Skip to main content

Classification Problem in a Quantum Framework

  • Chapter
  • First Online:

Abstract

The aim of this paper is to provide a quantum counterpart of the well-known minimum-distance classifier named Nearest Mean Classifier (NMC). In particular, we refer to the following previous works: (1) in Sergioli et al. Sergioli, G., Santucci, E., Didaci, L., Miszczak, J., Giuntini, R.: A quantum-inspired version of the Nearest Mean Classifier. Soft Computing, 22(3), 691–705 (2018). we have introduced a detailed quantum version of the NMC, named Quantum Nearest Mean Classifier (QNMC), for two-dimensional problems, and we have proposed a generalization to arbitrary dimensions; (2) in Sergioli et al. (Int J Theor Phys 56(12):3880–3888, 2017) the n-dimensional problem was analyzed in detail, and a particular encoding for arbitrary n-feature vectors into density operators has been presented. In this paper, we introduce a new promising encoding of arbitrary n-dimensional patterns into density operators, starting from the two-feature encoding provided in Sergioli et al. Sergioli, G., Santucci, E., Didaci, L., Miszczak, J., Giuntini, R.: A quantum-inspired version of the Nearest Mean Classifier. Soft Computing, 22(3), 691–705 (2018). Further, unlike the NMC, the QNMC shows to be not invariant by rescaling the features of each pattern. This property allows us to introduce a free parameter whose variation provides, in some case, an improvement of the QNMC performance. We show experimental results where i) the NMC and QNMC performances are compared on different datasets and ii) the effects of the non-invariance under uniform rescaling for the QNMC are investigated.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    We remind that, given a function f : X → Y , the argmin (i.e., the argument of the minimum) over some subset S of X is defined as: \(\operatorname *{argmin}_{x \in S\subseteq X } f(x) = \{x|x \in S \wedge \forall y\in S : f(y) \geq f(x)\}\). In this framework, the argmin plays the role of the classifier, i.e., a function that associates to any unlabeled object the correspondent label.

  2. 2.

    We consider the representation of an arbitrary density operator as linear combination of Pauli matrices.

  3. 3.

    http://archive.ics.uci.edu/ml.

References

  1. Aerts, D., Aerts, S.: Applications of quantum statistics in psychological studies of decision processes. Found. Sci. 1 (1), 85–97 (1994)

    Google Scholar 

  2. Aerts, D., Gabora, L., Sozzo, S.: Concepts and their dynamics: a quantum-theoretic modeling of human thought. Top. Cogn. Sci. 5(4), 737–772 (2013)

    Google Scholar 

  3. Aïmeur, E., Brassard, G.,Gambs, S.: Machine Learning in a Quantum World: Conference of the Canadian Society for Computational Studies of Intelligence. Springer, Berlin (2006)

    Chapter  Google Scholar 

  4. Caraiman, S., Manta, V.: Image processing using quantum computing. In: 2012 16th International Conference on System Theory, Control and Computing (ICSTCC), pp. 1–6. IEEE, New York (2012)

    Google Scholar 

  5. Coxeter, H.S.M.: Introduction to Geometry, 2nd edn. Wiley, New York (1969)

    Google Scholar 

  6. Duda, R.O., Hart, P.E., Stork, D.G.: Pattern Classification, 2nd edn. Wiley Interscience, Hoboken (2000)

    Google Scholar 

  7. Eisert, J., Wilkens, M., Lewenstein, M.: Quantum games and quantum strategies. Phys. Rev. Lett. 83(15), 3077 (1999)

    Article  MathSciNet  Google Scholar 

  8. Eldar, Y.C., Oppenheim, A.V.: Quantum signal processing. Signal Process. Mag. IEEE 19(6), 12–32 (2002)

    Article  Google Scholar 

  9. Fawcett, T.: An introduction of the ROC analysis. Pattern Recogn. Lett. 27(8), 861–874 (2006)

    Google Scholar 

  10. Haven, E., Khrennikov, A.: Quantum Social Science. Cambridge University Press, Cambridge (2013)

    Google Scholar 

  11. Johnson, R.A., Wichern, D.W.: Applied Multivariate Statistical Analysis. Pearson Prentice Hall, Englewood Cliffs (2007)

    Google Scholar 

  12. Lloyd, S., Mohseni, M., Rebentrost, P.: Quantum algorithms for supervised and unsupervised machine learning (2013). arXiv:1307.0411

    Google Scholar 

  13. Lloyd, S., Mohseni, M., Rebentrost, P.: Quantum principal component analysis. Nat. Phys. 10(9), 631–633 (2014)

    Article  Google Scholar 

  14. Manju, A., Nigam, M.J.: Applications of quantum inspired computational intelligence: a survey. Artif. Intell. Rev. 42(1), 79–156 (2014)

    Article  Google Scholar 

  15. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information - 10th Anniversary Edition. Cambridge University Press, Cambridge (2010)

    Google Scholar 

  16. Piotrowski, E.W., Sladkowski, J.: An invitation to quantum game theory. Int. J. Theor. Phys. 42(5), 1089–1099 (2003)

    Google Scholar 

  17. Rebentrost, P., Mohseni, M., Lloyd, S.: Quantum support vector machine for big feature and big data classification. Phys. Rev. Lett. 113, 130503 (2014)

    Google Scholar 

  18. Schuld, M., Sinayskiy, I., Petruccione, F.: An introduction to quantum machine learning. Contemp. Phys. 56(2), 172–185 (2014)

    Article  Google Scholar 

  19. Sergioli, G., Bosyk, G.M., Santucci, E., Giuntini, R.: A quantum-inspired version of the classification problem. Int. J. Theor. Phys. 56(12), 3880–3888 (2017). https://doi.org/10.1007/s10773-017-3371-1

    Article  MathSciNet  Google Scholar 

  20. Sergioli, G., Santucci, E., Didaci, L., Miszczak, J., Giuntini, R.: A quantum-inspired version of the Nearest Mean Classifier. Soft Computing, 22(3), 691–705 (2018).

    Article  Google Scholar 

  21. Skurichina, M., Duin, R.P.W.: Bagging, boosting and the random subspace method for linear classifiers. Pattern Anal. Appl. 5(2), 121–135 (2002)

    Article  MathSciNet  Google Scholar 

  22. Tanaka, K., Tsuda, K.: A quantum-statistical-mechanical extension of gaussian mixture model. J. Phys. Conf. Ser. 95(1), 012023 (2008)

    Google Scholar 

  23. Trugenberger, C.A.: Quantum pattern recognition. Quantum Inf. Process. 1(6), 471–493 (2002)

    Google Scholar 

  24. Wassermann, L.: All of Statistic: A Concise Course in Statistical Inference. Springer Texts in Statistics. Springer, Berlin (2004)

    Google Scholar 

  25. Wiebe, N., Kapoor, A., Svore, K.M.: Quantum nearest-neighbor algorithms for machine learning. Quantum Inf. Comput. 15(34), 0318–0358 (2015)

    Google Scholar 

  26. Wittek, P.: Quantum Machine Learning: What Quantum Computing Means to Data Mining. Academic, New York (2014)

    MATH  Google Scholar 

Download references

Acknowledgements

This work is supported by the Sardinia Region Project “Time-logical evolution of correlated microscopic system”, LR 7/8/2007 (2015). RAS CRP-55.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Santucci, E., Sergioli, G. (2018). Classification Problem in a Quantum Framework. In: Khrennikov, A., Toni, B. (eds) Quantum Foundations, Probability and Information. STEAM-H: Science, Technology, Engineering, Agriculture, Mathematics & Health. Springer, Cham. https://doi.org/10.1007/978-3-319-74971-6_16

Download citation

Publish with us

Policies and ethics