Skip to main content

Regional Anesthesia in the Critical Care Setting

  • Chapter
  • First Online:
Essentials of Regional Anesthesia

Abstract

The critically ill population represents the sickest and often among the most difficult to manage patients in the hospital. In this regard, often these patients are suffering from complex pathogenesis and often have pain states that are difficult to manage. Adequate pain control is essential in reducing the stress response during critical illness and providing analgesia to difficult disease states. Conventional opioid therapy runs the risk of developing respiratory depression, altered mental status, and reduced bowel function. Given all of these concerns, regional anesthesia can significantly benefit the patient significantly in the critical care environment.

As in many other clinical settings, a multimodal approach to pain control is recommended for the intensive care setting. The use of regional and neuraxial analgesia can play a significant role in this approach to achieve optimal pain relief, thereby reducing physiologic and psychologic stress. In addition, reduction in the utilization of opiate therapy decreases the risk for withdrawal syndrome, mental status changes, delirium, nausea and vomiting, and reduced gastrointestinal motility.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bulger EM, Edwards T, Klotz P, Jurkovich GJ. Epidural analgesia improves outcome after multiple rib fractures. Surgery. 2004;136(2):426–30.

    Article  PubMed  Google Scholar 

  2. Jensen CD, Stark JT, Jacobson LL, Powers JM, Joseph MF, Kinsella-Shaw JM, Denegar CR. Improved outcomes associated with the liberal use of thoracic epidural analgesia in patients with rib fractures. Pain Med. 2017;18(9):1787–94.

    PubMed  Google Scholar 

  3. Galvagno SM Jr, Smith CE, Varon AJ, Hasenboehler EA, et al. Pain management for blunt thoracic trauma: a joint practice management guideline from the eastern Association for the Surgery of trauma and trauma anesthesiology society. J Trauma Acute Care Surg. 2016;81(5):936–51.

    Article  PubMed  Google Scholar 

  4. Carrier FM, Turgeon AF, Nicole PC, Trépanier CA, Fergusson DA, Thauvette D, Lessard MR. Effect of epidural analgesia in patients with traumatic rib fractures: a systematic review and meta-analysis of randomized controlled trials. Can J Anaesth. 2009;56(3):230–42. https://doi.org/10.1007/s12630-009-9052-7.

    Article  PubMed  Google Scholar 

  5. Monaco F, Biselli C, De Luca M, Landoni G, Lembo R, Zangrillo A. Thoracic epidural anesthesia in elderly patients undergoing cardiac surgery for mitral regurgitation feasibility study. Ann Card Anaesth. 2012;15(2):164–5. https://doi.org/10.4103/0971-9784.95085.

    Article  PubMed  Google Scholar 

  6. Maxwell C, Nicoara A. New developments in the treatment of acute pain after thoracic surgery. Curr Opin Anaesthesiol. 2014;27(1):6–11. https://doi.org/10.1097/ACO.0000000000000029.

    Article  PubMed  Google Scholar 

  7. Pöpping DM, Elia N, Marret E, Remy C, Tramèr MR. Protective effects of epidural analgesia on pulmonary complications after abdominal and thoracic surgery: a meta-analysis. Arch Surg. 2008;143(10):990–9.; discussion 1000. https://doi.org/10.1001/archsurg.143.10.990.

    Article  PubMed  Google Scholar 

  8. Wijeysundera DN, Beattie WS, Austin PC, Hux JE, Laupacis A. Epidural anaesthesia and survival after intermediate-to-high risk non-cardiac surgery: a population-based cohort study. Lancet. 2008;372(9638):562–9. https://doi.org/10.1016/S0140-6736(08)61121-6. Epub 2008 Aug 8

    Article  PubMed  Google Scholar 

  9. Wu CL, Hurley RW, Anderson GF, Herbert R, Rowlingson AJ, Fleisher LA. Effect of postoperative epidural analgesia on morbidity and mortality following surgery in medicare patients. Reg Anesth Pain Med. 2004;29(6):525–33. discussion 515-9

    Article  PubMed  Google Scholar 

  10. Park WY, Thompson JS, Lee KK. Effect of epidural anesthesia and analgesia on perioperative outcome: a randomized, controlled veterans affairs cooperative study. Ann Surg. 2001;234(4):560–9. discussion 569-71

    Article  CAS  PubMed  Google Scholar 

  11. Rigg JR, Jamrozik K, Myles PS, Silbert BS, Peyton PJ, Parsons RW, Collins KS, Anaethesia Trial MASTER. Study group. Epidural anaesthesia and analgesia and outcome of major surgery: a randomised trial. Lancet. 2002;359(9314):1276–82.

    Article  PubMed  Google Scholar 

  12. Rodgers A, Walker N, Schug S, McKee A, et al. Reduction of postoperative mortality and morbidity with epidural or spinal anaesthesia: results from overview of randomised trials. BMJ. 2000;321(7275):1493.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Bell K, Wattie M, Byth K, Silvestrini R, Clark P, Stachowski E, Benson EM. Procalcitonin: a marker of bacteraemia in SIRS. Anaesth Intensive Care. 2003;31(6):629–36.

    CAS  PubMed  Google Scholar 

  14. Bomberg H, Kubulus C. Tunnelling of thoracic epidural catheters is associated with fewer catheter-related infections: a retrospective registry analysis. Br J Anaesth. 2016;116(4):546–53. https://doi.org/10.1093/bja/aew026.

    Article  CAS  PubMed  Google Scholar 

  15. Textbook of Regional Anesthesia and Acute Pain Management; editor, Admir Hadzic Chapter 67:Regional Analgesia in the Critically Ill, Sebastian Schulz-Stubner.

    Google Scholar 

  16. Ehieli E, Yalamuri S, Brudney CS, Pyati S. Analgesia in the surgical intensive care unit. Postgrad Med J. 2017;93(1095):38–45. https://doi.org/10.1136/postgradmedj-2016-134047.

    Article  PubMed  Google Scholar 

  17. Aguirre J, Del Moral A, Cobo I, et al. The role of continuous peripheral nerve blocks. Anesthesiol Res Pract. 2012;2012:560879. https://doi.org/10.1155/2012/560879.

    PubMed  PubMed Central  Google Scholar 

  18. Guedes L, Rebelo H, Oliveira R, et al. Regional analgesia in intensive care. Rev Bras Anestesiol. 2012;62:719–30. https://doi.org/10.1016/S0034-7094(12)70170-8.

    Article  PubMed  Google Scholar 

  19. Chelly JE, Ghisi D, Fanelli A. Continuous peripheral nerve blocks in acute pain management. Br J Anaesth. 2010;105(Suppl 1):i86–96. https://doi.org/10.1093/bja/aeq322.

    Article  PubMed  Google Scholar 

  20. Mar GJ, Barrington MJ, McGuirk BR. Acute compartment syndrome of the lower limb and the effect of postoperative analgesia on diagnosis. Br J Anaesth. 2009;102:3–11. https://doi.org/10.1093/bja/aen330.

    Article  CAS  PubMed  Google Scholar 

  21. Le-Wendling L, Enneking FK. Continuous peripheral nerve blockade for postoperative analgesia. Curr Opin Anaesthesiol. 2008;21(5):602–9. https://doi.org/10.1097/ACO.0b013e32830a4be6.

    Article  PubMed  Google Scholar 

  22. Nadeau MJ, Lévesque S, Dion N. Ultrasound-guided regional anesthesia for upper limb surgery. Can J Anaesth. 2013;60(3):304–20. https://doi.org/10.1007/s12630-012-9874-6. Epub 2013 Feb 2

    Article  PubMed  Google Scholar 

  23. Lee JH, Cho SH, Kim SH, Chae WS, Jin HC, Lee JS, Kim YI. Ropivacaine for ultrasound-guided interscalene block: 5 mL provides similar analgesia but less phrenic nerve paralysis than 10 mL. Can J Anaesth. 2011;58(11):1001–6. https://doi.org/10.1007/s12630-011-9568-5. Epub 2011 Aug 20

    Article  PubMed  Google Scholar 

  24. Farag, Ehab and Brown, David L. Ch 14, Femoral Block. Brown’s Atlas of Regional Anesthesia, 5th edition, 2017, 115–126.

    Google Scholar 

  25. Mounir-Soliman, Loran and Brown, David L. Ch 12 Lumbar Plexus Block, Brown’s Atlas of Regional Anesthesia, 97–102.

    Google Scholar 

  26. Farag, Ehab and Brown, David L. Ch 13 Sciatic Block, Brown’s Atlas of Regional Anesthesia, 103–113.

    Google Scholar 

  27. Ayling OG, et al. Continuous regional Anaesthesia provides effective pain management and reduces opioid requirements following major lower limb amputation. Eur J Vasc Endovasc Surg. 2014;48(5):559–64.

    Article  CAS  PubMed  Google Scholar 

  28. Brown, David L. Ch 51, Celiac Plexus Block, Brown’s Atlas of Regional Anesthesia, 321–328.

    Google Scholar 

  29. Brown, David L. Ch 35, Intercostal Block, Brown’s Atlas of Regional Anesthesia, 227–230.

    Google Scholar 

  30. Farag, Ehab. Ch 39, Paravertebral Block, Brown’s Atlas of Regional Anesthesia, 245–248.

    Google Scholar 

  31. Bomberg H, Krotten D, Kubulus C, et al. Single-dose antibiotic prophylaxis in regional anesthesia: a retrospective registry analysis. Anesthesiology. 2016;125(3):505–15.

    Article  CAS  PubMed  Google Scholar 

  32. Borg L, Howard SK, Kim TE, Steffel L, Shum C, Mariano ER. A comparison of strength for two continuous peripheral nerve block catheter dressings. Korean J Anesthesiol. 2016;69(5):506–9.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Pacenta HL, Kaddoum RN, Pereiras LA, Chidiac EJ, Burgoyne LL. Continuous tunnelled femoral nerve block for palliative care of a patient with metastatic osteosarcoma. Anaesth Intensive Care. 2010;38(3):563–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Schulz-stübner S, Boezaart A, Hata JS. Regional analgesia in the critically ill. Crit Care Med. 2005;33(6):1400–7.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Review Questions

Review Questions

  1. 1.

    The addition of epinephrine to local anesthetics for regional blockade prolongs the action of the blockade.

    1. (a)

      True

    2. (b)

      False

  2. 2.

    Peripheral nerve blocks can enhance the detection of compartment syndrome.

    1. (a)

      True

    2. (b)

      False

  3. 3.

    What is the first sign of local anesthetic toxicity in a critically ill patient?

    1. (a)

      Hypotension

    2. (b)

      Circumoral numbness

    3. (c)

      Tachycardia

    4. (d)

      Delirium

  4. 4.

    What is the first step in the treatment of local anesthetic toxicity?

    1. (a)

      Airway control with 100% oxygen

    2. (b)

      Seizure control

    3. (c)

      Reversal with 20% intralipid

    4. (d)

      None of the above

  5. 5.

    What is the 20% lipid emulsion dose for local anesthetic toxicity?

    1. (a)

      Continuous infusion of 0.25 mL/kg/min

    2. (b)

      Bolus of 2 mL/kg/min and then continuous infusion of 0.5 mL/kg/min

    3. (c)

      Bolus of 1.5 mL/kg/min then continuous infusion of 0.25 mL/kg/min

    4. (d)

      Continuous rate of 1 mL/kg/min

Answers:

  1. 1.

    a

  2. 2.

    a

  3. 3.

    b

  4. 4.

    a

  5. 5.

    c

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Elhassan, A.O. et al. (2018). Regional Anesthesia in the Critical Care Setting. In: Kaye, A., Urman, R., Vadivelu, N. (eds) Essentials of Regional Anesthesia. Springer, Cham. https://doi.org/10.1007/978-3-319-74838-2_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-74838-2_26

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-74837-5

  • Online ISBN: 978-3-319-74838-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics