Skip to main content

Systems Biology and Metabolic Modeling of C1-Metabolism

  • Chapter
  • First Online:
Book cover Methane Biocatalysis: Paving the Way to Sustainability

Abstract

Recent developments in experimental technologies have transformed traditional microbial physiology into a data-rich or -omics discipline. As a result, it has caused a renaissance of the mathematical analysis of biological systems and stimulated the development of systems biology workflows which aim to provide a holistic vision of all cellular functions through genomics, transcriptomics, proteomics, metabolomics, and fluxomic data. In silico modeling of metabolic systems has become a powerful tool, providing insight into the complex processes in cellular metabolism and their underlying regulatory mechanisms, as well as potentially improving the biotechnological design of microbial strains with desired properties. In this chapter, we provide an overview of the systems biology of methane utilization, as an example of one unique microbial function that has been dissected using - omics technologies. We discuss the most recent advances in large-scale investigation and computational representation of related metabolic networks as well as highlight some challenges for further developments in the field.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Akberdin IR, Kazantsev FV, Ermak TV, Timonov VS, Khlebodarova TM, Likhoshvai VA (2013) In silico cell: challenges and perspectives. Math Biol Bioinform 8(1):295–315

    Article  Google Scholar 

  • Akberdin IR, Thompson M, Hamilton R, Desai N, Alexander D, Henard CA, Guarnieri MT, Kalyuzhnaya MG (2018) Methane utilization in Methylomicrobium alcaliphilum 20Z R: a systems approach. Sci Rep 8:2512

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Akberdin IR, But S, Collins D, Kalyuzhnaya MG (n.d.) Methane utilization in Methylomicrobium alcaliphilum 20ZR: mutagenesis-based investigation and dynamic modeling of the initial steps of methane oxidation. BMC Syst Biol (unpublished data)

    Google Scholar 

  • Alon U (2006) An introduction to systems biology: design principles of biological circuits. CRC Press, Boca Raton, FL

    Google Scholar 

  • Anthony C (1982) Biochemistry of methylotrophs. Academic Press, London

    Google Scholar 

  • Anvar SY, Frank J, Pol A, Schmitz A, Kraaijeveld K, den Dunnen JT, den Camp HJO (2014) The genomic landscape of the verrucomicrobial methanotroph Methylacidiphilum fumariolicum SolV. BMC Genom 15(1):914

    Article  Google Scholar 

  • Beck DA, Kalyuzhnaya MG, Malfatti S, Tringe SG, del Rio TG, Ivanova N et al (2013) A metagenomic insight into freshwater methane-utilizing communities and evidence for cooperation between the Methylococcaceae and the Methylophilaceae. PeerJ 1:e23

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bensimon A, Heck AJ, Aebersold R (2012) Mass spectrometry-based proteomics and network biology. Ann Rev Biochem 81:379–405

    Article  CAS  PubMed  Google Scholar 

  • Berven FS, Karlsen OA, Straume AH, Flikka K, Murrell JC, Fjellbirkeland A et al (2006) Analysing the outer membrane subproteome of Methylococcus capsulatus (Bath) using proteomics and novel biocomputing tools. Arch Microbiol 184(6):362–377

    Article  CAS  PubMed  Google Scholar 

  • Best DJ, Higgins IJ (1981) Methane-oxidizing activity and membrane morphology in a methanolgrown obligate methanotroph, Methylosinus trichosporium OB3b. Microbiology 125(1):73–84

    Article  CAS  Google Scholar 

  • Büchel F, Rodriguez N, Swainston N, Wrzodek C, Czauderna T, Keller R et al (2013) Path2Models: large-scale generation of computational models from biochemical pathway maps. BMC Syst Biol 7(1):116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • But SY, Khmelenina VN, Reshetnikov AS, Mustakhimov II, Kalyuzhnaya MG, Trotsenko YA (2015) Sucrose metabolism in halotolerant methanotroph Methylomicrobium alcaliphilum 20Z. Arch Microbiol 197(3):471–480

    Article  CAS  PubMed  Google Scholar 

  • Caspi R, Billington R, Ferrer L, Foerster H, Fulcher CA, Keseler IM et al (2016) The MetaCyc database of metabolic pathways and enzymes and the BioCyc collection of pathway/genome databases. Nucleic Acids Res 44(D1):D471–D480

    Article  CAS  Google Scholar 

  • Cavill R, Jennen D, Kleinjans J, Briedé JJ (2015) Transcriptomic and metabolomic data integration. Brief Bioinform 17:bbv090

    Google Scholar 

  • Chan SI, Yu SSF (2008) Controlled oxidation of hydrocarbons by the membrane-bound methane monooxygenase: the case for a tricopper cluster. Acc Chem Res 41(8):969–979

    Article  CAS  PubMed  Google Scholar 

  • Chistoserdova L (2011) Modularity of methylotrophy, revisited. Environ Microbiol 13(10):2603–2622

    Article  CAS  PubMed  Google Scholar 

  • Chistoserdova L, Lidstrom ME (2013) Aerobic methylotrophic prokaryotes. In: DeLong EF, Lory S, Stackebrandt E, Thompson F (eds) The prokaryotes. Springer, Berlin, pp 267–285

    Chapter  Google Scholar 

  • Chu F, Lidstrom ME (2016) XoxF acts as the predominant methanol dehydrogenase in the type I methanotroph Methylomicrobium buryatense. J Bacteriol 198(8):1317–1325

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Covert MW, Schilling CH, Famili I, Edwards JS, Goryanin II, Selkov E, Palsson BO (2001) Metabolic modeling of microbial strains in silico. Trends Biochem Sci 26(3):179–186

    Article  CAS  PubMed  Google Scholar 

  • Crombie AT, Murrell JC (2014) Trace-gas metabolic versatility of the facultative methanotroph Methylocella silvestris. Nature 510:148–151

    Article  CAS  PubMed  Google Scholar 

  • Crowther GJ, Kosály G, Lidstrom ME (2008) Formate as the main branch point for methylotrophic metabolism in Methylobacterium extorquens AM1. J Bacteriol 190(14):5057–5062

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Culpepper MA, Rosenzweig AC (2012) Architecture and active site of particulate methane monooxygenase. Crit Rev Biochem Mol Biol 47(6):483–492

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Erb TJ, Berg IA, Brecht V, Müller M, Fuchs G, Alber BE (2007) Synthesis of C5-dicarboxylic acids from C2-units involving crotonyl-CoA carboxylase/reductase: the ethylmalonyl-CoA pathway. Proc Natl Acad Sci 104(25):10631–10636

    Article  CAS  PubMed  Google Scholar 

  • Ettwig KF, Butler MK, Le Paslier D, Pelletier E, Mangenot S, Kuypers MM et al (2010) Nitrite-driven anaerobic methane oxidation by oxygenic bacteria. Nature 464(7288):543

    Article  CAS  PubMed  Google Scholar 

  • Fei Q, Guarnieri MT, Tao L, Laurens LM, Dowe N, Pienkos PT (2014) Bioconversion of natural gas to liquid fuel: opportunities and challenges. Biotechnol Adv 32(3):596–614

    Article  CAS  PubMed  Google Scholar 

  • Fu Y, Li Y, Lidstrom M (2017) The oxidative TCA cycle operates during methanotrophic growth of the Type I methanotroph Methylomicrobium buryatense 5GB1. Metab Eng 42:43–51

    Article  CAS  PubMed  Google Scholar 

  • Gourion B, Rossignol M, Vorholt JA (2006) A proteomic study of Methylobacterium extorquens reveals a response regulator essential for epiphytic growth. Proc Natl Acad Sci 103(35):13186–13191

    Article  CAS  PubMed  Google Scholar 

  • Hakemian AS, Rosenzweig AC (2007) The biochemistry of methane oxidation. Annu Rev Biochem 76:223–241

    Article  CAS  PubMed  Google Scholar 

  • Haque MFU, Kalidass B, Bandow N, Turpin EA, DiSpirito AA, Semrau JD (2015) Cerium regulates expression of alternative methanol dehydrogenases in Methylosinus trichosporium OB3b. Appl Environ Microbiol 81(21):7546–7552

    Article  CAS  Google Scholar 

  • Haque MFU, Gu W, DiSpirito AA, Semrau JD (2016) Marker exchange mutagenesis of mxaF, encoding the large subunit of the Mxa methanol dehydrogenase, in Methylosinus trichosporium OB3b. Appl Environ Microbiol 82(5):1549–1555

    Article  CAS  Google Scholar 

  • Henard CA, Smith HK, Guarnieri MT (2017) Phosphoketolase overexpression increases biomass and lipid yield from methane in an obligate methanotrophic biocatalyst. Metab Eng 41:152–158

    Article  CAS  PubMed  Google Scholar 

  • Hübner K, Sahle S, Kummer U (2011) Applications and trends in systems biology in biochemistry. FEBS J 278(16):2767–2857

    Article  CAS  PubMed  Google Scholar 

  • Kalyuzhnaya MG, Hristova KR, Lidstrom ME, Chistoserdova L (2008) Characterization of a novel methanol dehydrogenase in representatives of Burkholderiales: implications for environmental detection of methylotrophy and evidence for convergent evolution. J Bacteriol 190(11):3817–3823

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kalyuzhnaya MG, Yang S, Rozova ON, Smalley NE, Clubb J, Lamb A et al (2013) Highly efficient methane biocatalysis revealed in a methanotrophic bacterium. Nat Commun 4:2785

    Article  CAS  PubMed  Google Scholar 

  • Kalyuzhnaya MG, Puri AW, Lidstrom ME (2015) Metabolic engineering in methanotrophic bacteria. Metab Eng 29:142–152

    Article  CAS  PubMed  Google Scholar 

  • Kanehisa M, Goto S (2000) KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res 28(1):27–30

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kao WC, Chen YR, Eugene CY, Lee H, Tian Q, Wu KM, Tsai SF, Yu SS, Chen YJ, Aebersold R, Chan SI (2004) Quantitative proteomic analysis of metabolic regulation by copper ions in Methylococcus capsulatus (Bath). J Biol Chem 279(49):51554–51560

    Article  CAS  PubMed  Google Scholar 

  • Karp PD, Latendresse M, Paley SM, Krummenacker M, Ong QD, Billington R et al (2015) Pathway tools version 19.0 update: software for pathway/genome informatics and systems biology. Brief Bioinform 17:bbv079

    Google Scholar 

  • Karr JR, Sanghvi JC, Macklin DN, Gutschow MV, Jacobs JM, Bolival B, Assad-Garcia N, Glass JI, Covert MW (2012) A whole-cell computational model predicts phenotype from genotype. Cell 150(2):389–401

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khadem AF, Pol A, Wieczorek A, Mohammadi SS, Francoijs KJ, Stunnenberg HG et al (2011) Autotrophic methanotrophy in Verrucomicrobia: Methylacidiphilum fumariolicum SolV uses the Calvin-Benson-Bassham cycle for carbon dioxide fixation. J Bacteriol 193(17):4438–4446

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khadem AF, Wieczorek AS, Pol A, Vuilleumier S, Harhangi HR, Dunfield PF et al (2012) Draft genome sequence of the volcano-inhabiting thermoacidophilic methanotroph Methylacidiphilum fumariolicum strain SolV. J Bacteriol 194(14):3729–3730

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kitano H (ed) (2001) Foundations of systems biology. MIT Press, Cambridge, pp 1–36

    Google Scholar 

  • Kits KD, Campbell DJ, Rosana AR, Stein LY (2015) Diverse electron sources support denitrification under hypoxia in the obligate methanotroph Methylomicrobium album strain BG8. Front Microbiol 6:1072

    Article  PubMed  PubMed Central  Google Scholar 

  • Klipp E, Herwig R, Kowald A, Wierling C, Lehrach H (2008) Systems biology in practice: concepts, implementation and application. Wiley, Weinheim

    Google Scholar 

  • Larsen Ø, Karlsen OA (2016) Transcriptomic profiling of Methylococcus capsulatus (Bath) during growth with two different methane monooxygenases. Microbiologyopen 5(2):254–267

    Article  CAS  PubMed  Google Scholar 

  • Laukel M, Rossignol M, Borderies G, Völker U, Vorholt JA (2004) Comparison of the proteome of Methylobacterium extorquens AM1 grown under methylotrophic and nonmethylotrophic conditions. Proteomics 4(5):1247–1264

    Article  CAS  PubMed  Google Scholar 

  • Leak DJ, Dalton H (1983) In vivo studies of primary alcohols, aldehydes and carboxylic acids as electron donors for the methane mono-oxygenase in a variety of methanotrophs. Microbiology 129(11):3487–3497

    Article  CAS  Google Scholar 

  • Leak DJ, Dalton H (1986a) Growth yields of methanotrophs. Appl Microbiol Biotechnol 23(6):470–476

    Article  CAS  Google Scholar 

  • Leak DJ, Dalton H (1986b) Growth yields of methanotrophs 2. A theoretical analysis. Appl Microbiol Biotechnol 23(6):477–481

    Article  CAS  Google Scholar 

  • Lee SW, Keeney DR, Lim DH, Dispirito AA, Semrau JD (2006) Mixed pollutant degradation by Methylosinus trichosporium OB3b expressing either soluble or particulate methane monooxygenase: can the tortoise beat the hare? Appl Environ Microbiol 72(12):7503–7509

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee SY, Kim HU (2015) Systems strategies for developing industrial microbial strains. Nat Biotechnol 33(10):1061–1072

    Article  CAS  Google Scholar 

  • Luesken FA, Wu ML, Op den Camp HJ, Keltjens JT, Stunnenberg H, Francoijs KJ, Strous M, Jetten MS (2012) Effect of oxygen on the anaerobic methanotroph ‘Candidatus Methylomirabilis oxyfera’: kinetic and transcriptional analysis. Environ Microbiol 14(4):1024–1034

    Article  CAS  PubMed  Google Scholar 

  • Machado D, Herrgård M (2014) Systematic evaluation of methods for integration of transcriptomic data into constraint-based models of metabolism. PLoS Comput Biol 10(4):e1003580

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mast FD, Ratushny AV, Aitchison JD (2014) Systems cell biology. J Cell Biol 206(6):695–706

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Matsen JB, Yang S, Stein LY, Beck DA, Kalyuzhanaya MG (2013) Global molecular analyses of methane metabolism in methanotrophic alphaproteobacterium, Methylosinus trichosporium OB3b. Part I: transcriptomic study. Front Microbiol 4:40

    Article  PubMed  PubMed Central  Google Scholar 

  • Op den Camp HJ, Islam T, Stott MB, Harhangi HR, Hynes A, Schouten S et al (2009) Environmental, genomic and taxonomic perspectives on methanotrophic Verrucomicrobia. Environ Microbiol Rep 1(5):293–306

    Article  CAS  Google Scholar 

  • Orita I, Yurimoto H, Hirai R, Kawarabayasi Y, Sakai Y, Kato N (2005) The archaeon Pyrococcus horikoshii possesses a bifunctional enzyme for formaldehyde fixation via the ribulose monophosphate pathway. J Bacteriol 187(11):3636–3642

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Orita I, Sato T, Yurimoto H, Kato N, Atomi H, Imanaka T, Sakai Y (2006) The ribulose monophosphate pathway substitutes for the missing pentose phosphate pathway in the archaeon Thermococcus kodakaraensis. J Bacteriol 188(13):4698–4704

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Otto A, Becher D, Schmidt F (2014) Quantitative proteomics in the field of microbiology. Proteomics 14(4-5):547–565

    Article  CAS  PubMed  Google Scholar 

  • Peyraud R, Kiefer P, Christen P, Massou S, Portais JC, Vorholt JA (2009) Demonstration of the ethylmalonyl-CoA pathway by using 13C metabolomics. Proc Natl Acad Sci 106(12):4846–4851

    Article  PubMed  Google Scholar 

  • Peyraud R, Schneider K, Kiefer P, Massou S, Vorholt JA, Portais JC (2011) Genome-scale reconstruction and system level investigation of the metabolic network of Methylobacterium extorquens AM1. BMC Syst Biol 5(1):189

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rozova ON, But SY, Khmelenina VN, Reshetnikov AS, Mustakhimov II, Trotsenko YA (2017) Characterization of two recombinant 3-hexulose-6-phosphate synthases from the halotolerant obligate methanotroph Methylomicrobium alcaliphilum 20Z. Biochemistry (Mosc) 82(2):176–185

    Article  CAS  Google Scholar 

  • Sanchez-Osorio I, Ramos F, Mayorga P, Dantan E (2014) Foundations for modeling the dynamics of gene regulatory networks: a multilevel-perspective review. J Bioinform Comput Biol 12(01):1330003

    Article  PubMed  Google Scholar 

  • Schellenberger J, Que R, Fleming RM, Thiele I, Orth JD, Feist AM et al (2011) Quantitative prediction of cellular metabolism with constraint-based models: the COBRA Toolbox v2. 0. Nat Protoc 6(9):1290–1307

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Semrau JD, DiSpirito AA, Yoon S (2010) Methanotrophs and copper. FEMS Microbiol Rev 34(4):496–531

    Article  CAS  PubMed  Google Scholar 

  • Semrau JD, Jagadevan S, DiSpirito AA, Khalifa A, Scanlan J, Bergman BH et al (2013) Methanobactin and MmoD work in concert to act as the ‘copper-switch’ in methanotrophs. Environ Microbiol 15(11):3077–3086

    CAS  PubMed  Google Scholar 

  • Semrau JD, DiSpirito AA, Wenyu G, Yoon S, Cann I (2018) Metals and Methanotrophy. Appl Environ Microbiol 84(6):e02289-17

    Article  PubMed  PubMed Central  Google Scholar 

  • Sipkema EM, de Koning W, Ganzeveld KJ, Janssen DB, Beenackers AA (2000) NADH-regulated metabolic model for growth of Methylosinus trichosporium OB3b. Model presentation, parameter estimation, and model validation. Biotechnol Prog 16(2):176–188

    Article  CAS  PubMed  Google Scholar 

  • Sirajuddin S, Rosenzweig AC (2015) Enzymatic oxidation of methane. Biochemistry 54(14):2283–2294

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tamas I, Smirnova AV, He Z, Dunfield PF (2014) The (d) evolution of methanotrophy in the Beijerinckiaceae—a comparative genomics analysis. ISME J 8(2):369

    Article  CAS  PubMed  Google Scholar 

  • Tavormina PL, Kellermann MY, Antony CP, Tocheva EI, Dalleska NF, Jensen AJ, Dubilier N, Orphan VJ (2017) Starvation and recovery in the deep-sea methanotroph Methyloprofundus sedimenti. Mol Microbiol 103(2):242–252

    Article  CAS  PubMed  Google Scholar 

  • Taylor SC, Dalton H, Dow CS (1981) Ribulose-1, 5-bisphosphate carboxylase/oxygenase and carbon assimilation in Methylococcus capsulatus (Bath). Microbiology 122(1):89–94

    Article  CAS  Google Scholar 

  • Torre A, Metivier A, Chu F, Laurens LM, Beck DA, Pienkos PT et al (2015) Genome-scale metabolic reconstructions and theoretical investigation of methane conversion in Methylomicrobium buryatense strain 5G (B1). Microb Cell Fact 14(1):1

    Article  CAS  Google Scholar 

  • Trotsenko YA, Murrell JC (2008) Metabolic aspects of aerobic obligate methanotrophy. Adv Appl Microbiol 63:183–229

    Article  CAS  PubMed  Google Scholar 

  • Van Dien SJ, Lidstrom ME (2002) Stoichiometric model for evaluating the metabolic capabilities of the facultative methylotroph Methylobacterium extorquens AM1, with application to reconstruction of C3 and C4 metabolism. Biotechnol Bioeng 78(3):296–312

    Article  CAS  PubMed  Google Scholar 

  • Van Oudenhove L, Devreese B (2013) A review on recent developments in mass spectrometry instrumentation and quantitative tools advancing bacterial proteomics. Appl Microbiol Biotechnol 97(11):4749–4762

    Article  CAS  PubMed  Google Scholar 

  • Vorobev A, Jagadevan S, Jain S, Anantharaman K, Dick GJ, Vuilleumier S, Semrau JD (2014) Genomic and transcriptomic analyses of the facultative methanotroph Methylocystis sp. strain SB2 grown on methane or ethanol. Appl Environ Microbiol 80(10):3044–3052

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vorobev AV, Baani M, Doronina NV, Brady AL, Liesack W, Dunfield PF, Dedysh SN (2011) Methyloferula stellata gen. nov., sp. nov., an acidophilic, obligately methanotrophic bacterium that possesses only a soluble methane monooxygenase. Int J Syst Evol Microbiol 61(10):2456–2463

    Article  CAS  PubMed  Google Scholar 

  • Vuilleumier S, Chistoserdova L, Lee MC, Bringel F, Lajus A, Zhou Y et al (2009) Methylobacterium genome sequences: a reference blueprint to investigate microbial metabolism of C1 compounds from natural and industrial sources. PLoS One 4(5):e5584

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vuilleumier S, Khmelenina VN, Bringel F, Reshetnikov AS, Lajus A, Mangenot S et al (2012) Genome sequence of the haloalkaliphilic methanotrophic bacterium Methylomicrobium alcaliphilum 20Z. J Bacteriol 194(2):551–552

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ward N, Larsen Ø, Sakwa J, Bruseth L, Khouri H, Durkin AS et al (2004) Genomic insights into methanotrophy: the complete genome sequence of Methylococcus capsulatus (Bath). PLoS Biol 2(10):e303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wertz JT, Kim E, Breznak JA, Schmidt TM, Rodrigues JL (2012) Genomic and physiological characterization of the Verrucomicrobia isolate Diplosphaera colitermitum gen. nov., sp. nov., reveals microaerophily and nitrogen fixation genes. Appl Environ Microbiol 78(5):1544–1555

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang S, Sadilek M, Lidstrom M (2012) Metabolite profiling and dynamic 13C metabolomics of one-carbon assimilation pathways in methylotrophic and methanotrophic bacteria. J Metabolomics Metab 1:2

    Google Scholar 

  • Yang S, Matsen JB, Konopka M, Green-Saxena A, Clubb J et al (2013) Global molecular analyses of methane metabolism in methanotrophic Alphaproteobacterium, Methylosinus trichosporium OB3b. Part II. Metabolomics and 13C-labeling study. Front Microbiol 4:70

    PubMed  PubMed Central  Google Scholar 

  • Yizhak K, Benyamini T, Liebermeister W, Ruppin E, Shlomi T (2010) Integrating quantitative proteomics and metabolomics with a genome-scale metabolic network model. Bioinformatics 26(12):i255–i260

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yoon S, Semrau JD (2008) Measurement and modeling of multiple substrate oxidation by methanotrophs at 20 C. FEMS Microbiol Lett 287(2):156–162

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marina G. Kalyuzhnaya .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Akberdin, I.R., Thompson, M., Kalyuzhnaya, M.G. (2018). Systems Biology and Metabolic Modeling of C1-Metabolism. In: Kalyuzhnaya, M., Xing, XH. (eds) Methane Biocatalysis: Paving the Way to Sustainability. Springer, Cham. https://doi.org/10.1007/978-3-319-74866-5_7

Download citation

Publish with us

Policies and ethics