Skip to main content

Mixed Methanotrophic Consortium for Applications in Environmental Bioengineering and Biocatalysis

  • Chapter
  • First Online:
Methane Biocatalysis: Paving the Way to Sustainability

Abstract

A mixed methanotrophic consortium (MMC) is generally considered to be a complex mixed culture system where methanotrophs predominate and coexist with other microorganisms. MMCs not only have the unique characteristics of methanotrophs like methane assimilation and broad substrate range but also can overcome the shortcomings in pure methanotrophic cultivation like slow growth rate, difficulty in growing high cell density, and poor MMO stability, indicating their promising prospects in environmental bioengineering and biocatalysis. This chapter focuses on the acquisition of MMCs, interactions among methanotrophs and their coexisting heterotrophs, and recent highlights on theoretical research and engineering trials. MMCs can be obtained through enrichment culture from methane-rich environments, mixing different methanotrophs together or stimulating the indigenous methane-oxidizing bacteria for in situ applications. Large-scale and rapid preparation and long-term preservation of MMCs with stable function and community structure are achievable by appropriate methods. Methanotrophs and the coexisting heterotrophs in MMCs can exchange metabolites and also interact with each other via more complex metabolisms and synergic effects, forming a huge, multi-role, and dynamic ecological network. In environmental bioengineering, applying MMCs in methane mitigation and co-metabolism of contaminants are more promising. Single cell protein is a useful bioproduct capable of being produced by MMCs, and biopolymer like PHB by MMCs also has bright prospect. Combined with other functional systems and exploration of biological dark matter of a consortium, MMCs can greatly expand the application fields. With the advances in multi-omic analysis of methanotrophs and the development of synthetic biology and ecoinformatics, more achievements for MMCs can be expected.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

1,1-DCE:

1,1-dichloroethylene

AME-D:

aerobic methane oxidation coupled to denitrification

BTZ:

benzotriazole

cDCE:

cis-l,2-dichloroethylene

CSTR:

continuous stirred tank reactor

DMSO:

dimethyl sulfoxide

DO:

dissolved oxygen

DW:

dry weight

HCFCs:

hydrochlorofluorocarbons

HFCs:

hydrofluorocarbons

LAS:

alkylbenzene sulfonate

MMC:

mixed methanotrophic consortium

MMCs:

mixed methanotrophic consortia

MMO:

methane monooxygenase

MOB:

methane-oxidizing bacteria

MOC:

methane oxidation capacity

NMS:

nitrate mineral salt

PFR:

plug flow reactor

PHA:

polyhydroxyalkanoate

PHB:

polyhydroxybutyrate

pMMO:

particulate methane monooxygenase

RuMP:

ribulose monophosphate

SCP:

single cell protein

sMMO:

soluble methane monooxygenase

SMX:

sulfamethoxazole

TCE:

trichloroethylene

t-DCE:

trans-1,2-dichloroethylene

TT:

trehalose and tryptic soy broth

VC:

vinyl chloride

VSS:

volatile suspended solids

References

  • Anderson JE, McCarty PL (1997) Transformation yields of chlorinated ethenes by a methanotrophic mixed culture expressing particulate methane monooxygenase. Appl Environ Microb 63(2):687–693

    CAS  Google Scholar 

  • Benner J, De Smet D, Ho A, Kerckhof F-M, Vanhaecke L, Heylen K, Boon N (2015) Exploring methane-oxidizing communities for the co-metabolic degradation of organic micropollutants. Appl Microbiol Biotechnol 99(8):3609–3618

    Article  CAS  PubMed  Google Scholar 

  • Bothe H, Jensen KM, Mergel A, Larsen J, Jørgensen C, Bothe H, Jørgensen L (2002) Heterotrophic bacteria growing in association with Methylococcus capsulatus (Bath) in a single cell protein production process. Appl Microbiol Biotechnol 59(1):33–39

    Article  CAS  PubMed  Google Scholar 

  • Cappelletti M, Frascari D, Zannoni D, Fedi S (2012) Microbial degradation of chloroform. Appl Microbiol Biotechnol 96(6):1395–1409

    Article  CAS  PubMed  Google Scholar 

  • Chang H-L, Alvarez-Cohen L (1997) Two-stage methanotrophic bioreactor for the treatment of chlorinated organic wastewater. Water Res 31(8):2026–2036

    Article  CAS  Google Scholar 

  • Chang W-K, Criddle CS (1995) Biotransformation of HCFC-22, HCFC-142b, HCFC-123, and HFC-134a by methanotrophic mixed culture MM1. Biodegradation 6(1):1–9

    Article  CAS  Google Scholar 

  • Chidambarampadmavathy K, Karthikeyan O, Huerlimann R, Maes G, Heimann K (2016) Response of mixed methanotrophic consortia to different methane to oxygen ratios. Waste Manag 61:220–228. https://doi.org/10.1016/j.wasman.2016.11.007

    Article  PubMed  CAS  Google Scholar 

  • Chidambarampadmavathy K, Karthikeyan OP, Heimann K (2015) Biopolymers made from methane in bioreactors. Eng Life Sci 15(7):689–699

    Article  CAS  Google Scholar 

  • Chiemchaisri C, Chiemchaisri W, Kumar S, Wicramarachchi PN (2012) Reduction of methane emission from landfill through microbial activities in cover soil: a brief review. Crit Rev Environ Sci Technol 42(4):412–434

    Article  CAS  Google Scholar 

  • Conrad ME, Brodie EL, Radtke CW, Bill M, Delwiche ME, Lee MH, Swift DL, Colwell FS (2010) Field evidence for co-metabolism of trichloroethene stimulated by addition of electron donor to groundwater. Environ Sci Technol 44(12):4697–4704

    Article  CAS  PubMed  Google Scholar 

  • Conrad R (2007) Microbial ecology of methanogens and methanotrophs. Adv Agron 96:1–63

    Article  CAS  Google Scholar 

  • Eguchi M, Kitagawa M, Suzuki Y, Nakamuara M, Kawai T, Okamura K, Sasaki S, Miyake Y (2001) A field evaluation of in situ biodegradation of trichloroethylene through methane injection. Water Res 35(9):2145–2152

    Article  CAS  PubMed  Google Scholar 

  • Guiot SR, Cimpoia R, Kuhn R, Alaplantive A (2008) Electrolytic methanogenic−methanotrophic coupling for tetrachloroethylene bioremediation: proof of concept. Environ Sci Technol 42(8):3011–3017

    Article  CAS  PubMed  Google Scholar 

  • Hanson RS, Hanson TE (1996) Methanotrophic bacteria. Microbiol Rev 60(2):439–471

    PubMed  PubMed Central  CAS  Google Scholar 

  • Helm J, Wendlandt KD, Rogge G, Kappelmeyer U (2006) Characterizing a stable methane-utilizing mixed culture used in the synthesis of a high-quality biopolymer in an open system. J Appl Microbiol 101(2):387–395

    Article  CAS  PubMed  Google Scholar 

  • Henckel T, Roslev P, Conrad R (2000) Effects of O2 and CH4 on presence and activity of the indigenous methanotrophic community in rice field soil. Environ Microbiol 2(6):666–679

    Article  CAS  PubMed  Google Scholar 

  • Ho A, De Roy K, Thas O, De Neve J, Hoefman S, Vandamme P, Heylen K, Boon N (2014) The more, the merrier: heterotroph richness stimulates methanotrophic activity. ISME J 8(9):1945–1948

    Article  PubMed  PubMed Central  Google Scholar 

  • Ho A, Kerckhof FM, Luke C, Reim A, Krause S, Boon N, Bodelier PL (2013) Conceptualizing functional traits and ecological characteristics of methane-oxidizing bacteria as life strategies. Env Microbiol Rep 5(3):335–345

    Article  CAS  Google Scholar 

  • HrÅ¡ak D, Begonja A (2000) Possible interactions within a methanotrophic-heterotrophic groundwater community able to transform linear alkylbenzene sulfonates. Appl Environ Microb 66(10):4433–4439

    Article  Google Scholar 

  • Huber-Humer M, Gebert J, Hilger H (2008) Biotic systems to mitigate landfill methane emissions. Waste Manage Res 26(1):33–46

    Article  CAS  Google Scholar 

  • Iguchi H, Yurimoto H, Sakai Y (2011) Stimulation of methanotrophic growth in cocultures by cobalamin excreted by rhizobia. Appl Environ Microb 77(24):8509–8515

    Article  CAS  Google Scholar 

  • Jiang H, Chen Y, Jiang P, Zhang C, Smith TJ, Murrell JC, Xing XH (2010) Methanotrophs: multifunctional bacteria with promising applications in environmental bioengineering. Biochem Eng J 49(3):277–288

    Article  CAS  Google Scholar 

  • Jiang H, Duan C, Jiang P, Liu M, Luo M, Xing X-H (2016a) Characteristics of scale-up fermentation of mixed methane-oxidizing bacteria. Biochem Eng J 109:112–117

    Article  CAS  Google Scholar 

  • Jiang H, Duan C, Luo M, Xing X-H (2016b) Enrichment and characteristics of mixed methane-oxidizing bacteria from a Chinese coal mine. Appl Microbiol Biotechnol 100(24):10331–10341

    Article  CAS  PubMed  Google Scholar 

  • Jiang H, Gou ZX, Han B, Xing XH (2014) Study on preservation methods of mixed methane-oxidizing bacteria. Microbiology China 41:1463–1469

    Google Scholar 

  • Kalyuzhnaya MG, Puri AW, Lidstrom ME (2015) Metabolic engineering in methanotrophic bacteria. Metab Eng 29:142–152

    Article  CAS  PubMed  Google Scholar 

  • Karthikeyan OP, Chidambarampadmavathy K, Cirés S, Heimann K (2015) Review of sustainable methane mitigation and biopolymer production. Crit Rev Environ Sci Technol 45(15):1579–1610

    Article  CAS  Google Scholar 

  • Karthikeyan OP, Saravanan N, Cirés S, Alvarez-Roa C, Razaghi A, Chidambarampadmavathy K, Velu C, Subashchandrabose G, Heimann K (2016) Culture scale-up and immobilisation of a mixed methanotrophic consortium for methane remediation in pilot-scale bio-filters. Environ Technol 38(4):474–482. https://doi.org/10.1080/09593330.2016.1198424

    Article  PubMed  CAS  Google Scholar 

  • Kerckhof F-M, Courtens EN, Geirnaert A, Hoefman S, Ho A, Vilchez-Vargas R, Pieper DH, Jauregui R, Vlaeminck SE, Van de Wiele T (2014) Optimized cryopreservation of mixed microbial communities for conserved functionality and diversity. PLoS One 9(6):e99517

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khosravi-Darani K, Mokhtari Z-B, Amai T, Tanaka K (2013) Microbial production of poly (hydroxybutyrate) from C1 carbon sources. Appl Microbiol Biotechnol 97(4):1407–1424

    Article  CAS  PubMed  Google Scholar 

  • Levett I, Birkett G, Davies N, Bell A, Langford A, Laycock B, Lant P, Pratt S (2016) Techno-economic assessment of poly-3-hydroxybutyrate (PHB) production from methane—the case for thermophilic bioprocessing. J Environ Chem Eng 4(4):3724–3733

    Article  CAS  Google Scholar 

  • Liebner S, Zeyer J, Wagner D, Schubert C, Pfeiffer EM, Knoblauch C (2011) Methane oxidation associated with submerged brown mosses reduces methane emissions from Siberian polygonal tundra. J Ecol 99(4):914–922

    Article  CAS  Google Scholar 

  • Michener WK, Jones MB (2012) Ecoinformatics: supporting ecology as a data-intensive science. Trends Ecol Evol 27(2):85–93

    Article  PubMed  Google Scholar 

  • Nazaries L, Murrell JC, Millard P, Baggs L, Singh BK (2013) Methane, microbes and models: fundamental understanding of the soil methane cycle for future predictions. Environ Microbiol 15(9):2395–2417

    Article  CAS  PubMed  Google Scholar 

  • Nikiema J, Brzezinski R, Heitz M (2007) Elimination of methane generated from landfills by biofiltration: a review. Rev Environ Sci Biotechnol 6(4):261–284

    Article  CAS  Google Scholar 

  • Pandey VC, Singh JS, Singh D, Singh RP (2014) Methanotrophs: promising bacteria for environmental remediation. Int J Environ Sci Technol 11(1):241–250

    Article  CAS  Google Scholar 

  • Pfluger AR, Wu W-M, Pieja AJ, Wan J, Rostkowski KH, Criddle CS (2011) Selection of Type I and Type II methanotrophic proteobacteria in a fluidized bed reactor under non-sterile conditions. Bioresource Technol 102(21):9919–9926

    Article  CAS  Google Scholar 

  • Pieja AJ, Sundstrom ER, Criddle CS (2012) Cyclic, alternating methane and nitrogen limitation increases PHB production in a methanotrophic community. Bioresource Technol 107:385–392

    Article  CAS  Google Scholar 

  • Sadasivam BY, Reddy KR (2014) Landfill methane oxidation in soil and bio-based cover systems: a review. Rev Environ Sci Bio 13(1):79–107

    Article  CAS  Google Scholar 

  • Scheutz C, Bogner J, De Visscher A, Gebert J, Hilger H, Huber-Humer M, Kjeldsen P, Spokas K (2009) Microbial methane oxidation processes and technologies for mitigation of landfill gas emissions. Waste Manage Res 27(5):409–455

    Article  CAS  Google Scholar 

  • Semrau JD, DiSpirito AA, Vuilleumier S (2011) Facultative methanotrophy: false leads, true results, and suggestions for future research. FEMS Microbiol Lett 323(1):1–12

    Article  CAS  PubMed  Google Scholar 

  • Semrau JD, DiSpirito AA, Yoon S (2010) Methanotrophs and copper. FEMS Microbiol Rev 34(4):496–531

    Article  CAS  PubMed  Google Scholar 

  • Shukla AK, Singh R, Upadhyay S, Dubey SK (2010) Kinetics of bio-filtration of trichloroethylene by methanotrophs in presence of methanol. Bioresource Technol 101(21):8119–8126

    Article  CAS  Google Scholar 

  • Smith LH, McCarty PL (1997) Laboratory evaluation of a two-stage treatment system for TCE cometabolism by a methane-oxidizing mixed culture. Biotechnol Bioeng 55(4):650–659

    Article  CAS  PubMed  Google Scholar 

  • Stock M, Hoefman S, Kerckhof F-M, Boon N, De Vos P, De Baets B, Heylen K, Waegeman W (2013) Exploration and prediction of interactions between methanotrophs and heterotrophs. Res Microbiol 164(10):1045–1054

    Article  PubMed  Google Scholar 

  • Strong P, Xie S, Clarke WP (2015) Methane as a resource: can the methanotrophs add value? Environ Sci Technol 49(7):4001–4018

    Article  CAS  PubMed  Google Scholar 

  • Strong PJ, Laycock B, Mahamud SNS, Jensen PD, Lant PA, Tyson G, Pratt S (2016) The opportunity for high-performance biomaterials from methane. Microorganisms 4(1). https://doi.org/10.3390/microorganisms4010011

    Article  CAS  PubMed Central  Google Scholar 

  • Sun F-Y, Dong W-Y, Shao M-F, Lv X-M, Li J, Peng L-Y, Wang H-J (2013) Aerobic methane oxidation coupled to denitrification in a membrane biofilm reactor: treatment performance and the effect of oxygen ventilation. Bioresource Technol 145:2–9

    Article  CAS  Google Scholar 

  • Tartakovsky B, Manuel M-F, Guiot S (2003) Trichloroethylene degradation in a coupled anaerobic/aerobic reactor oxygenated using hydrogen peroxide. Environ Sci Technol 37(24):5823–5828

    Article  CAS  PubMed  Google Scholar 

  • Tiehm A, Schmidt KR (2011) Sequential anaerobic/aerobic biodegradation of chloroethenes-aspects of field application. Curr Opin Biotech 22(3):415–421

    Article  CAS  PubMed  Google Scholar 

  • Trotsenko YA, Khmelenina VN (2002) Biology of extremophilic and extremotolerant methanotrophs. Arch Microbiol 177(2):123–131

    Article  CAS  PubMed  Google Scholar 

  • Trotsenko YA, Murrell JC (2008) Metabolic aspects of aerobic obligate methanotrophy. Adv Appl Microbiol 63:183–229

    Article  CAS  PubMed  Google Scholar 

  • Unibio (2016) http://www.unibio.dk/

  • Van der Ha D, Bundervoet B, Verstraete W, Boon N (2011) A sustainable, carbon neutral methane oxidation by a partnership of methane oxidizing communities and microalgae. Water Res 45(9):2845–2854

    Article  CAS  PubMed  Google Scholar 

  • van der Ha D, Hoefman S, Boeckx P, Verstraete W, Boon N (2010) Copper enhances the activity and salt resistance of mixed methane-oxidizing communities. Appl Microbiol Biotechnol 87(6):2355–2363

    Article  CAS  PubMed  Google Scholar 

  • van der Ha D, Nachtergaele L, Kerckhof F-M, Rameiyanti D, Bossier P, Verstraete W, Boon N (2012) Conversion of biogas to bioproducts by algae and methane oxidizing bacteria. Environ Sci Technol 46(24):13425–13431

    Article  CAS  PubMed  Google Scholar 

  • Wendlandt KD, Jechorek M, Helm J, Stottmeister U (2001) Producing poly-3-hydroxybutyrate with a high molecular mass from methane. J Biotechnol 86(2):127–133

    Article  CAS  PubMed  Google Scholar 

  • Wendlandt KD, Stottmeister U, Helm J, Soltmann B, Jechorek M, Beck M (2010) The potential of methane-oxidizing bacteria for applications in environmental biotechnology. Eng Life Sci 10(2):87–102

    CAS  Google Scholar 

  • Whittenbury R, Phillips K, Wilkinson J (1970) Enrichment, isolation and some properties of methane-utilizing bacteria. Microbiology 61(2):205–218

    CAS  Google Scholar 

  • Zhang Y, Xin J, Chen L, Xia C (2009) The methane monooxygenase intrinsic activity of kinds of methanotrophs. Appl Biochem Biotechnol 157(3):431–441

    Article  CAS  PubMed  Google Scholar 

  • Zhu J, Wang Q, Yuan M, Tan G-YA, Sun F, Wang C, Wu W, Lee P-H (2016) Microbiology and potential applications of aerobic methane oxidation coupled to denitrification (AME-D) process: a review. Water Res 90:203–215

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Jiang, H., Xing, XH. (2018). Mixed Methanotrophic Consortium for Applications in Environmental Bioengineering and Biocatalysis. In: Kalyuzhnaya, M., Xing, XH. (eds) Methane Biocatalysis: Paving the Way to Sustainability. Springer, Cham. https://doi.org/10.1007/978-3-319-74866-5_15

Download citation

Publish with us

Policies and ethics