Skip to main content

The Challenge of Translating System Biology into Targeted Therapy of Cancer

  • Chapter
  • First Online:

Part of the book series: Computational Biology ((COBO,volume 27))

Abstract

Translational medicine has been leveraging new technologies and tools for data analysis to promote the development of new treatments. Integration of translational medicine with system biology allows the study of diseases from a holistic perspective. Cancer is a disease of cell regulation that affects genome integrity and ultimately disrupts cell homeostasis. The inter-patient heterogeneity is well characterized, and the scientific community has been seeking for more precise diagnoses in personalized medicine. The use of precision diagnosis would maximize therapeutic efficiency and minimize noxious collateral effects of treatments to patients. System biology addresses such challenge by its ability to identify key genes from dysregulated processes in malignant cells. Currently, the integration of science and technology makes possible to develop new methodologies to analyze a disease as a system. Consequently, a rational approach can be taken in the selection of the most promising treatment for a patient given the multidimensional nature of the cancer system. In this chapter, we describe this integrative journey from system biology investigation toward patient treatment, focusing on molecular diagnosis. We view tumors as unique evolving dynamical systems, and their evaluation at molecular level is important to determine the best treatment options for patients.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. de Magalhães JP. How ageing processes influence cancer. Nat Rev Cancer. 2013;13(5):357–65.

    Article  Google Scholar 

  2. Ferlay J, Shin H-R, Bray F, Forman D, Mathers C, Parkin DM. Estimates of worldwide burden of cancer in 2008: GLOBOCAN 2008. Int J Cancer. 2010;127(12):2893–917.

    Article  Google Scholar 

  3. Hanahan D. Rethinking the war on cancer. Lancet (London, England). 2014;383(9916):558–63.

    Article  Google Scholar 

  4. Wallace DI, Guo X. Properties of tumor spheroid growth exhibited by simple mathematical models. Front Oncol. 2013;3:51.

    Article  Google Scholar 

  5. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144(5):646–74.

    Article  Google Scholar 

  6. Barcellos-Hoff MH, Lyden D, Wang TC. The evolution of the cancer niche during multistage carcinogenesis. Nat Rev Cancer. 2013;13(7):511–8.

    Article  Google Scholar 

  7. Breitkreutz D, Hlatky L, Rietman E, Tuszynski JA. Molecular signaling network complexity is correlated with cancer patient survivability. Proc Natl Acad Sci. 2012;109(23):9209–12.

    Article  Google Scholar 

  8. Wachi S, Yoneda K, Wu R. Interactome-transcriptome analysis reveals the high centrality of genes differentially expressed in lung cancer tissues. Bioinformatics. 2005;21(23):4205–8.

    Article  Google Scholar 

  9. Lim DHK, Maher ER. Genomic imprinting syndromes and cancer. Adv Genet. 2010;70:145–75.

    Google Scholar 

  10. de Bruin EC, Taylor TB, Swanton C. Intra-tumor heterogeneity: lessons from microbial evolution and clinical implications. Genome Med. 2013;5(11):101.

    Article  Google Scholar 

  11. EGAPP. Recommendations from the EGAPP Working Group: can tumor gene expression profiling improve outcomes in patients with breast cancer? Genet Med. 2009;11(1):66–73.

    Article  Google Scholar 

  12. Abba MC, Lacunza E, Butti M, Aldaz CM. Breast cancer biomarker discovery in the functional genomic age: a systematic review of 42 gene expression signatures. Biomark Insights. 2010;2010(5):103–18.

    Google Scholar 

  13. Gabrovska PN, Smith R a, Haupt LM, Griffiths LR. Gene expression profiling in human breast cancer – toward personalised therapeutics? Open Breast Cancer J. 2010;2:46–59.

    Article  Google Scholar 

  14. Fournel M, Sapieha P, Beaulieu N, Besterman JM, Macleod AR. Down-regulation of human DNA- (cytosine-5) methyltransferase induces cell cycle regulators p16 (ink4A) and p21 (WAF/Cip1) by distinct mechanisms. J Biol Chem. 1999;274(34):24250–6.

    Article  Google Scholar 

  15. Rhee I, Jair K-W, Yen R-WC, Lengauer C, Herman JG, Kinzler KW, et al. CpG methylation is maintained in human cancer cells lacking DNMT1. Nature. 2000;404(1998):1003–7.

    Article  Google Scholar 

  16. Rhee I, Bachman KE, Park BH, Jair K-W, Yen R-WC, Schuebel KE, et al. DNMT1 and DNMT3b cooperate to silence genes in human cancer cells. Nature. 2002;416(6880):552–6.

    Article  Google Scholar 

  17. Wasson GR, McGlynn AP, McNulty H, O’Reilly SL, McKelvey-Martin VJ, McKerr G, et al. Global DNA and p53 region-specific hypomethylation in human colonic cells is induced by folate depletion and reversed by folate supplementation. J Nutr. 2006;136(11):2748–53.

    Article  Google Scholar 

  18. Wilson AS, Power BE, Molloy PL. DNA hypomethylation and human diseases. Biochim Biophys Acta. 2007;1775(1):138–62.

    Google Scholar 

  19. Vandiver AR, Idrizi A, Rizzardi L, Feinberg AP, Hansen KD. DNA methylation is stable during replication and cell cycle arrest. Sci Rep. 2015;5:17911.

    Article  Google Scholar 

  20. Guo F, Li X, Liang D, Li T, Zhu P, Guo H, et al. Active and passive demethylation of male and female pronuclear DNA in the mammalian zygote. Cell Stem Cell. 2014;15(4):447–58.

    Article  Google Scholar 

  21. Tahiliani M, Koh KP, Shen Y, Pastor WA, Bandukwala H, Brudno Y, et al. Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1. Science. 2009;324(5929):930–5.

    Article  Google Scholar 

  22. Wu MZ, Chen SF, Nieh S, Benner C, Ger LP, Jan CI, et al. Hypoxia drives breast tumor malignancy through a TET-TNFα-p38-MAPK signaling axis. Cancer Res. 2015;75(18):3912–24.

    Article  Google Scholar 

  23. Yang H, Liu Y, Bai F, Zhang J-Y, Ma S-H, Liu J, et al. Tumor development is associated with decrease of TET gene expression and 5-methylcytosine hydroxylation. Oncogene. 2013;32(5):663–9.

    Article  Google Scholar 

  24. Kudo Y, Tateishi K, Yamamoto K, Yamamoto S, Asaoka Y, Ijichi H, et al. Loss of 5-hydroxymethylcytosine is accompanied with malignant cellular transformation. Cancer Sci. 2012;103(4):670–6.

    Article  Google Scholar 

  25. Hassler MR, Egger G. Epigenomics of cancer – emerging new concepts. Biochimie. 2012;94(11):2219–30.

    Article  Google Scholar 

  26. Yoo CB, Jones PA. Epigenetic therapy of cancer: past, present and future. Nat Rev Drug Discov. 2006;5(1):37–50.

    Article  Google Scholar 

  27. Friedman RC, Farh KKH, Burge CB, Bartel DP. Most mammalian mRNAs are conserved targets of microRNAs. Genome Res. 2009;19(1):92–105.

    Article  Google Scholar 

  28. Qin W, Zhang K, Clarke K, Weiland T, Sauter ER. Methylation and miRNA effects of resveratrol on mammary tumors vs. normal tissue. Nutr Cancer. 2014;66(2):270–7.

    Article  Google Scholar 

  29. Suh SO, Chen Y, Zaman MS, Hirata H, Yamamura S, Shahryari V, et al. MicroRNA-145 is regulated by DNA methylation and p53 gene mutation in prostate cancer. Carcinogenesis. 2011;32(5):772–8.

    Article  Google Scholar 

  30. Philibert RA, Gunter TD, Beach SRH, Brody GH, Madan A. Rapid publication: MAOA methylation is associated with nicotine and alcohol dependence in women. Am J Med Genet Part B Neuropsychiatr Genet. 2008;147(5):565–70.

    Article  Google Scholar 

  31. Hartmann O, Spyratos F, Harbeck N, Dietrich D, Fassbender A, Schmitt M, et al. DNA methylation markers predict outcome in node-positive, estrogen receptor-positive breast cancer with adjuvant anthracycline-based chemotherapy. Clin Cancer Res. 2009;15(1):315–23.

    Article  Google Scholar 

  32. Guzmán L, Depix M, Salinas A, Roldán R, Aguayo F, Silva A, et al. Analysis of aberrant methylation on promoter sequences of tumor suppressor genes and total DNA in sputum samples: a promising tool for early detection of COPD and lung cancer in smokers. Diagn Pathol. 2012;7:87.

