Skip to main content

Molecular Applications in Hematolymphoid Cytology

  • Chapter
  • First Online:
Book cover Molecular Applications in Cytology

Abstract

Fine needle samples of lymph nodes and extranodal lymphoid tissues are common in cytopathology practice. Diagnosis and classification of hematolymphoid disorders has been an evolving area in cytopathology which has been met, depending on individual mindset and training, both with enthusiasm and doubt by clinicians as well as pathologists. The undeniable advantages of fine needle sampling are rapid assessment, minimal invasiveness, low cost, and limited patient discomfort. However, hematolymphoid cytology specimens require a dedicated, step-by-step evaluation with algorithmic use of ancillary studies guided by a set of differential diagnoses invoked on the basis of morphology. Molecular characteristics have become increasingly important for proper classification of hematolymphoid disorders. Laboratory techniques to gain insight into these molecular alterations have become increasingly available in the form of refined, easy-to-use, affordable, and commercial assays. In particular, in situ hybridization technologies and polymerase chain reaction-based assays are now widely used in clinical laboratories and readily applied particularly in those cases where the two-pronged approach of morphology and immunophenotyping is insufficiently specific to render a clinically actionable diagnosis. New, more comprehensive technologies for molecular characterization such as next-generation sequencing are increasingly employed not only as discovery tools but also to tackle clinical problems of proper disease classification and therapy selection. This chapter is intended to provide the reader with an overview of the commonly used molecular applications in hematolymphoid cytology including selected examples of their use and an introduction to recent developments in the molecular study of neoplastic proliferations of the lymphoid system which may assume greater clinical significance in the near future.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Young NA, et al. Fine-needle aspiration biopsy of lymphoproliferative disorders--interpretations based on morphologic criteria alone: results from the College of American Pathologists Interlaboratory Comparison Program in Nongynecologic Cytopathology. Arch Pathol Lab Med. 2006;130(12):1766–71.

    PubMed  Google Scholar 

  2. Jin M, Wakely PE Jr. Endoscopic/endobronchial ultrasound-guided fine needle aspiration and ancillary techniques, particularly flow cytometry, in diagnosing deep-seated lymphomas. Acta Cytol. 2016;60(4):326–35.

    Article  PubMed  Google Scholar 

  3. Hehn ST, Grogan TM, Miller TP. Utility of fine-needle aspiration as a diagnostic technique in lymphoma. J Clin Oncol. 2004;22(15):3046–52.

    Article  PubMed  Google Scholar 

  4. Fine-needle aspirate for the evaluation of suspected lymphoma: clinical effectiveness and guidelines. 2015 March 31. http://www.choosingwiselycanada.org/wp-content/uploads/2015/12/CADTH-Rapid-Response-Report-Fine-Needle-Aspiration-in-Suspected-Lymphoma.pdf.

  5. Joudeh AA, Shareef SQ, Al-Abbadi MA. Fine-needle aspiration followed by core-needle biopsy in the same setting: modifying our approach. Acta Cytol. 2016;60(1):1–13.

    Article  PubMed  Google Scholar 

  6. Safley AM, et al. The value of fluorescence in situ hybridization and polymerase chain reaction in the diagnosis of B-cell non-Hodgkin lymphoma by fine-needle aspiration. Arch Pathol Lab Med. 2004;128(12):1395–403.

    PubMed  CAS  Google Scholar 

  7. Cozzolino I, et al. Lymph node and lymphoid organs fine needle aspiration cytology: historical background. Infez Med. 2012;20(Suppl 3):8–11.

    PubMed  Google Scholar 

  8. Hirschfeld H. Über isolierte aleukämische Lymphadenose der Haut. Z Krebsforsch. 1912;11:397–407.

    Article  Google Scholar 

  9. Hu E, et al. Diagnosis of B cell lymphoma by analysis of immunoglobulin gene rearrangements in biopsy specimens obtained by fine needle aspiration. J Clin Oncol. 1986;4(3):278–83.

    Article  PubMed  CAS  Google Scholar 

  10. Katz RL, et al. The role of gene rearrangements for antigen receptors in the diagnosis of lymphoma obtained by fine-needle aspiration. A study of 63 cases with concomitant immunophenotyping. Am J Clin Pathol. 1991;96(4):479–90.

    Article  PubMed  CAS  Google Scholar 

  11. Miyahara M, et al. Immunoglobulin gene rearrangement in T-cell-rich reactive pleural effusion of a patient with B-cell chronic lymphocytic leukemia. Acta Haematol. 1996;96(1):41–4.

    Article  PubMed  CAS  Google Scholar 

  12. Biggar RJ, et al. Direct cytogenetic studies by needle aspiration of Burkitt’s lymphoma in Ghana, West Africa. J Natl Cancer Inst. 1981;67(4):769–76.

    PubMed  CAS  Google Scholar 

  13. Kristoffersson U, et al. Cytogenetic studies in non-Hodgkin lymphomas--results from fine-needle aspiration samples. Hereditas. 1985;103(1):63–76.

    Article  PubMed  CAS  Google Scholar 

  14. Schmitz L, Beneke J, Kubic V. Diagnosis of small non-cleaved cell lymphoma by fine needle aspiration utilizing cytomorphologic features combined with cytogenetic analysis. Acta Cytol. 1997;41(3):759–64.

    Article  PubMed  CAS  Google Scholar 

  15. Hughes JH, Caraway NP, Katz RL. Blastic variant of mantle-cell lymphoma: cytomorphologic, immunocytochemical, and molecular genetic features of tissue obtained by fine-needle aspiration biopsy. Diagn Cytopathol. 1998;19(1):59–62.

    Article  PubMed  CAS  Google Scholar 

  16. Cartagena N Jr, et al. Accuracy of diagnosis of malignant lymphoma by combining fine-needle aspiration cytomorphology with immunocytochemistry and in selected cases, Southern blotting of aspirated cells: a tissue-controlled study of 86 patients. Diagn Cytopathol. 1992;8(5):456–64.

    Article  PubMed  Google Scholar 

  17. Caraway NP. Strategies to diagnose lymphoproliferative disorders by fine-needle aspiration by using ancillary studies. Cancer. 2005;105(6):432–42.

    Article  PubMed  Google Scholar 

  18. Dey P. Role of ancillary techniques in diagnosing and subclassifying non-Hodgkin’s lymphomas on fine needle aspiration cytology. Cytopathology. 2006;17(5):275–87.

    Article  PubMed  CAS  Google Scholar 

  19. Krishnamurthy S. Applications of molecular techniques to fine-needle aspiration biopsy. Cancer. 2007;111(2):106–22.

    Article  PubMed  Google Scholar 

  20. Zhang S, et al. The role of fluorescence in situ hybridization and polymerase chain reaction in the diagnosis and classification of lymphoproliferative disorders on fine-needle aspiration. Cancer Cytopathol. 2010;118(2):105–12.

    Article  PubMed  Google Scholar 

  21. Bode B, Tinguely M. Role of cytology in hematopathological diagnostics. Pathologe. 2012;33(4):316–23.

    Article  PubMed  CAS  Google Scholar 

  22. Swerdlow SH, et al. WHO classifcation of tumours of haematopoietic and lymphoid tissues. World Health Organization classification of tumours. 4th ed. Lyon: IARC; 2008.

    Google Scholar 

  23. Kocjan G. Best practice No. 185. Cytological and molecular diagnosis of lymphoma. J Clin Pathol. 2005;58(6):561–7.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Young NA, Al-Saleem T. Hematopathologists and cytopathologists: enemies or allies? Diagn Cytopathol. 1999;21(5):305–6.

    Article  PubMed  CAS  Google Scholar 

  25. Wakely PE Jr. Fine-needle aspiration cytopathology in diagnosis and classification of malignant lymphoma: accurate and reliable? Diagn Cytopathol. 2000;22(2):120–5.

    Article  PubMed  Google Scholar 

  26. Swart GJ, et al. Fine needle aspiration biopsy and flow cytometry in the diagnosis of lymphoma. Transfus Apher Sci. 2007;37(1):71–9.

    Article  PubMed  Google Scholar 

  27. Frederiksen JK, et al. Systematic review of the effectiveness of fine-needle aspiration and/or core needle biopsy for subclassifying lymphoma. Arch Pathol Lab Med. 2015;139(2):245–51.

    Article  PubMed  Google Scholar 

  28. Young NA, et al. Utilization of fine-needle aspiration cytology and flow cytometry in the diagnosis and subclassification of primary and recurrent lymphoma. Cancer. 1998;84(4):252–61.

    Article  PubMed  CAS  Google Scholar 

  29. Allen EA, Ali SZ, Mathew S. Lymphoid lesions of the parotid. Diagn Cytopathol. 1999;21(3):170–3.

    Article  PubMed  CAS  Google Scholar 

  30. Meda BA, et al. Diagnosis and subclassification of primary and recurrent lymphoma. The usefulness and limitations of combined fine-needle aspiration cytomorphology and flow cytometry. Am J Clin Pathol. 2000;113(5):688–99.

    Article  PubMed  CAS  Google Scholar 

  31. Levine PH, Zamuco R, Yee HT. Role of fine-needle aspiration cytology in breast lymphoma. Diagn Cytopathol. 2004;30(5):332–40.

    Article  PubMed  Google Scholar 

  32. Katz RL. Modern approach to lymphoma diagnosis by fine-needle aspiration: restoring respect to a valuable procedure. Cancer. 2005;105(6):429–31.

    Article  PubMed  Google Scholar 

  33. Field AS, et al. Assisting cytopathology training in medically under-resourced countries: defining the problems and establishing solutions. Diagn Cytopathol. 2012;40(3):273–81.

    Article  PubMed  CAS  Google Scholar 

  34. Shetuni B, Lakey M, Kulesza P. Optimal specimen processing of fine needle aspirates of non-Hodgkin lymphoma. Diagn Cytopathol. 2012;40(11):984–6.

    Article  PubMed  Google Scholar 

  35. van Hemel BM, Suurmeijer AJ. Effective application of the methanol-based PreservCyt() fixative and the Cellient() automated cell block processor to diagnostic cytopathology, immunocytochemistry, and molecular biology. Diagn Cytopathol. 2013;41(8):734–41.

    Article  PubMed  Google Scholar 

  36. Schwock J, Geddie WR. Diagnosis of B-cell non-hodgkin lymphomas with small-/intermediate-sized cells in cytopathology. Pathol Res Int. 2012;2012:164934.

    Article  Google Scholar 

  37. Mathiot C, et al. Fine-needle aspiration cytology combined with flow cytometry immunophenotyping is a rapid and accurate approach for the evaluation of suspicious superficial lymphoid lesions. Diagn Cytopathol. 2006;34(7):472–8.

    Article  PubMed  Google Scholar 

  38. Ochs RC, Bagg A. Molecular genetic characterization of lymphoma: application to cytology diagnosis. Diagn Cytopathol. 2012;40(6):542–55.

    Article  PubMed  Google Scholar 

  39. Stewart CJ, et al. Fine needle aspiration cytology diagnosis of malignant lymphoma and reactive lymphoid hyperplasia. J Clin Pathol. 1998;51(3):197–203.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Das DK. Serous effusions in malignant lymphomas: a review. Diagn Cytopathol. 2006;34(5):335–47.

    Article  PubMed  Google Scholar 

  41. Gall JG, Pardue ML. Formation and detection of RNA-DNA hybrid molecules in cytological preparations. Proc Natl Acad Sci U S A. 1969;63(2):378–83.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Al Omran S, Mourad WA, Ali MA. Gamma/delta peripheral T-cell lymphoma of the breast diagnosed by fine-needle aspiration biopsy. Diagn Cytopathol. 2002;26(3):170–3.

    Article  PubMed  Google Scholar 

  43. Yasuda I, et al. Endoscopic ultrasound-guided fine needle aspiration biopsy for diagnosis of lymphoproliferative disorders: feasibility of immunohistological, flow cytometric, and cytogenetic assessments. Am J Gastroenterol. 2012;107(3):397–404.

    Article  PubMed  Google Scholar 

  44. Perak RB, et al. Soft tissue B-cell lymphoma, unclassifiable, with features intermediate between diffuse large B-cell lymphoma and Burkitt’s lymphoma diagnosed by fine needle aspiration cytology. Acta Cytol. 2015;59:355–7.

    Article  Google Scholar 

  45. Jiang F, Katz RL. Use of interphase fluorescence in situ hybridization as a powerful diagnostic tool in cytology. Diagn Mol Pathol. 2002;11(1):47–57.

    Article  PubMed  Google Scholar 

  46. Bentz JS, et al. Rapid detection of the t(11;14) translocation in mantle cell lymphoma by interphase fluorescence in situ hybridization on archival cytopathologic material. Cancer. 2004;102(2):124–31.

    Article  PubMed  CAS  Google Scholar 

  47. Caraway NP, et al. The utility of interphase fluorescence in situ hybridization for the detection of the translocation t(11;14)(q13;q32) in the diagnosis of mantle cell lymphoma on fine-needle aspiration specimens. Cancer. 2005;105(2):110–8.

    Article  PubMed  Google Scholar 

  48. Cook JR. Paraffin section interphase fluorescence in situ hybridization in the diagnosis and classification of non-Hodgkin lymphomas. Diagn Mol Pathol. 2004;13(4):197–206.

    Article  PubMed  Google Scholar 

  49. Bishop R. Applications of fluorescence in situ hybridization (FISH) in detecting genetic aberrations of medical signficiance. Biosci Horiz. 2010;3(1):85–95.

    Article  CAS  Google Scholar 

  50. Buno I, et al. Lymphoma associated chromosomal abnormalities can easily be detected by FISH on tissue imprints. An underused diagnostic alternative. J Clin Pathol. 2005;58(6):629–33.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Rowe LR, et al. Tumor cell nuclei extraction from paraffin-embedded lymphoid tissue for fluorescence in situ hybridization. Appl Immunohistochem Mol Morphol. 2006;14(2):220–4.

    Article  PubMed  Google Scholar 

  52. Wolff DJ, et al. Guidance for fluorescence in situ hybridization testing in hematologic disorders. J Mol Diagn. 2007;9(2):134–43.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Trcic RL, et al. Recurrent chromosomal abnormalities in lymphomas in fine needle aspirates of lymph node. Coll Antropol. 2010;34(2):387–93.

    PubMed  CAS  Google Scholar 

  54. Monaco SE, et al. Fluorescence in situ hybridization studies on direct smears: an approach to enhance the fine-needle aspiration biopsy diagnosis of B-cell non-Hodgkin lymphomas. Cancer. 2009;117(5):338–48.

    CAS  PubMed  Google Scholar 

  55. Zeppa P, et al. Immunoglobulin heavy-chain fluorescence in situ hybridization-chromogenic in situ hybridization DNA probe split signal in the clonality assessment of lymphoproliferative processes on cytological samples. Cancer Cytopathol. 2012;120(6):390–400.

    Article  PubMed  Google Scholar 

  56. Kishimoto K, et al. Cytologic differential diagnosis of follicular lymphoma grades 1 and 2 from reactive follicular hyperplasia: cytologic features of fine-needle aspiration smears with Pap stain and fluorescence in situ hybridization analysis to detect t(14;18)(q32;q21) chromosomal translocation. Diagn Cytopathol. 2006;34(1):11–7.

    Article  PubMed  Google Scholar 

  57. Jiang F, et al. Rapid detection of IgH/BCL2 rearrangement in follicular lymphoma by interphase fluorescence in situ hybridization with bacterial artificial chromosome probes. J Mol Diagn. 2002;4(3):144–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Albinger-Hegyi A, et al. High frequency of t(14;18)-translocation breakpoints outside of major breakpoint and minor cluster regions in follicular lymphomas: improved polymerase chain reaction protocols for their detection. Am J Pathol. 2002;160(3):823–32.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Stoos-Veic T, et al. Detection of t(14;18) by PCR of IgH/BCL2 fusion gene in follicular lymphoma from archived cytological smears. Coll Antropol. 2010;34(2):425–9.

    PubMed  CAS  Google Scholar 

  60. Richmond J, et al. FISH detection of t(14;18) in follicular lymphoma on Papanicolaou-stained archival cytology slides. Cancer. 2006;108(3):198–204.

    Article  PubMed  Google Scholar 

  61. Mehrotra S, Pan Z. Fine needle aspiration cytology of histiocytic sarcoma with dendritic cell differentiation: a case of transdifferentiation from low-grade follicular lymphoma. Diagn Cytopathol. 2015;43(8):659–63.

    Article  PubMed  Google Scholar 

  62. Gong Y, et al. Evaluation of interphase fluorescence in situ hybridization for the t(14;18)(q32;q21) translocation in the diagnosis of follicular lymphoma on fine-needle aspirates: a comparison with flow cytometry immunophenotyping. Cancer. 2003;99(6):385–93.

    Article  PubMed  Google Scholar 

  63. Kido T, et al. Detection of MALT1 gene rearrangements in BAL fluid cells for the diagnosis of pulmonary mucosa-associated lymphoid tissue lymphoma. Chest. 2012;141(1):176–82.

    Article  PubMed  CAS  Google Scholar 

  64. Ko HM, et al. Cytomorphological and clinicopathological spectrum of pulmonary marginal zone lymphoma: the utility of immunophenotyping, PCR and FISH studies. Cytopathology. 2014;25(4):250–8.

    Article  PubMed  CAS  Google Scholar 

  65. Caraway NP, et al. Numeric chromosomal abnormalities in small lymphocytic and transformed large cell lymphomas detected by fluorescence in situ hybridization of fine-needle aspiration biopsies. Cancer. 2000;90(2):126–32.

    Article  PubMed  CAS  Google Scholar 

  66. Caraway NP, et al. Chromosomal abnormalities detected by multicolor fluorescence in situ hybridization in fine-needle aspirates from patients with small lymphocytic lymphoma are useful for predicting survival. Cancer. 2008;114(5):315–22.

    Article  PubMed  Google Scholar 

  67. Andrysiak-Mamos E, et al. Case report: rare case of infiltration of small lymphocytic B-cell lymphoma in the thyroid gland of female patient with B-cell chronic lymphocytic leukemia (CLL-B/SLL-B). Thyroid Res. 2013;6(1):1.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Woroniecka R, et al. Cytogenetic and flow cytometry evaluation of Richter syndrome reveals MYC, CDKN2A, IGH alterations with loss of CD52, CD62L and increase of CD71 antigen expression as the most frequent recurrent abnormalities. Am J Clin Pathol. 2015;143(1):25–35.

    Article  PubMed  Google Scholar 

  69. Wang L, et al. Richter transformation with c-MYC overexpression: report of three cases. Int J Clin Exp Pathol. 2015;8(6):7540–6.

    PubMed  PubMed Central  CAS  Google Scholar 

  70. da Cunha Santos G, et al. Targeted use of fluorescence in situ hybridization (FISH) in cytospin preparations: results of 298 fine needle aspirates of B-cell non-Hodgkin lymphoma. Cancer Cytopathol. 2010;118(5):250–8.

    Article  PubMed  Google Scholar 

  71. Elkins CT, Wakely PE Jr. Cytopathology of “double-hit” non-Hodgkin lymphoma. Cancer Cytopathol. 2011;119(4):263–71.

    Article  PubMed  Google Scholar 

  72. Kaplan A, et al. Follicular lymphoma transformed to “double-hit” B lymphoblastic lymphoma presenting in the peritoneal fluid. Diagn Cytopathol. 2013;41(11):986–90.

    Article  PubMed  Google Scholar 

  73. Wang W, et al. Triple-hit B-cell Lymphoma With MYC, BCL2, and BCL6 Translocations/Rearrangements: Clinicopathologic Features of 11 Cases. Am J Surg Pathol. 2015;39(8):1132–9.

    Article  PubMed  Google Scholar 

  74. Troxell ML, et al. Cytologic diagnosis of Burkitt lymphoma. Cancer. 2005;105(5):310–8.

    Article  PubMed  Google Scholar 

  75. McLean TW, et al. Diagnosis of Burkitt lymphoma in pediatric patients by thoracentesis. Pediatr Blood Cancer. 2007;49(1):90–2.

    Article  PubMed  Google Scholar 

  76. Shin HJ, et al. Detection of a subset of CD30+ anaplastic large cell lymphoma by interphase fluorescence in situ hybridization. Diagn Cytopathol. 2003;29(2):61–6.

    Article  PubMed  Google Scholar 

  77. Cleary JM, et al. Crizotinib as salvage and maintenance with allogeneic stem cell transplantation for refractory anaplastic large cell lymphoma. J Natl Compr Cancer Netw. 2014;12(3):323–6. quiz 326

    Article  CAS  Google Scholar 

  78. Michelow P, Wright C, Pantanowitz L. A review of the cytomorphology of Epstein-Barr virus-associated malignancies. Acta Cytol. 2012;56(1):1–14.

    Article  PubMed  Google Scholar 

  79. Ohori NP, et al. Primary pleural effusion posttransplant lymphoproliferative disorder: distinction from secondary involvement and effusion lymphoma. Diagn Cytopathol. 2001;25(1):50–3.

    Article  PubMed  CAS  Google Scholar 

  80. Hecht JL, Cibas ES, Kutok JL. Fine-needle aspiration cytology of lymphoproliferative disorders in the immunosuppressed patient: the diagnostic utility of in situ hybridization for Epstein-Barr virus. Diagn Cytopathol. 2002;26(6):360–5.

    Article  PubMed  Google Scholar 

  81. Su XY, et al. Serous effusion cytology of extranodal natural killer/T-cell lymphoma. Cytopathology. 2012;23(2):96–102.

    Article  PubMed  Google Scholar 

  82. Garady C, et al. Epstein-Barr virus encoded RNA detected by in situ hybridization using cytological preparations. Cytopathology. 2014;25(2):101–7.

    Article  PubMed  CAS  Google Scholar 

  83. Reichard KK, et al. Automated analysis of fluorescence in situ hybridization on fixed, paraffin-embedded whole tissue sections in B-cell lymphoma. Mod Pathol. 2006;19(8):1027–33.

    Article  PubMed  CAS  Google Scholar 

  84. Liew M, et al. Validation of break-apart and fusion MYC probes using a digital fluorescence in situ hybridization capture and imaging system. J Pathol Inform. 2016;7:20.

    Article  PubMed  PubMed Central  Google Scholar 

  85. Mayall F, Johnson S. Immunoflow cytometry compared with PCR for the identification of clonality in FNAs of T-cell-rich B-cell lymphomas. Cytopathology. 2007;18(2):117–9.

    Article  PubMed  CAS  Google Scholar 

  86. Price CG, et al. Polymerase chain reaction to confirm extranodal progression of follicular lymphoma. Lancet. 1989;1(8647):1132.

    Article  PubMed  CAS  Google Scholar 

  87. Wan JH, et al. Rapid method for detecting monoclonality in B cell lymphoma in lymph node aspirates using the polymerase chain reaction. J Clin Pathol. 1992;45(5):420–3.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  88. Chen YT, Mercer GO, Chen Y. Polymerase chain reaction-based detection of B-cell monoclonality in cytologic specimens. Arch Pathol Lab Med. 1993;117(11):1099–103.

    PubMed  CAS  Google Scholar 

  89. Kube MJ, et al. Use of archival and fresh cytologic material for the polymerase chain reaction. Detection of the bcl-2 oncogene in lymphoid tissue obtained by fine needle biopsy. Anal Quant Cytol Histol. 1994;16(3):174–82.

    PubMed  CAS  Google Scholar 

  90. Greenberg ML, Cartwright L, McDonald DA. Histiocytic necrotizing lymphadenitis (Kikuchi’s disease): cytologic diagnosis by fine-needle biopsy. Diagn Cytopathol. 1993;9(4):444–7.

    Article  PubMed  CAS  Google Scholar 

  91. Shivnarain D, Ladanyi M, Zakowski MF. Detection of BCL2 rearrangement in archival cytological smears of B-cell lymphomas. Mod Pathol. 1994;7(9):915–9.

    PubMed  CAS  Google Scholar 

  92. Alkan S, et al. Polymerase chain reaction detection of immunoglobulin gene rearrangement and bcl-2 translocation in archival glass slides of cytologic material. Diagn Mol Pathol. 1995;4(1):25–31.

    Article  PubMed  CAS  Google Scholar 

  93. Grosso LE, Collins BT. DNA polymerase chain reaction using fine needle aspiration biopsy smears to evaluate non-Hodgkin’s lymphoma. Acta Cytol. 1999;43(5):837–41.

    Article  PubMed  CAS  Google Scholar 

  94. Kikuchi M, et al. Diagnosis of B-cell lymphoma. Utility of the polymerase chain reaction for detecting clonality from archival cytologic smears. Acta Cytol. 2002;46(2):349–56.

    Article  PubMed  Google Scholar 

  95. Ruschenburg I, et al. Automated molecular genetic DNA analysis for detecting B-cell non-Hodgkin’s lymphoma in cytologic specimens. Anal Quant Cytol Histol. 1997;19(3):255–63.

    PubMed  CAS  Google Scholar 

  96. Torlakovic E, Berner A, Risberg B. Detection of immunoglobulin heavy chain gene rearrangements by polymerase chain reaction analysis on lymph node imprints and fine-needle aspirate smears: a comparison of five different imprint preparations. Diagn Cytopathol. 1999;20(6):333–8.

    Article  PubMed  CAS  Google Scholar 

  97. Chen JT, Lane MA, Clark DP. Inhibitors of the polymerase chain reaction in papanicolaou stain. Removal with a simple destaining procedure. Acta Cytol. 1996;40(5):873–7.

    Article  PubMed  CAS  Google Scholar 

  98. Jeffers MD, et al. Analysis of clonality in cytologic material using the polymerase chain reaction (PCR). Cytopathology. 1997;8(2):114–21.

    Article  PubMed  CAS  Google Scholar 

  99. Vianello F, et al. Detection of B-cell monoclonality in fine needle aspiration by PCR analysis. Leuk Lymphoma. 1998;29(1-2):179–85.

    Article  PubMed  CAS  Google Scholar 

  100. Ribera J, et al. Usefulness of IGH/TCR PCR studies in lymphoproliferative disorders with inconclusive clonality by flow cytometry. Cytometry B Clin Cytom. 2014;86(1):25–31.

    Article  PubMed  Google Scholar 

  101. Brozic A, et al. Inconclusive flow cytometric surface light chain results; can cytoplasmic light chains, Bcl-2 expression and PCR clonality analysis improve accuracy of cytological diagnoses in B-cell lymphomas? Diagn Pathol. 2015;10:191.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  102. Roepman P, et al. Molecular clonality assessment shows high performance to predict malignant B-cell non-Hodgkin’s lymphoma using cytological smears. J Clin Pathol. 2016;69(12):1109–15.

    Article  PubMed  CAS  Google Scholar 

  103. Venkatraman L, et al. Role of polymerase chain reaction and immunocytochemistry in the cytological assessment of lymphoid proliferations. J Clin Pathol. 2006;59(11):1160–5.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  104. Aiello A, et al. PCR analysis of IgH and BCL2 gene rearrangement in the diagnosis of follicular lymphoma in lymph node fine-needle aspiration. A critical appraisal. Diagn Mol Pathol. 1997;6(3):154–60.

    Article  PubMed  CAS  Google Scholar 

  105. Elenitoba-Johnson KS, et al. PCR analysis of the immunoglobulin heavy chain gene in polyclonal processes can yield pseudoclonal bands as an artifact of low B cell number. J Mol Diagn. 2000;2(2):92–6.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  106. Davidson B, et al. Evaluation of lymphoid cell populations in cytology specimens using flow cytometry and polymerase chain reaction. Diagn Mol Pathol. 1999;8(4):183–8.

    Article  PubMed  CAS  Google Scholar 

  107. Maroto A, et al. A single primer pair immunoglobulin polymerase chain reaction assay as a useful tool in fine-needle aspiration biopsy differential diagnosis of lymphoid malignancies. Cancer. 2003;99(3):180–5.

    Article  PubMed  CAS  Google Scholar 

  108. Maroto A, et al. Comparative analysis of immunoglobulin polymerase chain reaction and flow cytometry in fine needle aspiration biopsy differential diagnosis of non-Hodgkin B-cell lymphoid malignancies. Diagn Cytopathol. 2009;37(9):647–53.

    Article  PubMed  Google Scholar 

  109. van Dongen JJ, et al. Design and standardization of PCR primers and protocols for detection of clonal immunoglobulin and T-cell receptor gene recombinations in suspect lymphoproliferations: report of the BIOMED-2 Concerted Action BMH4-CT98-3936. Leukemia. 2003;17(12):2257–317.

    Article  PubMed  Google Scholar 

  110. Langerak AW, et al. EuroClonality/BIOMED-2 guidelines for interpretation and reporting of Ig/TCR clonality testing in suspected lymphoproliferations. Leukemia. 2012;26(10):2159–71.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  111. Chen YP, et al. Malignant effusions correlate with poorer prognosis in patients with diffuse large B-cell lymphoma. Am J Clin Pathol. 2015;143(5):707–15.

    Article  PubMed  Google Scholar 

  112. Lobo C, et al. Serous fluid cytology of multicentric Castleman’s disease and other lymphoproliferative disorders associated with Kaposi sarcoma-associated herpes virus: a review with case reports. Cytopathology. 2012;23(2):76–85.

    Article  PubMed  CAS  Google Scholar 

  113. Mihaescu A, et al. Application of molecular genetics to the diagnosis of lymphoid-rich effusions: study of 95 cases with concomitant immunophenotyping. Diagn Cytopathol. 2002;27(2):90–5.

    Article  PubMed  Google Scholar 

  114. Murphy M, et al. Detection of concurrent/recurrent non-Hodgkin’s lymphoma in effusions by PCR. Hum Pathol. 1999;30(11):1361–6.

    Article  PubMed  CAS  Google Scholar 

  115. Nepka C, et al. An unusual case of Primary Effusion Lymphoma with aberrant T-cell phenotype in a HIV-negative, HBV-positive, cirrhotic patient, and review of the literature. Cytojournal. 2012;9:16.

    Article  PubMed  PubMed Central  Google Scholar 

  116. Philippe B, et al. B-cell pulmonary lymphoma: gene rearrangement analysis of bronchoalveolar lymphocytes by polymerase chain reaction. Chest. 1999;115(5):1242–7.

    Article  PubMed  CAS  Google Scholar 

  117. Zompi S, et al. Clonality analysis of alveolar B lymphocytes contributes to the diagnostic strategy in clinical suspicion of pulmonary lymphoma. Blood. 2004;103(8):3208–15.

    Article  PubMed  CAS  Google Scholar 

  118. Lovchik J, Lane MA, Clark DP. Polymerase chain reaction-based detection of B-cell clonality in the fine needle aspiration biopsy of a thyroid mucosa-associated lymphoid tissue (MALT) lymphoma. Hum Pathol. 1997;28(8):989–92.

    Article  PubMed  CAS  Google Scholar 

  119. Adhikari LJ, Reynolds JP, Wakely PE Jr. Multi-institutional study of fine needle aspiration for thyroid lymphoma. J Am Soc Cytopathol. 2015;5(3):170–6.

    Article  PubMed  Google Scholar 

  120. Chen HI, et al. Restricted kappa/lambda light chain ratio by flow cytometry in germinal center B cells in Hashimoto thyroiditis. Am J Clin Pathol. 2006;125(1):42–8.

    Article  PubMed  Google Scholar 

  121. Zeppa P, et al. Cytologic, flow cytometry, and molecular assessment of lymphoid infiltrate in fine-needle cytology samples of Hashimoto thyroiditis. Cancer. 2009;117(3):174–84.

    PubMed  CAS  Google Scholar 

  122. Galindo LM, et al. Fine-needle aspiration biopsy in the evaluation of lymphadenopathy associated with cutaneous T-cell lymphoma (mycosis fungoides/Sezary syndrome). Am J Clin Pathol. 2000;113(6):865–71.

    Article  PubMed  CAS  Google Scholar 

  123. Pai RK, et al. Cytologic evaluation of lymphadenopathy associated with mycosis fungoides and Sezary syndrome: role of immunophenotypic and molecular ancillary studies. Cancer. 2008;114(5):323–32.

    Article  PubMed  Google Scholar 

  124. Vigliar E, et al. Lymph node fine needle cytology in the staging and follow-up of cutaneous lymphomas. BMC Cancer. 2014;14:8.

    Article  PubMed  PubMed Central  Google Scholar 

  125. Cozzolino I, et al. Fine needle aspiration cytology of lymphoproliferative lesions of the oral cavity. Cytopathology. 2014;25(4):241–9.

    Article  PubMed  CAS  Google Scholar 

  126. Rhodes CH, et al. A comparison of polymerase chain reaction examination of cerebrospinal fluid and conventional cytology in the diagnosis of lymphomatous meningitis. Cancer. 1996;77(3):543–8.

    Article  PubMed  CAS  Google Scholar 

  127. Ekstein D, et al. CSF analysis of IgH gene rearrangement in CNS lymphoma: relationship to the disease course. J Neurol Sci. 2006;247(1):39–46.

    Article  PubMed  CAS  Google Scholar 

  128. Shibata D, et al. Detection of occult CNS involvement of follicular small cleaved lymphoma by the polymerase chain reaction. Mod Pathol. 1990;3(1):71–5.

    PubMed  CAS  Google Scholar 

  129. Wildemann B, et al. Rapid distinction of acute demyelinating disorders and central nervous system lymphoma by molecular analysis of cerebrospinal fluid cells. J Neurol. 2001;248(2):127–30.

    Article  PubMed  CAS  Google Scholar 

  130. Lobo A, et al. Protocol for the use of polymerase chain reaction in the detection of intraocular large B-cell lymphoma in ocular samples. J Mol Diagn. 2007;9(1):113–21.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  131. Gleissner B, et al. CSF evaluation in primary CNS lymphoma patients by PCR of the CDR III IgH genes. Neurology. 2002;58(3):390–6.

    Article  PubMed  CAS  Google Scholar 

  132. Sayed D, et al. Immunophenotyping and immunoglobulin heavy chain gene rearrangement analysis in cerebrospinal fluid of pediatric patients with acute lymphoblastic leukemia. Leuk Res. 2009;33(5):655–61.

    Article  PubMed  CAS  Google Scholar 

  133. Scrideli CA, et al. Molecular diagnosis of leukemic cerebrospinal fluid cells in children with newly diagnosed acute lymphoblastic leukemia. Haematologica. 2004;89(8):1013–5.

    PubMed  CAS  Google Scholar 

  134. Hug A, et al. Single-cell PCR analysis of the immunoglobulin heavy-chain CDR3 region for the diagnosis of leptomeningeal involvement of B-cell malignancies using standard cerebrospinal fluid cytospins. J Neurol Sci. 2004;219(1-2):83–8.

    Article  PubMed  CAS  Google Scholar 

  135. Liu L, et al. Detection of malignant B lymphocytes by PCR clonality assay using direct lysis of cerebrospinal fluid and low volume specimens. Int J Lab Hematol. 2015;37(2):165–73.

    Article  PubMed  CAS  Google Scholar 

  136. Ranty ML, et al. Improving the cytological diagnosis of intraocular lymphoma from vitreous fluid. Histopathology. 2015;67(1):48–61.

    Article  PubMed  Google Scholar 

  137. Slack GW, Gascoyne RD. Next-generation sequencing discoveries in lymphoma. Adv Anat Pathol. 2013;20(2):110–6.

    Article  PubMed  CAS  Google Scholar 

  138. Alizadeh AA, et al. Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling. Nature. 2000;403(6769):503–11.

    Article  PubMed  CAS  Google Scholar 

  139. Scott DW, et al. Determining cell-of-origin subtypes of diffuse large B-cell lymphoma using gene expression in formalin-fixed paraffin-embedded tissue. Blood. 2014;123(8):1214–7.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  140. Kendrick S, et al. Diffuse large B-cell lymphoma cell-of-origin classification using the Lymph2Cx assay in the context of BCL2 and MYC expression status. Leuk Lymphoma. 2016;57(3):717–20.

    Article  PubMed  Google Scholar 

  141. Swerdlow SH, et al. The 2016 revision of the World Health Organization classification of lymphoid neoplasms. Blood. 2016;127(20):2375–90.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  142. Goy A, et al. The feasibility of gene expression profiling generated in fine-needle aspiration specimens from patients with follicular lymphoma and diffuse large B-cell lymphoma. Cancer. 2006;108(1):10–20.

    Article  PubMed  CAS  Google Scholar 

  143. da Santos GC, et al. Multiplex sequencing for EZH2, CD79B, and MYD88 mutations using archival cytospin preparations from B-cell non-Hodgkin lymphoma aspirates previously tested for MYC rearrangement and IGH/BCL2 translocation. Cancer Cytopathol. 2015;123(7):413–20.

    Article  CAS  Google Scholar 

  144. Saieg MA, et al. EZH2 and CD79B mutational status over time in B-cell non-Hodgkin lymphomas detected by high-throughput sequencing using minimal samples. Cancer Cytopathol. 2013;121(7):377–86.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  145. Morin RD, et al. Frequent mutation of histone-modifying genes in non-Hodgkin lymphoma. Nature. 2011;476(7360):298–303.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  146. Tiacci E, et al. BRAF mutations in hairy-cell leukemia. N Engl J Med. 2011;364(24):2305–15.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  147. Tiacci E, et al. Simple genetic diagnosis of hairy cell leukemia by sensitive detection of the BRAF-V600E mutation. Blood. 2012;119(1):192–5.

    Article  PubMed  CAS  Google Scholar 

  148. Badalian-Very G, et al. Recurrent BRAF mutations in Langerhans cell histiocytosis. Blood. 2010;116(11):1919–23.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  149. Mason EF, et al. Detection of activating MAP2K1 mutations in atypical hairy cell leukemia and hairy cell leukemia variant. Leuk Lymphoma. 2016;58(1):233–6.

    Article  PubMed  Google Scholar 

  150. Waterfall JJ, et al. High prevalence of MAP2K1 mutations in variant and IGHV4-34-expressing hairy-cell leukemias. Nat Genet. 2014;46(1):8–10.

    Article  PubMed  CAS  Google Scholar 

  151. Brown NA, et al. High prevalence of somatic MAP2K1 mutations in BRAF V600E-negative Langerhans cell histiocytosis. Blood. 2014;124(10):1655–8.

    Article  PubMed  CAS  Google Scholar 

  152. Diamond EL, et al. Diverse and targetable kinase alterations drive histiocytic neoplasms. Cancer Discov. 2016;6(2):154–65.

    Article  PubMed  CAS  Google Scholar 

  153. Fernandez V, et al. Genomic and gene expression profiling defines indolent forms of mantle cell lymphoma. Cancer Res. 2010;70(4):1408–18.

    Article  PubMed  CAS  Google Scholar 

  154. Hunter ZR, et al. The genomic landscape of Waldenstrom macroglobulinemia is characterized by highly recurring MYD88 and WHIM-like CXCR4 mutations, and small somatic deletions associated with B-cell lymphomagenesis. Blood. 2014;123(11):1637–46.

    Article  PubMed  CAS  Google Scholar 

  155. Ngo VN, et al. Oncogenically active MYD88 mutations in human lymphoma. Nature. 2011;470(7332):115–9.

    Article  PubMed  CAS  Google Scholar 

  156. Kiel MJ, et al. Whole-genome sequencing identifies recurrent somatic NOTCH2 mutations in splenic marginal zone lymphoma. J Exp Med. 2012;209(9):1553–65.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  157. Clipson A, et al. KLF2 mutation is the most frequent somatic change in splenic marginal zone lymphoma and identifies a subset with distinct genotype. Leukemia. 2015;29(5):1177–85.

    Article  PubMed  CAS  Google Scholar 

  158. Cornet E, et al. Developing molecular signatures for chronic lymphocytic leukemia. PLoS One. 2015;10(6):e0128990.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  159. Scott DW, et al. TBL1XR1/TP63: a novel recurrent gene fusion in B-cell non-Hodgkin lymphoma. Blood. 2012;119(21):4949–52.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  160. Vasmatzis G, et al. Genome-wide analysis reveals recurrent structural abnormalities of TP63 and other p53-related genes in peripheral T-cell lymphomas. Blood. 2012;120(11):2280–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  161. Kucuk C, et al. Activating mutations of STAT5B and STAT3 in lymphomas derived from gammadelta-T or NK cells. Nat Commun. 2015;6:6025.

    Article  PubMed  CAS  Google Scholar 

  162. Schwock J, et al. Enteropathy-associated intestinal T-cell lymphoma in cavitating mesenteric lymph node syndrome: fine-needle aspiration contributes to the diagnosis. Diagn Cytopathol. 2015;43(2):125–30.

    Article  PubMed  Google Scholar 

  163. Feldman AL, et al. Discovery of recurrent t(6;7)(p25.3;q32.3) translocations in ALK-negative anaplastic large cell lymphomas by massively parallel genomic sequencing. Blood. 2011;117(3):915–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  164. Yoo HY, et al. A recurrent inactivating mutation in RHOA GTPase in angioimmunoblastic T cell lymphoma. Nat Genet. 2014;46(4):371–5.

    Article  PubMed  CAS  Google Scholar 

  165. Sakata-Yanagimoto M, et al. Somatic RHOA mutation in angioimmunoblastic T cell lymphoma. Nat Genet. 2014;46(2):171–5.

    Article  PubMed  CAS  Google Scholar 

  166. Palomero T, et al. Recurrent mutations in epigenetic regulators, RHOA and FYN kinase in peripheral T cell lymphomas. Nat Genet. 2014;46(2):166–70.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  167. Zeppa P, et al. Fine-needle cytology and flow cytometry immunophenotyping and subclassification of non-Hodgkin lymphoma: a critical review of 307 cases with technical suggestions. Cancer. 2004;102(1):55–65.

    Article  PubMed  Google Scholar 

  168. Amador-Ortiz C, et al. Combined core needle biopsy and fine-needle aspiration with ancillary studies correlate highly with traditional techniques in the diagnosis of nodal-based lymphoma. Am J Clin Pathol. 2011;135(4):516–24.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joerg Schwock .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Schwock, J., Quest, G.R., Geddie, W.R. (2018). Molecular Applications in Hematolymphoid Cytology. In: Schmitt, F. (eds) Molecular Applications in Cytology. Springer, Cham. https://doi.org/10.1007/978-3-319-74942-6_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-74942-6_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-74940-2

  • Online ISBN: 978-3-319-74942-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics