Skip to main content

Viral Manipulation of the Host Metabolic Network

  • Chapter
  • First Online:
Metabolic Interaction in Infection

Part of the book series: Experientia Supplementum ((EXS,volume 109))

Abstract

Viruses are intracellular parasites that rely on host machinery to replicate and achieve a successful infection. Viruses have evolved to retain a broad range of strategies to manipulate host cell metabolism and metabolic resources, channeling them toward the production of virion components leading to viral production. Although several viruses share similar strategies for manipulating host cell metabolism, these processes depend on several factors, namely, the viral life cycle and the metabolic and energetic status of the infected cell. Based on this knowledge, the development of new therapeutic approaches that circumvent viral spread through the target of altered metabolic pathways is an opportunity to tackle the infection. However, finding effective broad-spectrum strategies that aim at restoring to homeostasis the metabolic alterations induced upon virus infection is still a Holy Grail quest for antiviral therapies. Here, we review the strategies by which viruses manipulate host metabolism for their own benefit, with a particular emphasis on carbohydrate, glutamine, and lipid metabolism.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agnello V, Abel G, Elfahal M, Knight GB, Zhang QX (1999) Hepatitis C virus and other flaviviridae viruses enter cells via low density lipoprotein receptor. Proc Natl Acad Sci USA 96:12766–12771

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Amako Y, Munakata T, Kohara M, Siddiqui A, Peers C, Harris M (2015) Hepatitis C virus attenuates mitochondrial lipid beta-oxidation by downregulating mitochondrial trifunctional-protein expression. J Virol 89:4092–4101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arnoult D, Petit F, Lelièvre JD, Estaquier J (2003) Mitochondria in HIV-1-induced apoptosis. Biochem Biophys Res Commun 304:561–574

    Article  CAS  PubMed  Google Scholar 

  • Arnoult D, Viollet L, Petit F, Lelièvre JD, Estaquier J (2004) HIV-1 triggers mitochondrion death. Mitochondrion 4:255–269

    Article  CAS  PubMed  Google Scholar 

  • Bajimaya S, Frankl T, Hayashi T, Takimoto T (2017a) Cholesterol is required for stability and infectivity of influenza a and respiratory syncytial viruses. Virology 510:234–241

    Article  CAS  PubMed  Google Scholar 

  • Bajimaya S, Hayashi T, Frankl T, Bryk P, Ward B, Takimoto T (2017b) Cholesterol reducing agents inhibit assembly of type I parainfluenza viruses. Virology 501:127–135

    Article  CAS  PubMed  Google Scholar 

  • Barrero CA, Datta PK, Sen S, Deshmane S, Amini S, Khalili K, Merali S (2013) HIV-1 Vpr modulates macrophage metabolic pathways: a SILAC-based quantitative analysis. PLoS One 8:e68376

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bavari S, Bosio CM, Wiegand E, Ruthel G, Will AB, Geisbert TW, Hevey M, Schmaljohn C, Schmaljohn A, Aman MJ (2002) Lipid raft microdomains: a gateway for compartmentalized trafficking of Ebola and Marburg viruses. J Exp Med 195:593–602

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blonz ER (2016) Zika virus and GLUT1. Lancet Infect Dis 16:642

    Article  PubMed  Google Scholar 

  • Buck MD, O’Sullivan D, Pearce EL (2015) T cell metabolism drives immunity. J Exp Med 212:1345–1360

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bukrinsky MI, Stanwick TL, Dempsey MP, Stevenson M (1991) Quiescent T lymphocytes as an inducible virus reservoir in HIV-1 infection. Science 254:423–427

    Article  CAS  PubMed  Google Scholar 

  • Campanero-Rhodes MA, Smith A, Chai W, Sonnino S, Mauri L, Childs RA, Zhang Y, Ewers H, Helenius A, Imberty A et al (2007) N-glycolyl GM1 ganglioside as a receptor for simian virus 40. J Virol 81:12846–12858

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carette JE, Raaben M, Wong AC, Herbert AS, Obernosterer G, Mulherkar N, Kuehne AI, Kranzusch PJ, Griffin AM, Ruthel G et al (2011) Ebola virus entry requires the cholesterol transporter Niemann–pick C1. Nature 477:340–343

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chambers JW, Maguire TG, Alwine JC (2010) Glutamine metabolism is essential for human cytomegalovirus infection. J Virol 84:1867–1873

    Article  CAS  PubMed  Google Scholar 

  • Cheung W, Gill M, Esposito A, Kaminski CF, Courousse N, Chwetzoff S, Trugnan G, Keshavan N, Lever A, Desselberger U (2010) Rotaviruses associate with cellular lipid droplet components to replicate in viroplasms, and compounds disrupting or blocking lipid droplets inhibit viroplasm formation and viral replication. J Virol 84:6782–6798

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chun T-W, Carruth L, Finzi D, Shen X, DiGiuseppe JA, Taylor H, Hermankova M, Chadwick K, Margolick J, Quinn TC et al (1997) Quantification of latent tissue reservoirs and total body viral load in HIV-1 infection. Nature 387:183–188

    Article  CAS  PubMed  Google Scholar 

  • Crawford SE, Desselberger U (2016) Lipid droplets form complexes with viroplasms and are crucial for rotavirus replication. Curr Opin Virol 19:11–15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cribbs SK, Uppal K, Li S, Jones DP, Huang L, Tipton L, Fitch A, Greenblatt RM, Kingsley L, Guidot DM et al (2016) Correlation of the lung microbiota with metabolic profiles in bronchoalveolar lavage fluid in HIV infection. Microbiome 4:3

    Article  PubMed  PubMed Central  Google Scholar 

  • Cui HL, Grant A, Mukhamedova N, Pushkarsky T, Jennelle L, Dubrovsky L, Gaus K, Fitzgerald ML, Sviridov D, Bukrinsky M (2012) HIV-1 Nef mobilizes lipid rafts in macrophages through a pathway that competes with ABCA1-dependent cholesterol efflux. J Lipid Res 53:696–708

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cumont MC, Monceaux V, Viollet L, Lay S, Parker R, Hurtrel B, Estaquier J (2007) TGF-beta in intestinal lymphoid organs contributes to the death of armed effector CD8 T cells and is associated with the absence of virus containment in rhesus macaques infected with the simian immunodeficiency virus. Cell Death Differ 14:1747–1758

    Article  CAS  PubMed  Google Scholar 

  • Dang CV (2017) c-MYC mRNA tail tale about glutamine control of transcription. EMBO J 36:1806–1808

    Article  CAS  PubMed  Google Scholar 

  • Darnell JE Jr, Eagle H (1958) Glucose and glutamine in poliovirus production by HeLa cells. Virology 6:556–566

    Article  PubMed  Google Scholar 

  • Datta PK, Deshmane S, Khalili K, Merali S, Gordon JC, Fecchio C, Barrero CA (2016) Glutamate metabolism in HIV-1 infected macrophages: role of HIV-1 Vpr. Cell Cycle 15:2288–2298

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • del Real G, Jiménez-Baranda S, Mira E, Lacalle RA, Lucas P, Gómez-Moutón C, Alegret M, Peña JM, Rodríguez-Zapata M, Alvarez-Mon M et al (2004) Statins inhibit HIV-1 infection by down-regulating rho activity. J Exp Med 200:541–547

    Article  PubMed  PubMed Central  Google Scholar 

  • Delgado T, Carroll PA, Punjabi AS, Margineantu D, Hockenbery DM, Lagunoff M (2010) Induction of the Warburg effect by Kaposi’s sarcoma herpesvirus is required for the maintenance of latently infected endothelial cells. Proc Natl Acad Sci USA 107:10696–10701

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eagle H, Habel K (1956) The nutritional requirements for the propagation of poliomyelitis virus by the HeLa cell. J Exp Med 104:271–287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Faustino AF, Carvalho FA, Martins IC, Castanho MARB, Mohana-Borges R, Almeida FCL, Da Poian AT, Santos NC (2014) Dengue virus capsid protein interacts specifically with very low-density lipoproteins. Nanomed: Nanotechnol, Biol Med 10:247–255

    Article  CAS  Google Scholar 

  • Filipe A, McLauchlan J (2015) Hepatitis C virus and lipid droplets: finding a niche. Trends Mol Med 21:34–42

    Article  CAS  PubMed  Google Scholar 

  • Fontaine KA, Camarda R, Lagunoff M (2014) Vaccinia virus requires glutamine but not glucose for efficient replication. J Virol 88:4366–4374

    Article  PubMed  PubMed Central  Google Scholar 

  • Fontaine KA, Sanchez EL, Camarda R, Lagunoff M (2015) Dengue virus induces and requires glycolysis for optimal replication. J Virol 89:2358–2366

    Article  PubMed  Google Scholar 

  • Fu X, Hu X, Li N, Zheng F, Dong X, Duan J, Lin Q, Tu J, Zhao L, Huang Z et al (2017) Glutamine and glutaminolysis are required for efficient replication of infectious spleen and kidney necrosis virus in Chinese perch brain cells. Oncotarget 8:2400–2412

    PubMed  Google Scholar 

  • Gaunt ER, Zhang Q, Cheung W, Wakelam MJ, Lever AM, Desselberger U (2013) Lipidome analysis of rotavirus-infected cells confirms the close interaction of lipid droplets with viroplasms. J Gen Virol 94:1576–1586

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ghannoum MA, Mukherjee PK, Jurevic RJ, Retuerto M, Brown RE, Sikaroodi M, Webster-Cyriaque J, Gillevet PM (2013) Metabolomics reveals differential levels of oral metabolites in HIV-infected patients: toward novel diagnostic targets. OMICS 17:5–15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gonnella R, Santarelli R, Farina A, Granato M, D’Orazi G, Faggioni A, Cirone M (2013) Kaposi sarcoma associated herpesvirus (KSHV) induces AKT hyperphosphorylation, bortezomib-resistance and GLUT-1 plasma membrane exposure in THP-1 monocytic cell line. J Exp Clin Cancer Res 32:79

    Article  PubMed  PubMed Central  Google Scholar 

  • Gosselin A, Wiche Salinas TR, Planas D, Wacleche VS, Zhang Y, Fromentin R, Chomont N, Cohen ÉA, Shacklett B, Mehraj V et al (2017) HIV persists in CCR6+CD4+ T cells from colon and blood during antiretroviral therapy. AIDS 31:35–48

    Article  CAS  PubMed  Google Scholar 

  • Greenway F (2006) Virus-induced obesity. Am J Physiol Regul Integr Comp Physiol 290:R188–R189

    Article  CAS  PubMed  Google Scholar 

  • Greseth MD, Traktman P (2014) De novo fatty acid biosynthesis contributes significantly to establishment of a bioenergetically favorable environment for vaccinia virus infection. PLoS Pathog 10:e1004021

    Article  PubMed  PubMed Central  Google Scholar 

  • Heaton NS, Randall G (2011) Multifaceted roles for lipids in viral infection. Trends Microbiol 19:368–375

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hollenbaugh JA, Munger J, Kim B (2011) Metabolite profiles of human immunodeficiency virus infected CD4+ T cells and macrophages using LC-MS/MS analysis. Virology 415:153–159

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang H, Li Y, Sadaoka T, Tang H, Yamamoto T, Yamanishi K, Mori Y (2006) Human herpesvirus 6 envelope cholesterol is required for virus entry. J Gen Virol 87:277–285

    Article  CAS  PubMed  Google Scholar 

  • Izquierdo-Useros N, Lorizate M, Contreras FX, Rodriguez-Plata MT, Glass B, Erkizia I, Prado JG, Casas J, Fabrias G, Krausslich HG et al (2012) Sialyllactose in viral membrane gangliosides is a novel molecular recognition pattern for mature dendritic cell capture of HIV-1. PLoS Biol 10:e1001315

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jacobs SR, Herman CE, MacIver NJ, Wofford JA, Wieman HL, Hammen JJ, Rathmell JC (2008) Glucose uptake is limiting in T cell activation and requires CD28-mediated Akt-dependent and independent pathways. J Immunol 180:4476–4486

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jordan TX, Randall G (2017) Dengue virus activates the AMP kinase-mTOR axis to stimulate a proviral lipophagy. J Virol 91:e02020–e02016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim KH, Shin HJ, Kim K, Choi HM, Rhee SH, Moon HB, Kim HH, Yang US, Yu DY, Cheong J (2007) Hepatitis B virus X protein induces hepatic steatosis via transcriptional activation of SREBP1 and PPARgamma. Gastroenterology 132:1955–1967

    Article  CAS  PubMed  Google Scholar 

  • Kim K, Kim KH, Kim HH, Cheong J (2008) Hepatitis B virus X protein induces lipogenic transcription factor SREBP1 and fatty acid synthase through the activation of nuclear receptor LXRalpha. Biochem J 416:219–230

    Article  CAS  PubMed  Google Scholar 

  • Konan KV, Sanchez-Felipe L (2014) Lipids and RNA virus replication. Curr Opin Virol 9:45–52

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koyuncu E, Purdy JG, Rabinowitz JD, Shenk T (2013) Saturated very long chain fatty acids are required for the production of infectious human cytomegalovirus progeny. PLoS Pathog 9:e1003333

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kulkarni MM, Ratcliff AN, Bhat M, Alwarawrah Y, Hughes P, Arcos J, Loiselle D, Torrelles JB, Funderburg NT, Haystead TA et al (2017) Cellular fatty acid synthase is required for late stages of HIV-1 replication. Retrovirology 14:45

    Article  PubMed  PubMed Central  Google Scholar 

  • Laforge M, Campillo-Gimenez L, Monceaux V, Cumont MC, Hurtrel B, Corbeil J, Zaunders J, Elbim C, Estaquier J (2011) HIV/SIV infection primes monocytes and dendritic cells for apoptosis. PLoS Pathog 7:e1002087

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Le A, Dang CV (2013) Studying Myc’s role in metabolism regulation. Methods Mol Biol 1012:213–219

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Levy HB, Baron S (1957) The effect of animal viruses on host cell metabolism ii. Effect of poliomyelitis virus on glycolysis and uptake of glycine by monkey kidney tissue cultures. J Infect Dis 100:109–118

    Article  CAS  PubMed  Google Scholar 

  • Levy PL, Duponchel S, Eischeid H, Molle J, Michelet M, Diserens G, Vermathen M, Vermathen P, Dufour J-F, Dienes H-P et al (2017) Hepatitis C virus infection triggers a tumor-like glutamine metabolism. Hepatology 65:789–803

    Article  CAS  PubMed  Google Scholar 

  • Li C, Deng YQ, Wang S, Ma F, Aliyari R, Huang XY, Zhang NN, Watanabe M, Dong HL, Liu P et al (2017) 25-Hydroxycholesterol protects host against Zika virus infection and its associated microcephaly in a mouse model. Immunity 46:446–456

    Article  CAS  PubMed  Google Scholar 

  • Liao Z, Cimakasky LM, Hampton R, Nguyen DH, Hildreth JE (2001) Lipid rafts and HIV pathogenesis: host membrane cholesterol is required for infection by HIV type 1. AIDS Res Hum Retrovir 17:1009–1019

    Article  CAS  PubMed  Google Scholar 

  • Loisel-Meyer S, Swainson L, Craveiro M, Oburoglu L, Mongellaz C, Costa C, Martinez M, Cosset F-L, Battini J-L, Herzenberg LA et al (2012) Glut1-mediated glucose transport regulates HIV infection. Proc Natl Acad Sci 109:2549–2554

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lorizate M, Krausslich HG (2011) Role of lipids in virus replication. Cold Spring Harb Perspect Biol 3:a004820

    Article  PubMed  PubMed Central  Google Scholar 

  • Mazzon M, Mercer J (2014) Lipid interactions during virus entry and infection. Cell Microbiol 16:1493–1502

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miyanari Y, Atsuzawa K, Usuda N, Watashi K, Hishiki T, Zayas M, Bartenschlager R, Wakita T, Hijikata M, Shimotohno K (2007) The lipid droplet is an important organelle for hepatitis C virus production. Nat Cell Biol 9:1089–1097

    Article  CAS  PubMed  Google Scholar 

  • Molina S, Castet V, Fournier-Wirth C, Pichard-Garcia L, Avner R, Harats D, Roitelman J, Barbaras R, Graber P, Ghersa P et al (2007) The low-density lipoprotein receptor plays a role in the infection of primary human hepatocytes by hepatitis C virus. J Hepatol 46:411–419

    Article  CAS  PubMed  Google Scholar 

  • Moser TS, Schieffer D, Cherry S (2012) AMP-activated kinase restricts Rift Valley fever virus infection by inhibiting fatty acid synthesis. PLoS Pathog 8:e1002661

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Munger J, Bajad SU, Coller HA, Shenk T, Rabinowitz JD (2006) Dynamics of the cellular metabolome during human cytomegalovirus infection. PLoS Pathog 2:e132

    Article  PubMed  PubMed Central  Google Scholar 

  • Munger J, Bennett BD, Parikh A, Feng XJ, McArdle J, Rabitz HA, Shenk T, Rabinowitz JD (2008) Systems-level metabolic flux profiling identifies fatty acid synthesis as a target for antiviral therapy. Nat Biotechnol 26:1179–1186

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Na TY, Shin YK, Roh KJ, Kang SA, Hong I, Oh SJ, Seong JK, Park CK, Choi YL, Lee MO (2009) Liver X receptor mediates hepatitis B virus X protein-induced lipogenesis in hepatitis B virus-associated hepatocellular carcinoma. Hepatology 49:1122–1131

    Article  CAS  PubMed  Google Scholar 

  • Negro F, Sanyal AJ (2009) Hepatitis C virus, steatosis and lipid abnormalities: clinical and pathogenic data. Liver Int 29(Suppl 2):26–37

    Article  CAS  PubMed  Google Scholar 

  • Ohol YM, Wang Z, Kemble G, Duke G (2015) Direct inhibition of cellular fatty acid synthase impairs replication of respiratory syncytial virus and other respiratory viruses. PLoS One 10:e0144648

    Article  PubMed  PubMed Central  Google Scholar 

  • Palmer CS, Ostrowski M, Gouillou M, Tsai L, Yu D, Zhou J, Henstridge DC, Maisa A, Hearps AC, Lewin SR et al (2014) Increased glucose metabolic activity is associated with CD4+ T-cell activation and depletion during chronic HIV infection. AIDS 28:297–309

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Perera R, Riley C, Isaac G, Hopf-Jannasch AS, Moore RJ, Weitz KW, Pasa-Tolic L, Metz TO, Adamec J, Kuhn RJ (2012) Dengue virus infection perturbs lipid homeostasis in infected mosquito cells. PLoS Pathog 8:e1002584

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Physicochemical D, Essex M (1974) Glycolysis during early infection of feline and human cells with feline leukemia virus. Infect Immun 9:824–827

    Google Scholar 

  • Popik W, Alce TM, Au W-C (2002) Human immunodeficiency virus type 1 uses lipid raft-colocalized CD4 and chemokine receptors for productive entry into CD4+ T cells. J Virol 76:4709–4722

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qian M, Tsai B (2010) Lipids and proteins act in opposing manners to regulate polyomavirus infection. J Virol 84:9840–9852

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Richard AS, Zhang A, Park S-J, Farzan M, Zong M, Choe H (2015) Virion-associated phosphatidylethanolamine promotes TIM1-mediated infection by Ebola, dengue, and West Nile viruses. Proc Natl Acad Sci 112:14682–14687

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sanchez EL, Pulliam TH, Dimaio TA, Thalhofer AB, Delgado T, Lagunoff M (2017) Glycolysis, glutaminolysis, and fatty acid synthesis are required for distinct stages of Kaposi’s sarcoma-associated herpesvirus lytic replication. J Virol 91(10): e02237–16

    Google Scholar 

  • Santangelo PJ, Rogers KA, Zurla C, Blanchard EL, Gumber S, Strait K, Connor-Stroud F, Schuster DM, Amancha PK, Hong JJ et al (2015) Whole-body immunoPET reveals active SIV dynamics in viremic and antiretroviral therapy–treated macaques. Nat Methods 12:427–432

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scarpelini B, Zanoni M, Sucupira MCA, Truong HHM, Janini LMR, Segurado IDC, Diaz RS (2016) Plasma metabolomics biosignature according to HIV stage of infection, pace of disease progression, viremia level and immunological response to treatment. PLoS One 11:e0161920

    Article  PubMed Central  Google Scholar 

  • Scharko AM, Perlman SB, Hinds P, Hanson JM, Uno H, Pauza CD (1996) Whole body positron emission tomography imaging of simian immunodeficiency virus-infected rhesus macaques. Proc Natl Acad Sci USA 93:6425–6430

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shi LZ, Wang R, Huang G, Vogel P, Neale G, Green DR, Chi H (2011) HIF1α–dependent glycolytic pathway orchestrates a metabolic checkpoint for the differentiation of T H 17 and T reg cells. J Exp Med 208:1367–1376

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singh VN, Singh M, August JT, Horecker BL (1974) Alterations in glucose metabolism in chick-embryo cells transformed by Rous sarcoma virus: intracellular levels of glycolytic intermediates. Proc Natl Acad Sci USA 71:4129–4132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Soto-Acosta R, Bautista-Carbajal P, Cervantes-Salazar M, Angel-Ambrocio AH, del Angel RM (2017) DENV up-regulates the HMG-CoA reductase activity through the impairment of AMPK phosphorylation: a potential antiviral target. PLoS Pathog 13:e1006257

    Article  PubMed  PubMed Central  Google Scholar 

  • Stevenson M, Stanwick TL, Dempsey MP, Lamonica CA (1990) HIV-1 replication is controlled at the level of T cell activation and proviral integration. EMBO J 9:1551–1560

    CAS  PubMed  PubMed Central  Google Scholar 

  • Stieh DJ, Matias E, Xu H, Fought AJ, Blanchard JL, Marx PA, Veazey RS, Hope TJ (2016) Th17 cells are preferentially infected very early after vaginal transmission of SIV in macaques. Cell Host Microbe 19:529–540

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun H, Kim D, Li X, Kiselinova M, Ouyang Z, Vandekerckhove L, Shang H (2015) Th1/17 polarization of CD4 T cells supports HIV-1 persistence during antiretroviral therapy. J Virol 89:11284–11293

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sutter E, de Oliveira AP, Tobler K, Schraner EM, Sonda S, Kaech A, Lucas MS, Ackermann M, Wild P (2012) Herpes simplex virus 1 induces de novo phospholipid synthesis. Virology 429:124–135

    Article  CAS  PubMed  Google Scholar 

  • Targett-Adams P, Boulant S, Douglas MW, McLauchlan J (2010) Lipid metabolism and HCV infection. Virus 2:1195–1217

    Article  CAS  Google Scholar 

  • Thai M, Graham NA, Braas D, Nehil M, Komisopoulou E, Kurdistani SK, McCormick F, Graeber TG, Christofk HR (2014) Adenovirus E4ORF1-induced MYC activation promotes host cell anabolic glucose metabolism and virus replication. Cell Metab 19:694–701

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thai M, Thaker SK, Feng J, Du Y, Hu H, Ting Wu T, Graeber TG, Braas D, Christofk HR (2015) MYC-induced reprogramming of glutamine catabolism supports optimal virus replication. Nat Commun 6:8873

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thomssen R, Bonk S, Propfe C, Heermann KH, Kochel HG, Uy A (1992) Association of hepatitis C virus in human sera with beta-lipoprotein. Med Microbiol Immunol 181:293–300

    Article  CAS  PubMed  Google Scholar 

  • Tsai B, Gilbert JM, Stehle T, Lencer W, Benjamin TL, Rapoport TA (2003) Gangliosides are receptors for murine polyoma virus and SV40. EMBO J 22:4346–4355

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vastag L, Koyuncu E, Grady SL, Shenk TE, Rabinowitz JD (2011) Divergent effects of human cytomegalovirus and herpes simplex virus-1 on cellular metabolism. PLoS Pathog 7:e1002124

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wakisaka N, Kondo S, Yoshizaki T, Murono S, Furukawa M, Joseph S, Pagano JS (2004) Epstein-Barr virus latent membrane protein 1 induces synthesis of hypoxia-inducible factor 1 α. Mol Cell Biol 24:5223–5234

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang ZQ, Yu Y, Zhang XH, Floyd EZ, Cefalu WT (2010) Human adenovirus 36 decreases fatty acid oxidation and increases de novo lipogenesis in primary cultured human skeletal muscle cells by promoting Cidec/FSP27 expression. Int J Obes 34:1355–1364

    Article  CAS  Google Scholar 

  • Waris G, Felmlee DJ, Negro F, Siddiqui A (2007) Hepatitis C virus induces proteolytic cleavage of sterol regulatory element binding proteins and stimulates their phosphorylation via oxidative stress. J Virol 81:8122–8130

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Whigham LD, Israel BA, Atkinson RL (2006) Adipogenic potential of multiple human adenoviruses in vivo and in vitro in animals. Am J Physiol Regul Integr Comp Physiol 290:R190–R194

    Article  CAS  PubMed  Google Scholar 

  • Woodhouse SD, Narayan R, Latham S, Lee S, Antrobus R, Gangadharan B, Luo S, Schroth GP, Klenerman P, Zitzmann N (2010) Transcriptome sequencing, microarray, and proteomic analyses reveal cellular and metabolic impact of hepatitis C virus infection in vitro. Hepatology 52:443–453

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang W, Hood BL, Chadwick SL, Liu S, Watkins SC, Luo G, Conrads TP, Wang T (2008) Fatty acid synthase is up-regulated during hepatitis C virus infection and regulates hepatitis C virus entry and production. Hepatology 48:1396–1403

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang ST, Kiessling V, Simmons JA, White JM, Tamm LK (2015) HIV gp41-mediated membrane fusion occurs at edges of cholesterol-rich lipid domains. Nat Chem Biol 11:424–431

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ye F, Zeng Y, Sha J, Jones T, Kuhne K, Wood C, Gao S-J (2016) High glucose induces reactivation of latent Kaposi’s sarcoma-associated Herpesvirus. J Virol 90(21):9654–9663. (JVI.01049-16)

    Article  CAS  PubMed Central  Google Scholar 

  • Yogev O, Lagos D, Enver T, Boshoff C (2014) Kaposi’s sarcoma herpesvirus microRNAs induce metabolic transformation of infected cells. PLoS Pathog 10:e1004400

    Article  PubMed  PubMed Central  Google Scholar 

  • Yoon EJ, Hu KQ (2006) Hepatitis C virus (HCV) infection and hepatic steatosis. Int J Med Sci 3:53–56

    Article  PubMed  PubMed Central  Google Scholar 

  • Zaitseva E, Yang ST, Melikov K, Pourmal S, Chernomordik LV (2010) Dengue virus ensures its fusion in late endosomes using compartment-specific lipids. PLoS Pathog 6:e1001131

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mesquita, I., Estaquier, J. (2018). Viral Manipulation of the Host Metabolic Network. In: Silvestre, R., Torrado, E. (eds) Metabolic Interaction in Infection. Experientia Supplementum, vol 109. Springer, Cham. https://doi.org/10.1007/978-3-319-74932-7_10

Download citation

Publish with us

Policies and ethics