    Article  Google Scholar 

  33. Hitchins MP, Rapkins RW, Kwok CT, Srivastava S, Wong JJL, Khachigian LM, et al. Dominantly inherited constitutional epigenetic silencing of MLH1 in a cancer-affected family is linked to a single nucleotide variant within the 5′UTR. Cancer Cell. 2011;20(2):200–13.

    Article  Google Scholar 

  34. Duesberg P, Li R, Fabarius A, Hehlmann R. The chromosomal basis of cancer. Cell Oncol. 2005;27(5–6):293–318.

    Google Scholar 

  35. Eden A, Gaudet F, Waghmare A, Jaenisch R. Chromosomal instability and tumors promoted by DNA hypomethylation. Science. 2003;300(April):2003.

    Google Scholar 

  36. Nervi C, De Marinis E, Codacci-Pisanelli G. Epigenetic treatment of solid tumours: a review of clinical trials. Clin Epigenetics. 2015;7(1):127.

    Article  Google Scholar 

  37. Ikehata M, Ogawa M, Yamada Y, Tanaka S, Ueda K, Iwakawa S. Different effects of epigenetic modifiers on the cytotoxicity induced by 5-fluorouracil, irinotecan or oxaliplatin in colon cancer cells. Biol Pharm Bull. 2014;37(1):67–73.

    Article  Google Scholar 

  38. Das DS, Ray A, Das A, Song Y, Tian Z, Oronsky B, et al. A novel hypoxia-selective epigenetic agent RRx-001 triggers apoptosis and overcomes drug resistance in multiple myeloma cells. Leukemia. 2016;30(11):2187–97.

    Article  Google Scholar 

  39. Khan ANH, Gregorie CJ, Tomasi TB. Histone deacetylase inhibitors induce TAP, LMP, Tapasin genes and MHC class I antigen presentation by melanoma cells. Cancer Immunol Immunother. 2008;57(5):647–54.

    Article  Google Scholar 

  40. Marcu LG, Harriss-Phillips WM. In silico modelling of treatment-induced tumour cell kill: developments and advances. Comput Math Methods Med. 2012;2012(i):1–16.

    Article  MATH  Google Scholar 

  41. Mardinoglu A, Gatto F, Nielsen J. Genome-scale modeling of human metabolism – a systems biology approach. Biotechnol J. 2013;8(9):985–96.

    Article  Google Scholar 

  42. Knauer DJ, Wiley HS, Cunningham DD. Relationship between epidermal growth factor receptor occupancy and mitogenic response. Quantitative analysis using a steady state model system. J Biol Chem. 1984;259(9):5623–31.

    Google Scholar 

  43. Starbuck C, Lauffenburger DA. Mathematical model for the effects of epidermal growth factor receptor trafficking dynamics on fibroblast proliferation responses. Biotechnol Prog. 1992;8(2):132–43.

    Article  Google Scholar 

  44. Fallon EM, Lauffenburger DA. Computational model for effects of ligand/receptor binding properties on interleukin-2 trafficking dynamics and T cell proliferation response. Biotechnol Prog. 2000;16(5):905–16.

    Article  Google Scholar 

  45. Mardinoglu A, Agren R, Kampf C, Asplund A, Nookaew I, Jacobson P, et al. Integration of clinical data with a genome-scale metabolic model of the human adipocyte. Mol Syst Biol. 2013;9:649.

    Article  Google Scholar 

  46. Mardinoglu A, Agren R, Kampf C, Asplund A, Uhlen M, Nielsen J. Genome-scale metabolic modelling of hepatocytes reveals serine deficiency in patients with non-alcoholic fatty liver disease. Nat Commun. 2014;14:5.

    Google Scholar 

  47. Thiele I, Swainston N, Fleming RMT, Hoppe A, Sahoo S, Aurich MK, et al. A community-driven global reconstruction of human metabolism. Nat Biotechnol. 2013;31(5):419–25.

    Article  Google Scholar 

  48. Folger O, Jerby L, Frezza C, Gottlieb E, Ruppin E, Shlomi T. Predicting selective drug targets in cancer through metabolic networks. Mol Syst Biol. 2011;7(1):517.

    Article  Google Scholar 

  49. Joyce AR, Palsson BØ. Predicting gene essentiality using genome-scale in silico models. Methods Mol Biol. 2008;416:433–57.

    Article  Google Scholar 

  50. Zielinski DC, Jamshidi N, Corbett AJ, Bordbar A, Thomas A, Palsson BO. Systems biology analysis of drivers underlying hallmarks of cancer cell metabolism. Sci Rep. 2017;7:41241.

    Article  Google Scholar 

  51. Gatto F, Miess H, Schulze A, Nielsen J. Flux balance analysis predicts essential genes in clear cell renal cell carcinoma metabolism. Sci Rep. 2015;5(1):10738.

    Article  Google Scholar 

  52. Szappanos B, Kovács K, Szamecz B, Honti F, Costanzo M, Baryshnikova A, et al. An integrated approach to characterize genetic interaction networks in yeast metabolism. Nat Genet. 2011;43(7):656–62.

    Article  Google Scholar 

  53. Hyduke DR, Lewis NE, Palsson BØ. Analysis of omics data with genome-scale models of metabolism. Mol BioSyst. 2013;9(2):167–74.

    Article  Google Scholar 

  54. Karr JR, Sanghvi JC, Macklin DN, Gutschow MV, Jacobs JM, Bolival B, et al. A whole-cell computational model predicts phenotype from genotype. Cell. 2012;150(2):389–401.

    Article  Google Scholar 

  55. Simeonidis E, Price ND. Genome-scale modeling for metabolic engineering. J Ind Microbiol Biotechnol. 2015;42(3):327–38.

    Article  Google Scholar 

  56. Fumiã HF, Martins ML. Boolean network model for cancer pathways: predicting carcinogenesis and targeted therapy outcomes. PLoS One. 2013;8(7):e69008.

    Article  Google Scholar 

  57. Albert I, Thakar J, Li S, Zhang R, Albert R. Boolean network simulations for life scientists. Source Code Biol Med. 2008;3:16.

    Article  Google Scholar 

  58. Chapman MP, Tomlin CJ. Member I. Ordinary differential equations in cancer biology. bioRxiv. 2016;1:2–4.

    Google Scholar 

  59. Turner TE, Schnell S, Burrage K. Stochastic approaches for modelling in vivo reactions. Comput Biol Chem. 2004;28(3):165–78.

    Article  MATH  Google Scholar 

  60. Anderson ARA, Quaranta V. Integrative mathematical oncology. Nat Rev Cancer. 2008;8(3):227–34.

    Article  Google Scholar 

  61. Alarcón T, Byrne HM, Maini PK. A multiple scale model for tumor growth. Multiscale Model Simul. 2005;3(2):440–75.

    Article  MathSciNet  MATH  Google Scholar 

  62. Singhania R, Sramkoski RM, Jacobberger JW, Tyson JJ. A hybrid model of mammalian cell cycle regulation. PLoS Comput Biol. 2011;7(2):e1001077.

    Article  MathSciNet  Google Scholar 

  63. Agren R, Mardinoglu A, Asplund A, Kampf C, Uhlen M, Nielsen J. Identification of anticancer drugs for hepatocellular carcinoma through personalized genome-scale metabolic modeling. Mol Syst Biol. 2014;10(3):1–13.

    Article  Google Scholar 

  64. Agren R, Bordel S, Mardinoglu A, Pornputtapong N, Nookaew I, Nielsen J. Reconstruction of genome-scale active metabolic networks for 69 human cell types and 16 cancer types using INIT. PLoS Comput Biol. 2012;8(5):e1002518.

    Article  Google Scholar 

  65. Uhlén M, Fagerberg L, Hallström BM, Lindskog C, Oksvold P, Mardinoglu A, et al. Proteomics. Tissue-based map of the human proteome. Science. 2015;347(6220):1260419.

    Article  Google Scholar 

  66. Swainston N, Smallbone K, Hefzi H, Dobson PD, Brewer J, Hanscho M, et al. Recon 2.2: from reconstruction to model of human metabolism. Metabolomics. 2016;12(7):109.

    Article  Google Scholar 

  67. Garg D, Henrich S, Salo-Ahen OMH, Myllykallio H, Costi MP, Wade RC. Novel approaches for targeting thymidylate synthase to overcome the resistance and toxicity of anticancer drugs. J Med Chem. 2010;53(18):6539–49.

    Article  Google Scholar 

  68. Hebar A, Valent P, Selzer E. The impact of molecular targets in cancer drug development: major hurdles and future strategies. Expert Rev Clin Pharmacol. 2013;6(1):23–34.

    Article  Google Scholar 

  69. Ghaffari P, Mardinoglu A, Asplund A, Shoaie S, Kampf C, Uhlen M, et al. Identifying anti-growth factors for human cancer cell lines through genome-scale metabolic modeling. Sci Rep. 2015;5(1):8183.

    Article  Google Scholar 

  70. Ramachandran N, Hainsworth E, Bhullar B, Eisenstein S, Rosen B, Lau AY, et al. Self-assembling protein microarrays. Science. 2004;305(5680):86–90.

    Article  Google Scholar 

  71. Yazaki J, Galli M, Kim AY, Nito K, Aleman F, Chang KN, et al. Mapping transcription factor interactome networks using HaloTag protein arrays. Proc Natl Acad Sci U S A. 2016;113(29):E4238–47.

    Article  Google Scholar 

  72. Choudhary C, Mann M. Decoding signalling networks by mass spectrometry-based proteomics. Nat Rev Mol Cell Biol. 2010;11:427.

    Article  Google Scholar 

  73. Wilhelm M, Schlegl J, Hahne H, Moghaddas Gholami A, Lieberenz M, Savitski MM, et al. Mass-spectrometry-based draft of the human proteome. Nature. 2014;509(7502):582–7.

    Article  Google Scholar 

  74. Chakrabarti CG, De K. Boltzmann entropy: generalization and applications. J Biol Phys. 1997;23(3):163–70.

    Article  Google Scholar 

  75. Schneider TD. A brief review of molecular information theory. Nano Commun Netw. 2010;1(3):173–80.

    Article  Google Scholar 

  76. Banerji CRS, Miranda-Saavedra D, Severini S, Widschwendter M, Enver T, Zhou JX, et al. Cellular network entropy as the energy potential in Waddington’s differentiation landscape. Sci Rep. 2013;3(1):3039.

    Article  Google Scholar 

  77. Carels N, Tilli T, Tuszynski JA. A computational strategy to select optimized protein targets for drug development toward the control of cancer diseases. PLoS One. 2015;10(1):e0115054.

    Article  Google Scholar 

  78. Parise CA, Caggiano V. Breast cancer survival defined by the ER/PR/HER2 subtypes and a surrogate classification according to tumor grade and immunohistochemical biomarkers. J Cancer Epidemiol. 2014;2014:1–11.

    Article  Google Scholar 

  79. Carels N, Tilli TM, Tuszynski JA. Optimization of combination chemotherapy based on the calculation of network entropy for protein-protein interactions in breast cancer cell lines. EPJ Nonlinear Biomed Phys. 2015;3(1):6.

    Article  Google Scholar 

  80. Álvarez-Silva MC, Yepes S, Torres MM, González Barrios AF. Proteins interaction network and modeling of IGVH mutational status in chronic lymphocytic leukemia. Theor Biol Med Model. 2015;12(1):12.

    Article  Google Scholar 

  81. Barabasi AL, Oltvai ZN. Network biology: understanding the cell’s functional organization [review]. Nat Rev Genet. 2004;5(2):101–NIL.

    Article  Google Scholar 

  82. Albert R, Jeong H, Barabási A-L. Error and attack tolerance of complex networks. Nature. 2000;406(6794):378–82.

    Article  Google Scholar 

  83. Tilli TM, Carels N, Tuszynski JA, Pasdar M. Validation of a network-based strategy for the optimization of combinatorial target selection in breast cancer therapy: siRNA knockdown of network targets in MDA-MB-231 cells as an in vitro model for inhibition of tumor development. Oncotarget. 2016;7(39):63189–203.

    Article  Google Scholar 

  84. Watts JK, Corey DR. Silencing disease genes in the laboratory and the clinic. J Pathol. 2012;226(2):365–79.

    Article  Google Scholar 

  85. Alegre MM, Robison RA, O’Neill KL. Thymidine kinase 1 upregulation is an early event in breast tumor formation. J Oncol. 2012;2012:1–5.

    Article  Google Scholar 

  86. Chen Y-L, Eriksson S, Chang Z-F. Regulation and functional contribution of thymidine kinase 1 in repair of DNA damage. J Biol Chem. 2010;285(35):27327–35.

    Article  Google Scholar 

  87. Di Cresce C, Figueredo R, Ferguson PJ, Vincent MD, Koropatnick J. Combining small interfering RNAs targeting thymidylate synthase and thymidine kinase 1 or 2 sensitizes human tumor cells to 5-fluorodeoxyuridine and pemetrexed. J Pharmacol Exp Ther. 2011;338(3):952–63.

    Article  Google Scholar 

  88. Cheng Q, Chang JT, Geradts J, Neckers LM, Haystead T, Spector NL, et al. Amplification and high-level expression of heat shock protein 90 marks aggressive phenotypes of human epidermal growth factor receptor 2 negative breast cancer. Breast Cancer Res. 2012;14(2):R62.

    Article  Google Scholar 

  89. Korsching E, Packeisen J, Liedtke C, Hungermann D, Wülfing P, van Diest PJ, et al. The origin of vimentin expression in invasive breast cancer: epithelial-mesenchymal transition, myoepithelial histogenesis or histogenesis from progenitor cells with bilinear differentiation potential? J Pathol. 2005;206(4):451–7.

    Article  Google Scholar 

  90. Liu C-Y, Lin H-H, Tang M-J, Wang Y-K. Vimentin contributes to epithelial-mesenchymal transition cancer cell mechanics by mediating cytoskeletal organization and focal adhesion maturation. Oncotarget. 2015;6(18):15966–83.

    Google Scholar 

  91. Hodgkinson VC, Agarwal V, ELFadl D, Fox JN, McManus PL, Mahapatra TK, et al. Pilot and feasibility study: comparative proteomic analysis by 2-DE MALDI TOF/TOF MS reveals 14-3-3 proteins as putative biomarkers of response to neoadjuvant chemotherapy in ER-positive breast cancer. J Proteome. 2012;75(9):2745–52.

    Article  Google Scholar 

  92. Kim Y, Kim H, Jang S-W, Ko J. The role of 14-3-3β in transcriptional activation of estrogen receptor α and its involvement in proliferation of breast cancer cells. Biochem Biophys Res Commun. 2011;414(1):199–204.

    Article  Google Scholar 

  93. Akekawatchai C, Roytrakul S, Kittisenachai S, Isarankura-Na-Ayudhya P, Jitrapakdee S. Protein profiles associated with anoikis resistance of metastatic MDA-MB-231 breast cancer cells. Asian Pac J Cancer Prev. 2016;17(2):581–90.

    Article  Google Scholar 

  94. Wilker E, Yaffe MB. 14-3-3 proteins – a focus on cancer and human disease. J Mol Cell Cardiol. 2004;37(3):633–42.

    Article  Google Scholar 

  95. Ortega CE, Seidner Y, Dominguez I. Mining CK2 in cancer. Calogero RA, editor. PLoS One. 2014;9(12):e115609.

    Article  Google Scholar 

  96. Filhol O, Giacosa S, Wallez Y, Cochet C. Protein kinase CK2 in breast cancer: the CK2β regulatory subunit takes center stage in epithelial plasticity. Cell Mol Life Sci. 2015;72(17):3305–22.

    Article  Google Scholar 

  97. Deshiere A, Duchemin-Pelletier E, Spreux E, Ciais D, Forcet C, Cochet C, et al. Regulation of epithelial to mesenchymal transition: CK2β on stage. Mol Cell Biochem. 2011;356(1–2):11–20.

    Article  Google Scholar 

  98. Golden D, Cantley LG. Casein kinase 2 prevents mesenchymal transformation by maintaining Foxc2 in the cytoplasm. Oncogene. 2015;34(36):4702–12.

    Article  Google Scholar 

  99. Phan L, Chou P-C, Velazquez-Torres G, Samudio I, Parreno K, Huang Y, et al. The cell cycle regulator 14-3-3σ opposes and reverses cancer metabolic reprogramming. Nat Commun. 2015;6:7530.

    Article  Google Scholar 

  100. Boudreau A, Tanner K, Wang D, Geyer FC, Reis-Filho JS, Bissell MJ. 14-3-3σ stabilizes a complex of soluble actin and intermediate filament to enable breast tumor invasion. Proc Natl Acad Sci U S A. 2013;110(41):E3937–44.

    Article  Google Scholar 

  101. Kren BT, Unger GM, Abedin MJ, Vogel RI, Henzler CM, Ahmed K, et al. Preclinical evaluation of cyclin dependent kinase 11 and casein kinase 2 survival kinases as RNA interference targets for triple negative breast cancer therapy. Breast Cancer Res. 2015;17:19.

    Article  Google Scholar 

  102. Miwa D, Sakaue T, Inoue H, Takemori N, Kurokawa M, Fukuda S, et al. Protein kinase D2 and heat shock protein 90 beta are required for BCL6-associated zinc finger protein mRNA stabilization induced by vascular endothelial growth factor-A. Angiogenesis. 2013;16(3):675–88.

    Article  Google Scholar 

  103. Pallares J, Llobet D, Santacana M, Eritja N, Velasco A, Cuevas D, et al. CK2β is expressed in endometrial carcinoma and has a role in apoptosis resistance and cell proliferation. Am J Pathol. 2009;174(1):287–96.

    Article  Google Scholar 

  104. Kitano H. Biological robustness. Nat Rev Genet. 2004;5(11):826–37.

    Article  Google Scholar 

  105. Kitano H. Towards a theory of biological robustness. Mol Syst Biol. 2007;18:3.

    Google Scholar 

  106. Atkinson DM, Clarke MJ, Mladek AC, Carlson BL, Trump DP, Jacobson MS, et al. Using fluorodeoxythymidine to monitor anti-EGFR inhibitor therapy in squamous cell carcinoma xenografts. Head Neck. 2008;30(6):790–9.

    Article  Google Scholar 

  107. Didelot C, Lanneau D, Brunet M, Bouchot A, Cartier J, Jacquel A, et al. Interaction of heat-shock protein 90β isoform (HSP90β) with cellular inhibitor of apoptosis 1 (c-IAP1) is required for cell differentiation. Cell Death Differ. 2008;15(5):859–66.

    Article  Google Scholar 

  108. Lahat G, Zhu Q-S, Huang K-L, Wang S, Bolshakov S, Liu J, et al. Vimentin is a novel anti-cancer therapeutic target; insights from in vitro and in vivo mice xenograft studies. Bauer JA, editor. PLoS One. 2010;5(4):e10105.

    Article  Google Scholar 

  109. Cao W, Yang X, Zhou J, Teng Z, Cao L, Zhang X, et al. Targeting 14-3-3 protein, difopein induces apoptosis of human glioma cells and suppresses tumor growth in mice. Apoptosis. 2010;15(2):230–41.

    Article  Google Scholar 

  110. Dong S, Kang S, Lonial S, Khoury HJ, Viallet J, Chen J. Targeting 14-3-3 sensitizes native and mutant BCR-ABL to inhibition with U0126, rapamycin and Bcl-2 inhibitor GX15-070. Leukemia. 2008;22(3):572–7.

    Article  Google Scholar 

  111. Thompson JM, Nguyen QH, Singh M, Razarenova OV. Approaches to identifying synthetic lethal interactions in cancer. Yale J Biol Med. 2015;88(2):145–55.

    Google Scholar 

  112. Stegh AH. Toward personalized cancer nanomedicine – past, present, and future. Integr Biol. 2013 [cited 2016 Jan 11];5(1):48–65.

    Article  Google Scholar 

  113. Reischl D, Zimmer A. Drug delivery of siRNA therapeutics: potentials and limits of nanosystems. Nanomed Nanotechnol Biol Med. 2009;5(1):8–20.

    Article  Google Scholar 

Download references

Acknowledgment

This study was supported by fellowships from the Oswaldo Cruz Institute (https://pgbcs.ioc.fiocruz.br/) to A.C., from Instituto Nacional de Ciência e Tecnologia de Inovação em Doenças de Populações Negligenciadas (#573642/2008-7) to M.M., and from Convenio CAPES/Fiocruz (cooperation term 001/2012 CAPESFiocruz) to T.M.T.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicolas Carels .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Conforte, A.J., Magalhães, M., Tilli, T.M., da Silva, F.A.B., Carels, N. (2018). The Challenge of Translating System Biology into Targeted Therapy of Cancer. In: Alves Barbosa da Silva, F., Carels, N., Paes Silva Junior, F. (eds) Theoretical and Applied Aspects of Systems Biology. Computational Biology, vol 27. Springer, Cham. https://doi.org/10.1007/978-3-319-74974-7_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-74974-7_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-74973-0

  • Online ISBN: 978-3-319-74974-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics