteria

  • Chapter
  • First Online:
Theoretical and Applied Aspects of Systems Biology

Abstract

Understanding how complex phenotypes arise from individual molecules and their interactions is a primary challenge in biology, and computational approaches have been increasingly employed to tackle this task. In this chapter, we describe current efforts by FIOCRUZ and partners to develop integrated computational models of multidrug-resistant bacteria. The bacterium chosen as the main focus of this effort is Pseudomonas aeruginosa, an opportunistic pathogen associated with a broad spectrum of infections in humans. Nowadays, P. aeruginosa is one of the main problems of healthcare-associated infections (HAI) in the world, because of its great capacity of survival in hospital environments and its intrinsic resistance to many antibiotics. Our overall research objective is to use integrated computational models to accurately predict a wide range of observable cellular behaviors of multidrug-resistant P. aeruginosa CCBH4851, which is a strain belonging to the clone ST277, endemic in Brazil. In this chapter, after a brief introduction to P. aeruginosa biology, we discuss the construction of metabolic and gene regulatory networks of P. aeruginosa CCBH 4851 from its genome. We also illustrate how these networks can be integrated into a single model, and we discuss methods for identifying potential therapeutic targets through integrated models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Brasil. Ministério da Saúde. Agência Nacional de Vigilância Sanitária. Boletim de segurança do paciente e qualidade em serviços de saúde n° 14: Avaliação dos indicadores nacionais das Infecções Relacionadas à Assistência à Saúde (IRAS) e resistência microbiana do ano de 2015. Brasília (DF): Ministério da Saúde. (In portuguese) Available at: (https://www20.anvisa.gov.br/segurancadopaciente/index.php/publicacoes/item/boletim-de-seguranca-do-paciente-e-qualidade-em-servicos-de-saude-n-13-avaliacao-dos-indicadores-nacionais-das-infeccoes-relacionadas-a-assistencia-a-saude-iras-e-resistencia-microbiana-do-ano-de-2015) 2016.

  2. World Health Organization. Global priority list of antibiotic-resistant bacteria to guide research, discovery, and development of new antibiotics. (http://www.who.int/medicines/publications/WHO-PPL-Short_Summary_25Feb-ET_NM_WHO.pdf?ua=1) 2017.

  3. Covert M, Xiao N, Chen T, Karr J. Integrating metabolic, transcriptional regulatory and signal transduction models in Escherichia coli. Bioinformatics. 2008;24(18):2044–50.

    Article  Google Scholar 

  4. Silveira M, Albano R, Asensi M, Assef A. The draft genome sequence of multidrug-resistant Pseudomonas aeruginosa strain CCBH4851, a nosocomial isolate belonging to clone SP (ST277) that is prevalent in Brazil. Mem Inst Oswaldo Cruz. 2014;109(8):1086–7.

    Article  Google Scholar 

  5. Carrera J, Covert M. Why build whole-cell models? Trends Cell Biol. 2015;25(12):719–22.

    Article  Google Scholar 

  6. Karr J, Sanghvi J, Macklin D, Gutschow M, Jacobs J, Bolival B, et al. A whole-cell computational model predicts phenotype from genotype. Cell. 2012;150(2):389–401.

    Article  Google Scholar 

  7. Pier GB, Ramphal R. Pseudomonas aeruginosa. In: Mandell GL, Bennett JE, Dolin R, editors. Mandell, Douglas, and Bennett’s principles and practice of infectious diseases. 7th ed. Philadelphia: Churchill Livingstone Elsevier; 2010. p. 2835–60.

    Chapter  Google Scholar 

  8. Driscoll J, Brody S, Kollef M. The epidemiology, pathogenesis and treatment of Pseudomonas aeruginosa infections. Drugs. 2007;67(3):351–68.

    Article  Google Scholar 

  9. Lee K, Yoon SS. Pseudomonas aeruginosa biofilm, a programmed bacterial life for fitness. J Microbiol Biotechnol. 2017;27(6):1053–64.

    Google Scholar 

  10. Balasubramanian D, Schneper L, Kumari H, Mathee K. A dynamic and intricate regulatory network determines Pseudomonas aeruginosa virulence. Nucleic Acids Res. 2012;41(1):1–20.

    Article  Google Scholar 

  11. Engel J, Balachandran P. Role of Pseudomonas aeruginosa type III effectors in disease. Curr Opin Microbiol. 2009;12(1):61–6.

    Article  Google Scholar 

  12. Tomita M, Hashimoto K, Takahashi K, Shimizu TS, Matsuzaki Y, Miyoshi F, Saio K, Tanida S, Yugi K, Venter J, Hutchison CA. E-CELL: software environment for whole-cell simulation. Bioinformatics. 1999;15(1):72–84.

    Article  Google Scholar 

  13. Kerr K, Snelling A. Pseudomonas aeruginosa: a formidable and ever-present adversary. J Hosp Infect. 2009;73(4):338–44.

    Article  Google Scholar 

  14. Kung V, Ozer E, Hauser A. The accessory genome of Pseudomonas aeruginosa. Microbiol Mol Biol Rev. 2010;74(4):621–41.

    Article  Google Scholar 

  15. Vallet-Gely I, Boccard F. Chromosomal organization and segregation in Pseudomonas aeruginosa. PLoS Genet. 2013;9(5):e1003492.

    Article  Google Scholar 

  16. Silveira M, Albano R, Asensi M, Carvalho-Assef A. Description of genomic islands associated to the multidrug-resistant Pseudomonas aeruginosa clone ST277. Infect Genet Evol. 2016;42:60–5.

    Article  Google Scholar 

  17. Oliver A, Mulet X, López-Causapé C, Juan C. The increasing threat of Pseudomonas aeruginosa high-risk clones. Drug Resist Updat. 2015;21–22:41–59.

    Article  Google Scholar 

  18. Cornaglia G, Giamarellou H, Rossolini G. Metallo-β-lactamases: a last frontier for β-lactams? Lancet Infect Dis. 2011;11(5):381–93.

    Article  Google Scholar 

  19. Nascimento A, Ortiz M, Martins W, Morais G, Fehlberg L, Almeida L, et al. Intraclonal genome stability of the metallo-β-lactamase SPM-1-producing Pseudomonas aeruginosa ST277, an endemic clone disseminated in brazilian hospitals. Front Microbiol. 2016;7:1946.

    Article  Google Scholar 

  20. Cavalcanti F, Almeida A, Vilela M, Morais M, Morais JM. Changing the epidemiology of carbapenem-resistant Pseudomonas aeruginosa in a Brazilian teaching hospital: the replacement of São Paulo metallo-β-lactamase-producing isolates. Mem Inst Oswaldo Cruz. 2012;107(3):420–3.

    Article  Google Scholar 

  21. Gales A, Menezes L, Silbert S, Sader H. Dissemination in distinct Brazilian regions of an epidemic carbapenem-resistant Pseudomonas aeruginosa producing SPM metallo- β-lactamase. J Antimicrob Chemother. 2003;52(4):699–702.

    Article  Google Scholar 

  22. Fonseca E, Freitas F, Vicente A. The Colistin-only sensitive Brazilian Pseudomonas aeruginosa clone SP (sequence type 277) is spread worldwide. Antimicrob Agents Chemother. 2010;54(6):2743.

    Article  Google Scholar 

  23. Salabi A, Toleman M, Weeks J, Bruderer T, Frei R, Walsh T. First report of the metallo- β-lactamase SPM-1 in Europe. Antimicrob Agents Chemother. 2009;54(1):582.

    Article  Google Scholar 

  24. Hopkins K, Findlay J, Mustafa N, Pike R, Parsons H, Wright L, et al. SPM-1 metallo-β-lactamase-producing Pseudomonas aeruginosa ST277 in the UK. J Med Microbiol. 2016;65(7):696–7.

    Article  Google Scholar 

  25. Galán-Vásquez E, Luna B, Martínez-Antonio A. The regulatory network of Pseudomonas aeruginosa. Microb Inf Exp. 2011;1(1):3.

    Article  Google Scholar 

  26. Babaei P, Ghasemi-Kahrizsangi T, Marashi S. Modeling the differences in biochemical capabilities of pseudomonas species by flux balance analysis: how good are genome-scale metabolic networks at predicting the differences? Sci World J. 2014;2014:1–11.

    Google Scholar 

  27. Brent M. Genome annotation past, present, and future: how to define an ORF at each locus. Genome Res. 2005;15(12):1777–86.

    Article  Google Scholar 

  28. Richardson E, Watson M. The automatic annotation of bacterial genomes. Brief Bioinform. 2012;14(1):1–12.

    Article  Google Scholar 

  29. Verli H. Bioinformática: da biologia à flexibilidade molecular. 1st ed. São Paulo: SBBq; 2014.

    Google Scholar 

  30. Campbell M, Yandell M. An introduction to genome annotation. Curr Protocol Bioinforma. 2015;52:4.1.1–4.1.17.

    Article  Google Scholar 

  31. Delcher A. Improved microbial gene identification with GLIMMER. Nucleic Acids Res. 1999;27(23):4636–41.

    Article  Google Scholar 

  32. Besemer J, Lomsadze A, Borodovsky M. GeneMarkS: a self-training method for prediction of gene starts in microbial genomes. Implications for finding sequence motifs in regulatory regions. Nucleic Acids Res. 2001;29(12):2607–18.

    Article  Google Scholar 

  33. Tatusova T, DiCuccio M, Badretdin A, Chetvernin V, Nawrocki E, Zaslavsky L, et al. NCBI prokaryotic genome annotation pipeline. Nucleic Acids Res. 2016;44(14):6614–24.

    Article  Google Scholar 

  34. Lagesen K, Hallin P, Rødland E, Stærfeldt H, Rognes T, Ussery D. RNAmmer: consistent and rapid annotation of ribosomal RNA genes. Nucleic Acids Res. 2007;35(9):3100–8.

    Article  Google Scholar 

  35. Lowe T, Eddy S. tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res. 1997;25(5):955–64.

    Article  Google Scholar 

  36. Laslett D, Canback B. ARAGORN, a program to detect tRNA genes and tmRNA genes in nucleotide sequences. Nucleic Acids Res. 2004;32(1):11–6.

    Article  Google Scholar 

  37. Kinouchi M, Kurokawa K. [Special issue: fact databases and freewares] tRNAfinder: a software system to find all tRNA genes in the DNA sequence based on the cloverleaf secondary structure. J Comput Aided Chem. 2006;7:116–24.

    Article  Google Scholar 

  38. Overbeek R, Olson R, Pusch G, Olsen G, Davis J, Disz T, et al. The SEED and the rapid annotation of microbial genomes using subsystems technology (RAST). Nucleic Acids Res. 2013;42(D1):D206–14.

    Article  Google Scholar 

  39. Seemann T. Prokka: rapid prokaryotic genome annotation. Bioinformatics. 2014;30(14):2068–9.

    Article  Google Scholar 

  40. Zimin A, Marçais G, Puiu D, Roberts M, Salzberg S, Yorke J. The MaSuRCA genome assembler. Bioinformatics. 2013;29(21):2669–77.

    Article  Google Scholar 

  41. Otto T, Dillon G, Degrave W, Berriman M. RATT: rapid annotation transfer tool. Nucleic Acids Res. 2011;39(9):e57.

    Article  Google Scholar 

  42. Thiele I, Palsson B. A protocol for generating a high-quality genome-scale metabolic reconstruction. Nat Protoc. 2010;5(1):93–121.

    Article  Google Scholar 

  43. The Uniprot Consortium: the universal protein knowledgebase. Nucleic Acids Res. 2017;45(D1):D158–D169.

    Google Scholar 

  44. Barthelmes J, Ebeling C, Chang A, Schomburg I, Schomburg D. BRENDA, AMENDA and FRENDA: the enzyme information system in 2007. Nucleic Acids Res. 2007;35(Database):D511–4.

    Article  Google Scholar 

  45. Kanehisa M, Goto S, Hattori M, Aoki-Kinoshita K, Itoh M, Kawashima S, et al. From genomics to chemical genomics: new developments in KEGG. Nucleic Acids Res. 2006;34(90001):D354–7.

    Article  Google Scholar 

  46. Heavner B, Price N. Transparency in metabolic network reconstruction enables scalable biological discovery. Curr Opin Biotechnol. 2015;34:105–9.

    Article  Google Scholar 

  47. Oberhardt M, Puchalka J, Fryer K, Martins dos Santos V, Papin J. Genome-scale metabolic network analysis of the opportunistic pathogen Pseudomonas aeruginosa PAO1. J Bacteriol. 2008;190(8):2790–803.

    Article  Google Scholar 

  48. Vital-Lopez F, Reifman J, Wallqvist A. Biofilm formation mechanisms of Pseudomonas aeruginosa predicted via genome-scale kinetic models of bacterial metabolism. PLoS Comput Biol. 2015;11(10):e1004452.

    Article  Google Scholar 

  49. Bartell J, Blazier A, Yen P, Thøgersen J, Jelsbak L, Goldberg J, et al. Reconstruction of the metabolic network of Pseudomonas aeruginosa to interrogate virulence factor synthesis. Nat Commun. 2017;8:14631.

    Article  Google Scholar 

  50. Moreno-Hagelsieb G, Latimer K. Choosing BLAST options for better detection of orthologs as reciprocal best hits. Bioinformatics. 2008;24(3):319–24.

    Article  Google Scholar 

  51. Novichkov P, Kazakov A, Ravcheev D, Leyn S, Kovaleva G, Sutormin R, et al. RegPrecise 3.0 – a resource for genome-scale exploration of transcriptional regulation in bacteria. BMC Genomics. 2013;14(1):745.

    Article  Google Scholar 

  52. Bailey T, Boden M, Buske F, Frith M, Grant C, Clementi L, et al. MEME SUITE: tools for motif discovery and searching. Nucleic Acids Res. 2009;37.(Web Server:W202–8.

    Article  Google Scholar 

  53. Hwang S, Kim C, Ji S, Go J, Kim H, Yang S, et al. Network-assisted investigation of virulence and antibiotic-resistance systems in Pseudomonas aeruginosa. Sci Rep. 2016;6(1):26223.

    Article  Google Scholar 

  54. Jeong H, Mason S, Barabási A, Oltvai Z. Lethality and centrality in protein networks. Nature. 2001;411(6833):41–2.

    Article  Google Scholar 

  55. Shannon P, Markiel A, Owen O, Nitin SB, Jonathan TW, Daniel R, et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 2003;13(11):2498–504.

    Article  Google Scholar 

  56. Trindade dos Santos M, Nascimento A, Medeiros Filho F, Silva F. Modeling gene transcriptional regulation. Theor Appl Asp Syst Biol. 2018;27:27–39.

    Google Scholar 

  57. Carrera J, Estrela R, Luo J, Rai N, Tsoukalas A, Tagkopoulos I. An integrative, multi-scale, genome-wide model reveals the phenotypic landscape of Escherichia coli. Mol Syst Biol. 2014;10(7):735.

    Article  Google Scholar 

  58. Goldberg A, Chew Y, Karr J. Toward scalable whole-cell modeling of human cells. Proceedings of the 2016 annual ACM Conference on SIGSIM Principles of Advanced Discrete Simulation – SIGSIM-PADS ‘16. 2016.

    Google Scholar 

  59. Covert M, Palsson B. Transcriptional regulation in constraints-based metabolic models of Escherichia coli. J Biol Chem. 2002;277(31):28058–64.

    Article  Google Scholar 

  60. Karr J, Sanghvi J, Macklin D, Arora A, Covert M. WholeCellKB: model organism databases for comprehensive whole-cell models. Nucleic Acids Res. 2013;41(D1):D787–92.

    Article  Google Scholar 

  61. Karr J, Phillips N, Covert M. WholeCellSimDB: a hybrid relational/HDF database for whole-cell model predictions. Database. 2014;2014:bau095.

    Article  Google Scholar 

  62. Lee R, Karr J, Covert M. WholeCellViz: data visualization for whole-cell models. BMC Bioinf. 2013;14(1):253.

    Article  Google Scholar 

  63. Waltemath D, Karr J, Bergmann F, Chelliah V, Hucka M, Krantz M, et al. Toward community standards and software for whole-cell modeling. IEEE Trans Biomed Eng. 2016;63(10):2007–14.

    Article  Google Scholar 

  64. Ottino J. Engineering complex systems. Nature. 2004;427(6973):399.

    Article  Google Scholar 

  65. Carothers C, Bauer D, Pearce S. ROSS: a high-performance, low-memory, modular time warp system. J Parallel Distrib Comput. 2002;62(11):1648–69.

    Article  MATH  Google Scholar 

  66. Macklin D, Ruggero N, Covert M. The future of whole-cell modeling. Curr Opin Biotechnol. 2014;28:111–5.

    Article  Google Scholar 

  67. Abreu R, Castro M, Silva F. Simulation step size analysis of a whole-cell computational model of bacteria. AIP Conf Proc. 2016;1790(1):100014.

    Article  Google Scholar 

  68. Hansen J. GNU octave beginner’s guide. Birmingham: Packt Publishing; 2011.

    Google Scholar 

  69. McPhillie M, Cain R, Narramore S, Fishwick C, Simmons K. Computational methods to identify new antibacterial targets. Chem Biol Drug Des. 2015;85(1):22–9.

    Article  Google Scholar 

  70. Pujol A, Mosca R, Farrés J, Aloy P. Unveiling the role of network and systems biology in drug discovery. Trends Pharmacol Sci. 2010;31(3):115–23.

    Article  Google Scholar 

  71. Schadt E, Friend S, Shaywitz D. A network view of disease and compound screening. Nat Rev Drug Discov. 2009;8(4):286–95.

    Article  Google Scholar 

  72. Xie L, Li J, Xie L, Bourne P. Drug discovery using chemical systems biology: identification of the protein-ligand binding network to explain the side effects of CETP inhibitors. PLoS Comput Biol. 2009;5(5):e1000387.

    Article  Google Scholar 

  73. Murabito E, Smallbone K, Swinton J, Westerhoff H, Steuer R. A probabilistic approach to identify putative drug targets in biochemical networks. J R Soc Interface. 2010;8(59):880–95.

    Article  Google Scholar 

  74. Rienksma R, Suarez-Diez M, Spina L, Schaap P. Martins dos Santos V. Systems-level modeling of mycobacterial metabolism for the identification of new (multi-)drug targets. Semin Immunol. 2014;26(6):610–22.

    Article  Google Scholar 

  75. Kozakov D, Hall D, Napoleon R, Yueh C, Whitty A, Vajda S. New frontiers in druggability. J Med Chem. 2015;58(23):9063–88.

    Article  Google Scholar 

  76. Vashisht R, Bhat A, Kushwaha S, Bhardwaj A, Consortium O, Brahmachari S. Systems level mapping of metabolic complexity in Mycobacterium tuberculosis to identify high-value drug targets. J Transl Med. 2014;12(1):263–81.

    Google Scholar 

  77. Chaudhury S, Abdulhameed M, Singh N, Tawa G, D’haeseleer P, Zemla A, et al. Rapid countermeasure discovery against Francisella tularensis based on a metabolic network reconstruction. PLoS One. 2013;8(5):e63369.

    Article  Google Scholar 

  78. Lewis N, Nagarajan H, Palsson B. Constraining the metabolic genotype–phenotype relationship using a phylogeny of in silico methods. Nat Rev Microbiol. 2012;10(4):291–305.

    Article  Google Scholar 

  79. Becker S, Palsson B. Context-specific metabolic networks are consistent with experiments. PLoS Comput Biol. 2008;4(5):e1000082.

    Article  MathSciNet  Google Scholar 

  80. Shlomi T, Cabili M, Herrgård M, Palsson B, Ruppin E. Network-based prediction of human tissue-specific metabolism. Nat Biotechnol. 2008;26(9):1003–10.

    Article  Google Scholar 

  81. Colijn C, Brandes A, Zucker J, Lun D, Weiner B, Farhat M, et al. Interpreting expression data with metabolic flux models: predicting Mycobacterium tuberculosis mycolic acid production. PLoS Comput Biol. 2009;5(8):e1000489.

    Article  MathSciNet  Google Scholar 

  82. Zur H, Ruppin E, Shlomi T. iMAT: an integrative metabolic analysis tool. Bioinformatics. 2010;26(24):3140–2.

    Article  Google Scholar 

  83. Chandrasekaran S, Price N. Probabilistic integrative modeling of genome-scale metabolic and regulatory networks in Escherichia coli and Mycobacterium tuberculosis. Proc Natl Acad Sci. 2010;107(41):17845–50.

    Article  Google Scholar 

  84. Brandes A, Lun D, Ip K, Zucker J, Colijn C, Weiner B, et al. Inferring carbon sources from gene expression profiles using metabolic flux models. PLoS One. 2012;7(5):e36947.

    Article  Google Scholar 

  85. Ma S, Minch K, Rustad T, Hobbs S, Zhou S, Sherman D, et al. Integrated modeling of gene regulatory and metabolic networks in Mycobacterium tuberculosis. PLoS Comput Biol. 2015;11(11):e1004543.

    Article  Google Scholar 

  86. Garay C, Dreyfuss J, Galagan J. Metabolic modeling predicts metabolite changes in Mycobacterium tuberculosis. BMC Syst Biol. 2015;9(1):57.

    Article  Google Scholar 

  87. Toleman MA, Simm AM, Murphy TA, Gales AC, Biedenbach DJ, Jones RN, Walsh TR, Molecular characterization of SPM-1, a novel metallo-?-lactamase isolated in Latin America: report from the SENTRY antimicrobial surveillance programme. J Antimicrob Chemother. 2002;50(5):673–9.

    Article  Google Scholar 

Download references

Acknowledgment

This study was supported by fellowships from CAPES to FMF and from the Oswaldo Cruz Institute (https://pgbcs.ioc.fiocruz.br/) to TG. We also thank FAPERJ and CAPES for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabricio Alves Barbosa da Silva .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

da Silva, F.A.B. et al. (2018). Computational Modeling of Multidrug-Resistant Bacteria. In: Alves Barbosa da Silva, F., Carels, N., Paes Silva Junior, F. (eds) Theoretical and Applied Aspects of Systems Biology. Computational Biology, vol 27. Springer, Cham. https://doi.org/10.1007/978-3-319-74974-7_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-74974-7_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-74973-0

  • Online ISBN: 978-3-319-74974-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics