Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 499 Accesses

Abstract

I would like to start this elaborate by posing the most fundamental question: why do we study chirality? The answer is because Nature is chiral and, as part of it ourselves, it is imperative to understand it and its chiral mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    For further reading on heteroatoms chirality see: Wolf [3].

  2. 2.

    For more noteworthy examples of controlled central chirality see: (a) Enders et al. [6]; (b) Cassani et al. [7]; (c) Zhou et al. [8]; (d) Chauhan et al. [9]; (e) Reyes et al. [10].

  3. 3.

    The priority of substituents is assigned according to the CIP rules. Angew. Chem. Int. Ed., 1966, 385.

  4. 4.

    (a) Betson et al. [20]; (b) Clayden et al. [21].

  5. 5.

    For exhaustive reviews on helically chiral compounds see: (a) Shen and Chen [25]; (b) Gingras [26], 968; (c) Gingras et al. [27]; (d) Gingras [26], 1051.

  6. 6.

    (a) MacMillan [38]; (b) List [39].

  7. 7.

    For exhaustive reading on asymmetric aminocatalysis on both enamine and iminium ion reactions see: Science of synthesis “Asymmetric organocatalysis 1—Lewis base and acid catalysis”, Thieme, 2012.

  8. 8.

    For a better understanding of the concept, instead of drawing two mechanisms for the endo and exo products, a single one is reported with a generic nucleophile “NuH”. Also, the enantiotopic faces of the iminium ion may change depending on the nature of the R substituent.

  9. 9.

    For reviews on NHC-catalysis see: (a) Biju et al. [42]; (b) Grossman and Enders [43]; (c) Chen and Ye [44]; (d) Hopkinson et al. [45]; (e) Wang and Scheidt [46].

  10. 10.

    For reviews on MBH and MBH-like reactions see: (a) Wei and Shi [47]; (b) Rios [48].

  11. 11.

    (a) For an exhaustive reading on Brønsted acid/base catalysis see: Rueping et al. [51]; (b) Science of synthesis “Asymmetric organocatalysis 2 – Brønsted base and acid catalysis, and additional topics”, Thieme, 2012.

  12. 12.

    For reviews on ACDC see: (a) Phipps et al. [56]; (b) Mahlau and List [57].

  13. 13.

    For exhaustive reviews on PTC see: (a) Ooi and Maruoka [59]; (b) Shirakawa and Maruoka [60]; (c) Albanese et al. [61].

  14. 14.

    Asymmetric PTC is believed to mainly follow the “interfacial mechanism” which is the only one reported for simplicity. See: Kitamura et al. [62]. For reading on the “extraction mechanism” see: Starks [63].

  15. 15.

    For reviews see: (a) Doyle and Jacobsen [65]; (b) Knowles and Jacobsen [66].

  16. 16.

    (a) Sigman and Jacobsen [67]; (b) Corey and Grogan [68].

  17. 17.

    For reviews see: (a) Shao and Zhang [69]; (b) Zhong and Shi [70]; (c) Allen and MacMillan [71]; (d) Du [72]; (e) Afewerki and Còrdova [73].

  18. 18.

    For some remarkable examples of dual catalysis see: (a) Krautwald et al. [74]; (b) Rono et al. [75]; (c) Noesborg et al. [76]; (d) Meazza et al. [77].

References

  1. Eliel EL, Wilen SH (1994) Stereochemistry of organic compounds. Wiley

    Google Scholar 

  2. IUPAC (1997) Compendium of chemical terminology, 2nd edn. (the “Gold Book”). Oxford

    Google Scholar 

  3. Wolf C (2008) Dynamic stereochemistry of chiral compounds: principles and applications RSC, p 71

    Google Scholar 

  4. Enders D, Hüttl MRM, Grondal C, Raabe G (2006) Nature 861

    Google Scholar 

  5. Enders D, Hüttl MRM, Runsink J, Raabe G, Wendt B (2007) Angew Chem Int Ed 467

    Google Scholar 

  6. Enders D, Hüttl RM, Raabe G, Bats JW (2008) Adv Synth Catal 267

    Google Scholar 

  7. Cassani C, Tian X, Escudero-Adàn EC, Melchiorre P (2011) Chem Commun 233

    Google Scholar 

  8. Zhou B, Yang Y, Shi J, Luo Z, Li Y (2013) J Org Chem 2897

    Google Scholar 

  9. Chauhan P, Mahajan S, Raabe G, Enders D (2015) Chem Commun 2270

    Google Scholar 

  10. Reyes E, Jiang H, Milelli A, Helsner P, Hazell RG, Jorgensen KA (2007) Angew Chem Int Ed 9202

    Google Scholar 

  11. Ōki M (1984) Top Stereochem 1–81

    Google Scholar 

  12. Smyth JE, Butler NM, Keller PA (2015) Nat Prod Rep 1562

    Google Scholar 

  13. Bringmann G, Mortimer AJP, Keller PA, Gresser MJ, Garner J, Breuning M (2005) Angew Chem Int Ed 5384

    Google Scholar 

  14. Christie GH, Kenner J (1922) J Chem Soc Trans 614

    Google Scholar 

  15. Bringmann G, Gulder T, Gulder TAM, Breuning M (2011) Chem Rev 563

    Google Scholar 

  16. Kumarasamy E, Raghunathan R, Sibi MP, Sivaguru J (2015) Chem Rev 11239

    Google Scholar 

  17. Clayden JP, Lai LW (1999) Angew Chem Int Ed 2556

    Google Scholar 

  18. Adler T, Bonjoch J, Clayden J, Font-Bardfa M, Pickworth M, Solans X, Sole D, Vallverdu L (2005) Org Biomol Chem 3173

    Google Scholar 

  19. Curran DP, Qi H, Geib SJ, DeMello NC (1994) J Am Chem Soc 3131

    Google Scholar 

  20. Betson MS, Clayden J, Worrall CP, Peace S (2006) Angew Chem Int Ed 5803

    Google Scholar 

  21. Clayden J, Senior J, Helliwell M (2009) Angew Chem Int Ed 6270

    Google Scholar 

  22. Pinkus AG, Riggs JI, Broughton SM (1968) J Am Chem Soc 5043

    Google Scholar 

  23. Taylor DR (1967) Chem Rev 317

    Google Scholar 

  24. Klyne W, Prelog V (1960) Experientia 521

    Google Scholar 

  25. Shen Y, Chen C (2011) Chem Rev 1463

    Google Scholar 

  26. Gingras M (2013) Chem Soc Rev

    Google Scholar 

  27. Gingras M, Félix G, Peresutti R (2013) Chem Soc Rev 1007

    Google Scholar 

  28. González-Fernández E, Nicholls LDM, Schaaf LD, Farès C, Lehmann CW, Alcazaro M (2017) J Am Chem Soc. ASAP article. https://doi.org/10.1021/jacs.6b12443

  29. van’t Hoff JH (1875) Bull Soc Chim France 295

    Google Scholar 

  30. Hutt AJ, O’grady J (1996) J Antimicrob Chemoter 7

    Google Scholar 

  31. Agranat I, Caner H, Caldwell J (2002) Nat Rev Drug Discov 753

    Google Scholar 

  32. Aliens EJ, Wuis EW, Veringa EJ (1988) Biochem Pharmacol 9

    Google Scholar 

  33. Burns NZ, Baran PS, Hoffmann RW (2009) Angew Chem Int Ed 2854

    Google Scholar 

  34. List B (2004) Adv Synth Catal 1021

    Google Scholar 

  35. Ahrendt KA, Borths CJ, MacMillan DWC (2000) J Am Chem Soc 4243

    Google Scholar 

  36. List B, Lerner RA, Barbas III CF (2000) J Am Chem Soc 2395

    Google Scholar 

  37. Gaunt MJ, Johansson CCC, McNally A, Vo NT (2007) Drug Discov Today 8

    Google Scholar 

  38. MacMillan DWC (2008) Nature 304

    Google Scholar 

  39. List B (2006) Chem Commun 819

    Google Scholar 

  40. Knoevenagel E (1896) Ber Dtsch Chem Ges 172

    Google Scholar 

  41. List B (2010) Angew Chem Int Ed 1730

    Google Scholar 

  42. Biju AT, Kuhl N, Glorius F (2011) Acc Chem Res 1182

    Google Scholar 

  43. Grossman A, Enders D (2012) Angew Chem Int Ed 314

    Google Scholar 

  44. Chen XY, Ye S (2013) Org Biomol Chem 7991

    Google Scholar 

  45. Hopkinson MN, Richter C, Schedler M, Glorius F (2014) Nature 485

    Google Scholar 

  46. Wang MH, Scheidt KA (2016) Angew Chem Int Ed 14912

    Google Scholar 

  47. Wei Y, Shi M (2013) Chem Rev 6659

    Google Scholar 

  48. Rios R (2012) Catal Sci Technol 267

    Google Scholar 

  49. Bugaut X, Glorius F (2012) Chem Soc Rev 3511

    Google Scholar 

  50. Janssen-Müller D, Fleige M, Schlüns D, Wollenburg M, Daniliuc CG, Neugebauer J, Glorius F (2016) ACS Catal 5735

    Google Scholar 

  51. Rueping M, Parmar D, Sugimoto E (2016) Asymmetric Brønsted acid catalysis. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany

    Google Scholar 

  52. Parmar D, Sugiono E, Raja S, Rueping M (2014) Chem Rev 9047

    Google Scholar 

  53. Lee J-W, List B (2012) J Am Chem Soc 18245

    Google Scholar 

  54. Das S, Liu L, Zheng Y, Alachraf MW, Thiel W, De CK, List B (2016) J Am Chem Soc 9429

    Google Scholar 

  55. Yarlagadda S, Ramesh B, Reddy CR, Srinivas L, Sridhar B, Reddy BVS (2017) Org Lett 170

    Google Scholar 

  56. Phipps RJ, Hamilton GL, Toste DF (2012) Nature Chem 603

    Google Scholar 

  57. Mahlau M, List B (2013) Angew Chem Int Ed 518

    Google Scholar 

  58. Mayer S, List (2006) Angew Chem Int Ed 4193

    Google Scholar 

  59. Ooi T, Maruoka K (2007) Angew Chem Int 4222

    Google Scholar 

  60. Shirakawa S, Maruoka K (2013) Angew Chem Int Ed 4312

    Google Scholar 

  61. Albanese DCM, Foschi F, Penso M (2016) Org Process Res Dev 129

    Google Scholar 

  62. Kitamura M, Shirakawa S, Maruoka K (2005) Angew Chem Int Ed 1549

    Google Scholar 

  63. Starks CM (1971) J Am Chem Soc 195

    Google Scholar 

  64. Tan J, Yasuda N (2015) Org Process Res Dev 1731

    Google Scholar 

  65. Doyle AG, Jacobsen EN (2007) Chem Rev 5713

    Google Scholar 

  66. Knowles RR, Jacobsen EN (2010) Proc Natl Acad Sci 20678

    Google Scholar 

  67. Sigman MS, Jacobsen EN (1998) J Am Chem Soc 4901

    Google Scholar 

  68. Corey EJ, Grogan MJ (1999) Org Lett 157

    Google Scholar 

  69. Shao Z, Zhang H (2009) Chem Soc Rev 2745

    Google Scholar 

  70. Zhong C, Shi X (2010) Eur J Org Chem 2999

    Google Scholar 

  71. Allen AE, MacMillan DWC (2012) Chem Sci 633

    Google Scholar 

  72. Du Z, Shao Z (2013) Chem Soc Rev 1337

    Google Scholar 

  73. Afewerki S, Còrdova A (20160) Chem Rev 13512

    Google Scholar 

  74. Krautwald S, Sarlah D, Schfroth MA, Carreira EM (2013) Science 1065

    Google Scholar 

  75. Rono LJ, Yayla HG, Wang DY, Armstrong MF, Knowles RR (2013) J Am Chem Soc 17735

    Google Scholar 

  76. Noesborg L, Halskov KS, Tur F, Mønsted SMN, Jørgensen KA (2015) Angew Chem Int Ed 10193

    Google Scholar 

  77. Meazza M, Tur F, Hammer N, Jørgensen KA (2017) Angew Chem Int Ed 1634

    Google Scholar 

  78. Pirnot MT, Rankic DA, Martin DBC, MacMillan DWC (2013) Science 1593

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicola Di Iorio .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Di Iorio, N. (2018). Introduction. In: New Organocatalytic Strategies for the Selective Synthesis of Centrally and Axially Chiral Molecules. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-74914-3_1

Download citation

Publish with us

Policies and ethics