Skip to main content

Cell Culture Media

  • Chapter
  • First Online:
Cell Culture Technology

Part of the book series: Learning Materials in Biosciences ((LMB))

Abstract

The chapter provides an overwiev on the basic constituents of culture media for mammalian cells and their derivation. The relevance of these constituents for individual cell types from different tissues will be covered with a focus on stem and progenitor cells. Moreover, approaches toward the derivation of defined media and the supplementation of serum additives are described. The relevance of physical parameters such as osmolarity and buffer systems will be approached.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Arnold EA, Katsnelson I, Hoffman GJ. Proliferation and differentiation of hematopoietic stem cells in long-term cultures of adult hamster spleen. J Exp Med. 1982;155:1370–84.

    Article  CAS  Google Scholar 

  2. Arora M. Cell culture media: a review. Mater Methods. 2013;3:175.

    Google Scholar 

  3. Astori G, Amati E, Bambi F, Bernardi M, Chieregato K, Schäfer R, Sella S, Rodeghiero F. Platelet lysate as a substitute for animal serum for the ex-vivo expansion of mesenchymal stem/stromal cells: present and future. Stem Cell Res Ther. 2016;7:93.

    Article  Google Scholar 

  4. Berthois Y, Katzenellenbogen J, Katzenellenbogen B. Phenol red in tissue culture media is a weak estrogen: implications concerning the study of estrogen-responsive cells in culture. Proc Natl Acad Sci U S A. (1986);83:2496–500.

    Article  CAS  Google Scholar 

  5. Borowski M, Giovino-Doherty M, Ji L, Shi MJ, Smith KP, Laning J. Basic pluripotent stem cell culture protocols. StemBook [Internet]. Cambridge, MA: Harvard Stem Cell Institute; 2012.

    Google Scholar 

  6. Burnouf T, Strunk D, Koh MB, Schallmoser K. Human platelet lysate: replacing fetal bovine serum as a gold standard for human cell propagation? Biomaterials. 2016;76:371–87.

    Article  CAS  Google Scholar 

  7. Caplan AI, Correa D. The MSC: an injury drugstore. Cell Stem Cell. 2011;9:11–5.

    Article  CAS  Google Scholar 

  8. Chen P, Harcum SW. Effects of elevated ammonium on glycosylation gene expression in CHO cells. Metab Eng. 2006;8(2):123–32.

    Article  CAS  Google Scholar 

  9. Csaszar E, Chen K, Caldwell J, Chan W, Zandstra PW. Real-time monitoring and control of soluble signaling factors enables enhanced progenitor cell outputs from human cord blood stem cell cultures. Biotechnol Bioeng. 2014;111:1258–64.

    Article  CAS  Google Scholar 

  10. Dexter TM, Allen TD, Lajtha LG, Schofield R, Lord BI. Stimulation of differentiation and proliferation of haemopoietic cells in vitro. J Cell Physiol. 1973;82:461–73.

    Article  CAS  Google Scholar 

  11. Duarte TM, Carinhas N, Barreiro LC, Carrondo MJ, Alves PM, Teix-eira AP. Metabolic responses of CHO cells to limitation of key amino acids. Biotechnol Bioeng. 2014;111:2095–106.

    Article  CAS  Google Scholar 

  12. Dührsen U, Metcalf D. Effects of irradiation of recipient mice on the behavior and leukemogenic potential of factor-dependent hematopoietic cell lines. Blood. 1990;75(1):190–7.

    PubMed  Google Scholar 

  13. Eagle H. Nutrition needs of mammalian cells in tissue culture. Science. 1955a;122(3168):501–4.

    Article  CAS  Google Scholar 

  14. Eagle H. The minimum vitamin requirements of the L and HeLa cells in tissue culture, the production of specific vitamin deficiencies, and their cure. J Exp Med. 1955b;102(5):595–600.

    Article  CAS  Google Scholar 

  15. Fischer A. Amino-acid metabolism of tissue cells in vitro. Biochem J. 1948;43(4):491–7.

    Article  CAS  Google Scholar 

  16. FRAME initiative et al. Serum-free media for cell culture. A Dr Hadwen Trust/FRAME initiative on behalf of Focus on Alternatives. Downloaded from http://www.drhadwentrust.org/DHT%20-%20FCS%20Free%20Table.pdf, Jan 2017; 2009.

  17. Green CR, Wallace M, Divakaruni AS, Phillips SA, Murphy AN, Ciaraldi TP, Metallo CM. Branched-chain amino acid catabolism fuels adipocyte differentiation and lipogenesis. Nat Chem Biol. 2016;12(1):15–21.

    Article  CAS  Google Scholar 

  18. Hopp L, Bunker CH. Lipophilic impurity of phenol red is a potent cation transport modulator. J Cell Physiol. 1993;157:594–602.

    Article  CAS  Google Scholar 

  19. Horwitz EM, Gordon PL, Koo WK, Marx JC, Neel MD, McNall RY, Muul L, Hofmann T. Isolated allogeneic bone marrow-derived mesenchymal cells engraft and stimulate growth in children with osteogenesis imperfecta: implications for cell therapy of bone. Proc Natl Acad Sci U S A. 2002;99:8932–7.

    Article  CAS  Google Scholar 

  20. Howorth P. The physiological assessment of acid-base balance. Br J Dis Chest. 1975;69:75–102.

    Article  CAS  Google Scholar 

  21. Jover J, Bosque R, Sales J. A comparison of the binding affinity of the common amino acids with different metal cations. Dalton Trans. 2008;45:6441–53.

    Article  Google Scholar 

  22. Labuschagne CF, van den Broek NJ, Mackay GM, Vousden KH, Maddocks OD. Serine, but not glycine, supports one-carbon metabolism and proliferation of cancer cells. Cell Rep. 2014;7:1248–58.

    Article  CAS  Google Scholar 

  23. Lambert RA. The effect of dilution of plasma medium on the growth and fat accumulation of cells in tissue cultures. J Exp Med. 1914;19:398–405.

    Article  CAS  Google Scholar 

  24. Sanford KK, Earle WR, Likely GD. The growth in vitro of single isolated tissue cells. J Natl Cancer Inst. 1948;9(3):229–46.

    Google Scholar 

  25. Kurano S, Kurano N, Leist C, Fiechter A. Utilization and stability of vitamins in serum containing and serum-free media in CHO cell culture. Cytotechnology. 1990;4:243–50.

    Article  CAS  Google Scholar 

  26. Mainzer C, Barrichello C, Debret R, Remoué N, Sigaudo-Roussel D, Sommer P. Insulin-transferrin-selenium as an alternative to foetal serum for epidermal equivalents. Int J Cosmet Sci. 2014;36:427–35.

    Article  CAS  Google Scholar 

  27. Metcalf D. Regulatory control of the proliferation ad differentiation of normal and leukemia cells. Natl Cancer Inst Monogr. 1982;60:123–31.

    CAS  PubMed  Google Scholar 

  28. Miller G, Enders JF, Lisco H, Kohn HI. Establishment of lines from normal human blood leukocytes by co-cultivation with a leukocyte line derived from a leukemic child. Proc Soc Exp Biol Med. 1969;132:247–52.

    Article  CAS  Google Scholar 

  29. Miller G, Lisco H, Kohn HI, Stitt D, Enders JF. Establishment of cell lines from normal adult human blood leukocytes by exposure to Epstein-Barr virus and neutralization by human sera with Epstein-Barr virus antibody. Proc Soc Exp Biol Med. 1971;137:1459–65.

    Article  CAS  Google Scholar 

  30. Möbest D, Mertelsmann R, Henschler R. Serum-free ex vivo expansion of CD34(+) hematopoietic progenitor cells. Biotechnol Bioeng. 1998;60:341–7.

    Article  Google Scholar 

  31. Moore GE, Gerner RE, Franklin HA. Culture of normal human leukocytes. JAMA. 1967;199:519–24.

    Article  CAS  Google Scholar 

  32. Oh HK, So MK, Yang J, Yoon HC, Ahn JS, Lee JM, Kim JT, Yoo JU, Byun TH. Effect of N-acetylcystein on butyrate-treated Chinese hamster ovary cells to improve the production of recombinant human interferon-β-1a. Biotechnol Prog. 2005;21(4):1154–64.

    Article  CAS  Google Scholar 

  33. Pawitan JA. Prospect of stem cell conditioned medium in regenerative medicine. Biomed Res Int. 2014;2014:965849.

    Article  Google Scholar 

  34. Purpura KA, Morin J, Zandstra PW. Analysis of the temporal and concentration-dependent effects of BMP-4, VEGF, and TPO on development of embryonic stem cell-derived mesoderm and blood progenitors in a defined, serum-free media. Exp Hematol. 2008;36:1186–98.

    Article  CAS  Google Scholar 

  35. Purwaha P, Silva LP, Hawke DH, Weinstein JN, Lorenzi PL. An artifact in LC-MS/MS measurement of glutamine and glutamic acid: in-source cyclization to pyroglutamic acid. Anal Chem. 2014;86(12):5633–7.

    Article  CAS  Google Scholar 

  36. Reznikov B. Incubation of Brucella on solid nutrient media with a phenol red indicator. Veterinariia. 1972;7:109–10.

    CAS  PubMed  Google Scholar 

  37. Rothblat GH, Cristofalo VJ. Growth, nutrition and metabolism of cells in culture. New York: Academic Press Inc; 1972. p. 56–64.

    Google Scholar 

  38. Rothblat GH, Hartzell R, Mialhe H, Kritchevsk D. Cholesterol metabolism in tissue culture cells. In: Rothblat GH, Kritchevsky D, editors. Lipid metabolism in tissue culture cells. Philadelphia: Wistar Institute Press; 1967. p. 129–49.

    Google Scholar 

  39. Rouiller Y, Perilleux A, Vesin MN, Stettler M, Jordan M, Broly H. Modulation of mAb quality attributes using micro- liter scale fed-batch cultures. Biotechnol Prog. 2014;30(3):571–83.

    Article  CAS  Google Scholar 

  40. Salazar A, Keusgen M, von Hagen J. Amino acids in the cultivation of mammalian cells. Amino Acids. 2016;48:1161–71.

    Article  CAS  Google Scholar 

  41. Scherer WF, Syverton JT, Gey GO. Studies on the propagation in vitro of poliomyelitis viruses. IV. Viral multiplication in a stable strain of human malignant epithelial cells (strain HeLa) derived from an epidermoid carcinoma of the cervix. J Exp Med. 1953;97(5):695–710.

    Article  CAS  Google Scholar 

  42. Shipman C. Evaluation of 4-(2-hydroxyethyl)-1-piperazineëthanesulfonic acid (HEPES) as a tissue culture buffer. Proc Soc Exp Biol Med. 1969;130:305–10.

    Article  CAS  Google Scholar 

  43. Tomishima M. Conditioning pluripotent stem cell media with mouse embryonic fibroblasts (MEF-CM). StemBook [Internet]. Cambridge, MA: Harvard Stem Cell Institute; 2012.

    Google Scholar 

  44. van der Valk J, Brunner D, De Smet K, Fex Svenningsen Å, Honeg-ger P, Knudsen LE, Lindl T, Noraberg J, Price A, Scarino ML, Gstraunthaler G. Optimization of chemically defined cell culture media—replacing fetal bovine serum in mammalian in vitro methods. Toxicol Vitro. 2010;24(4):1053–63.

    Article  Google Scholar 

  45. Xing Z, Kenty B, Koyrakh I, Borys M, Pan S-H, Li ZJ. Opti- mizing amino acid composition of CHO cell culture media for a fusion protein production. Process Biochem. 2011;46(7):1423–9.

    Article  CAS  Google Scholar 

  46. Zigler J, Lepe-Zuniga J, Vistica B, Gery I. Analysis of the cytotoxic effects of light-exposed HEPES-containing culture medium. In Vitro Cell Dev Biol. 1985;21:282–7.

    Article  CAS  Google Scholar 

  47. Zimmer A, Mueller R, Wehsling M, Schnellbaecher A, von Hagen J. Improvement and simplification of fed-batch bio- processes with a highly soluble phosphotyrosine sodium salt. J Biotechnol. 2014;186:110–8.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reinhard Henschler .

Editor information

Editors and Affiliations

Additional information

This chapter is dedicated to my former Ph.D. student, Dietrich (Dieter) Möbest who brought with him much basic knowledge and a high interest in cell culture media. Due to a severe illness, Dieter could not further pursue his career after his postdoc time. His solid knowledge in biotechnology and specifically cell culture media and his constant optimism stimulated my own interest in the field and formed the basis of several joint studies investigating the role of culture medium in determining the fate of hematopoietic cells.

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Henschler, R. (2018). Cell Culture Media. In: Kasper, C., Charwat, V., Lavrentieva, A. (eds) Cell Culture Technology. Learning Materials in Biosciences. Springer, Cham. https://doi.org/10.1007/978-3-319-74854-2_3

Download citation

Publish with us

Policies and ethics