Skip to main content

Antibiotic-Resistant Pathogens in Ear, Nose, and Throat Infections

  • Chapter
  • First Online:
Infections of the Ears, Nose, Throat, and Sinuses

Abstract

The management of ear, nose, and throat infections requires an accurate clinical and bacteriological diagnosis, followed by an initial empiric antimicrobial therapy that may be adjusted once the identification of the causative organisms is available. The increasing antimicrobial resistance of many bacterial pathogens has made the treatment of these infections more challenging. This chapter presents the microbiology, antimicrobial resistance, and antimicrobial therapy of resistant acute and chronic head and neck infections pathogens.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Niederman MS. Principles of appropriate antibiotic use. Int J Antimicrob Agents. 2005;26:S170–5.

    Article  PubMed  CAS  Google Scholar 

  2. Brook I. Antibiotic resistance of oral anaerobic bacteria and their effect on the management of upper respiratory tract and head and neck infections. Semin Respir Infect. 2002;17:195–203.

    Article  PubMed  Google Scholar 

  3. Hentges DJ. The anaerobic microflora of the human body. Clin Infect Dis. 1993;16:S175–80.

    Article  PubMed  Google Scholar 

  4. Gibbons RJ. Aspects of the pathogenicity and ecology of the indigenous oral flora of man. In: Ballow A, Dehaan RM, Dowell VR, Guze LB, editors. Anaerobic bacteria: role in disease. Springfield, IL: Charles C. Thomas Publisher; 1974. p. 267–85.

    Google Scholar 

  5. Brook I. Anaerobic infections diagnosis and management. New York, NY: Informa Healthcare USA, Inc; 2007.

    Book  Google Scholar 

  6. Finegold SM. Anaerobic bacteria in human disease. New York, NY: Academic Press; 1977.

    Google Scholar 

  7. Brook I. β-Lactamase-producing bacteria in upper respiratory tract infections. Curr Infect Dis Rep. 2010;12:110–7.

    Article  PubMed  Google Scholar 

  8. Brook I. The role of beta-lactamase-producing bacteria in the persistence of streptococcal tonsillar infection. Rev Infect Dis. 1984;6:601–7.

    Article  PubMed  CAS  Google Scholar 

  9. Brook I, Yocum P. In vitro protection of group A beta-hemolytic streptococci from penicillin and cephalothin by Bacteroides fragilis. Chemotherapy. 1983;29:18–23.

    Article  PubMed  CAS  Google Scholar 

  10. Hackman AS, Wilkins TD. In vivo protection of Fusobacterium necrophorum from penicillin by Bacteroides fragilis. Antimicrob Agents Chemother. 1975;7:698–703.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Brook I, Pazzaglia G, Coolbaugh JC, Walker RI. In vivo protection of penicillin susceptible Bacteroides melaninogenicus from penicillin by facultative bacteria which produce beta-lactamase. Can J Microbiol. 1984;30:98–104.

    Article  PubMed  CAS  Google Scholar 

  12. Brook I. Beta-lactamase-producing bacteria recovered after clinical failures with various penicillin therapy. Arch Otolaryngol. 1984;110:228–31.

    Article  PubMed  CAS  Google Scholar 

  13. Van Eldere J, Slack MP, Ladhani S, Cripps AW. Non-typeable Haemophilus influenzae, an under-recognised pathogen. Lancet Infect Dis. 2014;14:1281–92.

    Article  PubMed  CAS  Google Scholar 

  14. San Millan A, Santos-Lopez A, Ortega-Huedo R, Bernabe-Balas C, Kennedy SP, Gonzalez-Zorn B. Small-plasmid-mediated antibiotic resistance is enhanced by increases in plasmid copy number and bacterial fitness. Antimicrob Agents Chemother. 2015;59:3335–41.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Resman F, Ristovski M, Forsgren A, et al. Increase of β-lactam-resistant invasive Haemophilus influenzae in Sweden, 1997 to 2010. Antimicrob Agents Chemother. 2012;56:4408–15.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Hasegawa K, Kobayashi R, Takada E, et al. High prevalence of type b beta-lactamase-non-producing ampicillin-resistant Haemophilus influenzae in meningitis: the situation in Japan where Hib vaccine has not been introduced. J Antimicrob Chemother. 2006;57:1077.

    Article  PubMed  CAS  Google Scholar 

  17. García-Cobos S, Campos J, Lázaro E, et al. Ampicillin-resistant non-beta-lactamase-producing Haemophilus influenzae in Spain: recent emergence of clonal isolates with increased resistance to cefotaxime and cefixime. Antimicrob Agents Chemother. 2007;51:2564–73.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Ladhani S, Slack MP, Heath PT, et al. Invasive Haemophilus influenzae Disease, Europe, 1996-2006. Emerg Infect Dis. 2010;16:455–63.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Nakamura S, Yanagihara K, Seki M, et al. Clinical characteristics of pneumonia caused by beta-lactamase negative ampicillin resistant Haemophilus influenzae (BLNAR). Scand J Infect Dis. 2007;39:521–4.

    Article  PubMed  Google Scholar 

  20. Ohno A, Ishii Y, Kobayashi I, Yamaguchi K. Antibacterial activity and PK/PD of ceftriaxone against penicillin-resistant Streptococcus pneumoniae and beta-lactamase-negative ampicillin-resistant Haemophilus influenzae isolates from patients with community-acquired pneumonia. J Infect Chemother. 2007;13:296–301.

    Article  PubMed  CAS  Google Scholar 

  21. Khan MA, Northwood JB, Levy F, Verhaegh SJ, Farrell DJ, Van Belkum A, Hays JP. bro {beta}-lactamase and antibiotic resistances in a global cross-sectional study of Moraxella catarrhalis from children and adults. J Antimicrob Chemother. 2010;65:91–7.

    Article  PubMed  CAS  Google Scholar 

  22. Liu Y, Xu H, Xu Z, Kudinha T, Fan X, Xiao M, Kong F, Sun H, Xu Y. High-level macrolide-resistant moraxella catarrhalis and development of an allele-specific PCR assay for detection of 23S rRNA gene A2330T mutation: a three-year study at a chinese tertiary hospital. Microb Drug Resist. 2015;21:507–11.

    Article  PubMed  CAS  Google Scholar 

  23. Sahm DF, Brown NP, Thornsberry C, Jones ME. Antimicrobial susceptibility profiles among common respiratory tract pathogens: a GLOBAL perspective. Postgrad Med. 2008;120(3 Suppl 1):16–24.

    Article  PubMed  Google Scholar 

  24. Andam CP, Hanage WP. Mechanisms of genome evolution of Streptococcus. Infect Genet Evol. 2015;33:334–42.

    Article  PubMed  CAS  Google Scholar 

  25. Sujatha S, Praharaj I. Glycopeptide resistance in gram-positive cocci: a review. Interdiscip Perspect Infect Dis. 2012;2012:781679.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Moreno F, Crisp C, Jorgensen JH, Patterson JE. The clinical and molecular epidemiology of bacteremias at a university hospital caused by pneumococci not susceptible to penicillin. J Infect Dis. 1995;172:427–32.

    Article  PubMed  CAS  Google Scholar 

  27. Ruhe JJ, Myers L, Mushatt D, Hasbun R. High-level penicillin-nonsusceptible Streptococcus pneumoniae bacteremia: identification of a low-risk subgroup. Clin Infect Dis. 2004;38:508–14.

    Article  PubMed  Google Scholar 

  28. Vanderkooi OG, Low DE, Green K, et al. Predicting antimicrobial resistance in invasive pneumococcal infections. Clin Infect Dis. 2005;40:1288–97.

    Article  PubMed  CAS  Google Scholar 

  29. Hakenbeck R, Brückner R, Denapaite D, Maurer P. Molecular mechanisms of β-lactam resistance in Streptococcus pneumoniae. Future Microbiol. 2012;7:395–410.

    Article  PubMed  CAS  Google Scholar 

  30. Hotomi M, Billal DS, Shimada J, Suzumoto M, Yamauchi K, Fujihara K, Yamanaka N. Increase of macrolide-resistant Streptococcus pneumoniae-expressing mefE or ermB gene in the nasopharynx among children with otitis media. Laryngoscope. 2005;115:317–20.

    Article  PubMed  Google Scholar 

  31. Jorgensen JH, Weigel LM, Swenson JM, Whitney CG, Ferraro MJ, Tenover FC. Activities of clinafloxacin, gatifloxacin, gemifloxacin, and trovafloxacin against recent clinical isolates of levofloxacin-resistant Streptococcus pneumoniae. Antimicrob Agents Chemother. 2000;44:2962–8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Jacobs MR, Good CE, Windau AR, Bajaksouzian S, Biek D, Critchley IA, Sader HS, Jones RN. Activity of ceftaroline against recent emerging serotypes of Streptococcus pneumoniae in the United States. Antimicrob Agents Chemother. 2010;54:2716–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Weinstein MP, Klugman KP, Jones RN. Rationale for revised penicillin susceptibility breakpoints versus Streptococcus pneumoniae: coping with antimicrobial susceptibility in an era of resistance. Clin Infect Dis. 2009;48:1596–600.

    Article  PubMed  CAS  Google Scholar 

  34. Centers for Disease Control and Prevention. Streptococcus pneumoniae. Active bacterial core surveillance report, emerging infections program Network 2013. Available at: https://www.cdc.gov/abcs/reports-findings/survreports/spneu13.pdf

    Google Scholar 

  35. Brook I. Role of methicillin-resistant Staphylococcus aureus in head and neck infections. J Laryngol Otol. 2009;123:1301–7.

    Article  PubMed  CAS  Google Scholar 

  36. Naseri I, Jerris RC, Sobol SE. Nationwide trends in pediatric staphylococcus aureus head and neck infections. Arch Otolaryngol Head Neck Surg. 2009;135:14–6.

    Article  PubMed  Google Scholar 

  37. Fong SM, Watson M. Lemierre syndrome due to non-multiresistant methicillin- aureus. J Paediatr Child Health. 2002;38:305–7.

    Article  PubMed  CAS  Google Scholar 

  38. Boga C, Ozdogu H, Diri B, Oguzkurt L, Asma S, Yeral M. Lemierre syndrome variant: Staphylococcus aureus associated with thrombosis of both the right internal jugular vein and the splenic vein after the exploration of a river cave. J Thromb Thrombolysis. 2007;23:151–4.

    Article  PubMed  Google Scholar 

  39. Brook I, Foote PA, Hausfeld JN. Increase in the frequency of recovery of methicillin-resistant Staphylococcus aureus in acute and chronic maxillary sinusitis. J Med Microbiol. 2008;57:1015–7.

    Article  PubMed  Google Scholar 

  40. Gerencer RZ. Successful outpatient treatment of sinusitis exacerbations caused by community-acquired methicillin-resistant Staphylococcus aureus. Otolaryngol Head Neck Surg. 2005;132:828–33.

    Article  PubMed  Google Scholar 

  41. Enright MC, Robinson DA, Randle G, et al. The evolutionary history of methicillin-resistant Staphylococcus aureus (MRSA). Proc Natl Acad Sci U S A. 2002;99:7687–92.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Panzer JD, Brown DC, Epstein WL, Lipson RL, Mahaffey HW, Atkinson WH. Clindamycin levels in various body tissues and fluids. J Clin Pharmacol New Drugs. 1972;12:259–62.

    Article  PubMed  CAS  Google Scholar 

  43. Daum RS. Clinical practice. Skin and soft-tissue infections caused by methicillin-resistant Staphylococcus aureus. N Engl J Med. 2007;357:380–90.

    Article  PubMed  CAS  Google Scholar 

  44. Siberry GK, Tekle T, Carroll K, Dick J. Failure of clindamycin treatment of methicillin-resistant Staphylococcus aureus expressing inducible clindamycin resistance in vitro. Clin Infect Dis. 2003;37:1257–60.

    Article  PubMed  Google Scholar 

  45. Fiebelkorn KR, Crawford SA, McElmeel ML, Jorgensen JH. Practical disk diffusion method for detection of inducible clindamycin resistance in Staphylococcus aureus and coagulase-negative staphylococci. J Clin Microbiol. 2003;41:4740–4.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Moran GJ, Krishnadasan A, Gorwitz RJ, Fosheim GE, McDougal LK, Carey RB, Talan DA, Methicillin-resistant S. aureus infections among patients in the emergency department. EMERGEncy ID Net Study Group. N Engl J Med. 2006;355:666–74.

    Article  PubMed  CAS  Google Scholar 

  47. Stevens DL, Herr D, Lampiris H, Hunt JL, Batts DH, Hafkin B. Linezolid versus vancomycin for the treatment of methicillin-resistant Staphylococcus aureus infections. Clin Infect Dis. 2002;34:1481–90.

    Article  PubMed  CAS  Google Scholar 

  48. Silverman JA, Mortin LI, Vanpraagh AD, Li T, Alder J. Inhibition of daptomycin by pulmonary surfactant: in vitro modeling and clinical impact. J Infect Dis. 2005;191:2149–52.

    Article  PubMed  CAS  Google Scholar 

  49. Sakoulas G, Alder J, Thauvin-Eliopoulos C, Moellering RC Jr, Eliopoulos GM. Induction of daptomycin heterogeneous susceptibility in Staphylococcus aureus by exposure to vancomycin. Antimicrob Agents Chemother. 2006;50:1581–5.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Stevens DL, Ma Y, Salmi DB, McIndoo E, Wallace RJ, Bryant AE. Impact of antibiotics on expression of virulence-associated exotoxin genes in methicillin-sensitive and methicillin-resistant Staphylococcus aureus. J Infect Dis. 2007;195:202–11.

    Article  PubMed  CAS  Google Scholar 

  51. Mendes RE, Deshpande LM, Castanheira M, DiPersio J, Saubolle MA, Jones RN. First report of cfr-mediated resistance to linezolid in human staphylococcal clinical isolates recovered in the United States. Antimicrob Agents Chemother. 2008;52:2244–6.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Garrison MW, Kawamura NM, Wen MM. Ceftaroline fosamil: a new cephalosporin active against resistant Gram-positive organisms including MRSA. Expert Rev Anti Infect Ther. 2012;10:1087–103.

    Article  PubMed  CAS  Google Scholar 

  53. Cunningham M, Guardiani E, Kim HJ, Brook I. Otitis media. Future Microbiol. 2012;7:733–53.

    Article  PubMed  CAS  Google Scholar 

  54. Brook I, Frazier EH, Thompson DH. Aerobic and anaerobic microbiology of external otitis. Clin Infect Dis. 1992;15:955–8.

    Article  PubMed  CAS  Google Scholar 

  55. Kaye KS, Pogue JM. Infections caused by resistant gram-negative bacteria: epidemiology and management. Pharmacotherapy. 2015;35:949–62.

    Article  PubMed  CAS  Google Scholar 

  56. Rossolini GM, Mantengoli E. Treatment and control of severe infections caused by multiresistant Pseudomonas aeruginosa. Clin Microbiol Infect. 2005;11(Suppl 4):17–32.

    Article  PubMed  CAS  Google Scholar 

  57. Safdar N, Handelsman J, Maki DG. Does combination antimicrobial therapy reduce mortality in Gram-negative bacteraemia? A meta-analysis. Lancet Infect Dis. 2004;4:519–27.

    Article  PubMed  Google Scholar 

  58. Brook I, Wexler HM, Goldstein EJ. Antianaerobic antimicrobials: spectrum and susceptibility testing. Clin Microbiol Rev. 2013;26:526–46.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Busch DF, Kureshi LA, Sutter VL, et al. Susceptibility of respiratory tract anaerobes to orally administered penicillins and cephalosporins. Antimicrob Agents Chemother. 1976;10:713–20.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Acuna C, Rabasseda X. Amoxicillin-sulbactam: a clinical and therapeutic review. Drugs Today (Barc). 2001;37:193–210.

    Article  CAS  Google Scholar 

  61. Finegold SM. In vitro efficacy of beta-lactam/beta-lactamase inhibitor combinations against bacteria involved in mixed infections. Int J Antimicrob Agents. 1999;12(Suppl 1):S9–14.

    Article  PubMed  CAS  Google Scholar 

  62. Goldstein EJC, Citron DM. Resistance trends in antimicrobial susceptibility of anaerobic bacteria, Part I and Part II. Clin Microbiol Newslett. 2011;33:1–14.

    Article  Google Scholar 

  63. Strehl E, Kees F. Pharmacological properties of parenteral cephalosporins: rationale for ambulatory use. Drugs. 2000;59(Suppl 3):9–18.

    Article  PubMed  CAS  Google Scholar 

  64. Boyanova L, Kolarov R, Mitov I. Recent evolution of antibiotic resistance in the anaerobes as compared to previous decades. Anaerobe. 2015;31:4–10.

    Article  PubMed  CAS  Google Scholar 

  65. Hecht DW. Prevalence of antibiotic resistance in anaerobic bacteria: worrisome developments. Clin Infect Dis. 2004;39:92–7.

    Article  PubMed  Google Scholar 

  66. Goldstein EJC, Citron DM, Cole RE, et al. Cefoxitin in the treatment of aerobic/anaerobic infections: prospective correlation of in vitro susceptibility methods with clinical outcome. Hosp Pract Symp Suppl. 1990;25(Suppl 4):38–45.

    Article  Google Scholar 

  67. Hellinger WC, Brewer NS. Carbapenems and monobactams: imipenem, meropenem, and aztreonam. Mayo Clin Proc. 1999;74:420–34.

    Article  PubMed  CAS  Google Scholar 

  68. Aldridge K, Aldridge KE, Ashcraft D, et al. Multicenter survey of the changing in vitro antimicrobial susceptibilities of clinical isolates of Bacteroides fragilis group, Prevotella, Fusobacterium, Porphyromonas, and Peptostreptococcus species. Antimicrob Agents Chemother. 2001;45:1238–43.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  69. Paterson DL, Depestel DD. Doripenem. Clin Infect Dis. 2009;49:291–8.

    Article  PubMed  CAS  Google Scholar 

  70. Nicolau DP, Carmeli Y, Crank CW, et al. Carbapenem stewardship: does ertapenem affect Pseudomonas susceptibility to other carbapenems? A review of the evidence. Int J Antimicrob Agents. 2012;39:11–5.

    Article  PubMed  CAS  Google Scholar 

  71. Jorgensen JH, Maher LA, Howell AW. Activity of meropenem against antibiotic-resistant or infrequently encountered gram-negative bacilli. Antimicrob Agents Chemother. 1991;35:2410–4.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  72. Kattan JN, Villegas MV, Quinn JP. New developments in carbapenems. Clin Microbiol Infect. 2008;14:1102–11.

    Article  PubMed  CAS  Google Scholar 

  73. Keating GM, Perry CM. Ertapenem: a review of its use in the treatment of bacterial infections. Drugs. 2005;65:2151–78.

    Article  PubMed  CAS  Google Scholar 

  74. Snydman DR, Jacobus NV, McDermott LA, et al. Update on resistance of Bacteroides fragilis group and related species with special attention to carbapenems 2006-2009. Anaerobe. 2011;17:147–51.

    Article  PubMed  CAS  Google Scholar 

  75. Liu CY, Huang YT, Liao CH, et al. Increasing trends in antimicrobial resistance among clinically important anaerobes and Bacteroides fragilis isolates causing nosocomial infections: emerging resistance to carbapenems. Antimicrob Agents Chemother. 2008;52:3161–8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  76. Wexler HM. Susceptibility testing of anaerobic bacteria: myth, magic, or method? Clin Microbiol Rev. 1991;4:470–84.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  77. Bush K. Beta-Lactamases of increasing clinical importance. Curr Pharm Des. 1999;5:839–45.

    PubMed  CAS  Google Scholar 

  78. Appelbaum PC, Spangler SK, Pankuch GA, et al. Characterization of a beta-lactamase from Clostridium clostridioforme. J Antimicrob Chemother. 1994;33:33–40.

    Article  PubMed  CAS  Google Scholar 

  79. Pumbwe L, Chang A, Smith RL, et al. Clinical significance of overexpression of multiple RND-family efflux pumps in Bacteroides fragilis isolates. J Antimicrob Chemother. 2006;58:543–8.

    Article  PubMed  CAS  Google Scholar 

  80. Snydman DR, Jacobus NV, McDermott LA, et al. Lessons learned from the anaerobe survey: historical perspective and review of the most recent data (2005-2007). Clin Infect Dis. 2010;50(Suppl 1):S26–33.

    Article  PubMed  Google Scholar 

  81. Snydman DR, Jacobus NV, McDermott LA, et al. Multicenter study of in vitro susceptibility of the Bacteroides fragilis group, 1995 to 1996, with comparison of resistance trends from 1990 to 1996. Antimicrob Agents Chemother. 1999;43:2417–22.

    PubMed  PubMed Central  CAS  Google Scholar 

  82. Snydman DR, Jacobus NV, McDermott LA, et al. National survey on the susceptibility of Bacteroides fragilis Group: report and analysis of trends for 1997-2000. Clin Infect Dis. 2002;35:S126–34.

    Article  PubMed  CAS  Google Scholar 

  83. Balbi HJ. Chloramphenicol: a review. Pediatr Rev. 2004;25:284–8.

    Article  PubMed  Google Scholar 

  84. Goldstein EJC, Citron DM, Merriam CV. Linezolid activity compared to those of selected macrolides and other agents against aerobic and anaerobic pathogens isolated from soft tissue bite infections in humans. Antimicrob Agents Chemother. 1999;43:1469–74.

    PubMed  PubMed Central  CAS  Google Scholar 

  85. Williams JD, Maskell JP, Shain H, et al. Comparative in-vitro activity of azithromycin, macrolides (erythromycin, clarithromycin and spiramycin) and streptogramin RP 59500 against oral organisms. J Antimicrob Chemother. 1992;30:27–37.

    Article  PubMed  CAS  Google Scholar 

  86. Goldstein EJC, Lewis RP, Sutter VL, et al. Treatment of pleuropulmonary and soft-tissue Infections with erythromycin. JAMA. 1979;242:435–8.

    Article  PubMed  CAS  Google Scholar 

  87. Sanai Y, Persson GR, Starr JR, et al. Presence and antibiotic resistance of Porphyromonas gingivalis, Prevotella intermedia, and Prevotella nigrescens in children. J Clin Periodontol. 2002;29:929–34.

    Article  PubMed  Google Scholar 

  88. Feigin RD, Pickering LK, Anderson D, et al. Clindamycin treatment of osteomyelitis and septic arthritis in children. Pediatrics. 1975;55:213–23.

    Google Scholar 

  89. Klainer AS. Clindamycin. Med Clin North Am. 1987;71:1169–75.

    Article  PubMed  CAS  Google Scholar 

  90. Paap CM, Nahata MC. Clinical pharmacokinetics of antibacterial drugs in neonates. Clin Pharmacokinet. 1990;19:280–318.

    Article  PubMed  CAS  Google Scholar 

  91. Gorbach SL. Antibiotics and Clostridium difficile. N Engl J Med. 1999;341:1690–1.

    Article  PubMed  CAS  Google Scholar 

  92. Solomkin JS, Mazuski JE, Bradley JS, et al. Diagnosis and management of complicated intraabdominal infections in adults and children: guidelines by the Surgical Infection Society and The Infectious Diseases Society of America. Clin Infect Dis. 2010;50:133–64.

    Article  PubMed  CAS  Google Scholar 

  93. Brook I. Spectrum and treatment of anaerobic infections. J Infect Chemother. 2016;22:1–13.

    Article  PubMed  Google Scholar 

  94. Chow AW, Patten V, Guze LB. Susceptibility of anaerobic bacteria to metronidazole: relative resistance of non-spore forming gram-positive bacilli. J Infect Dis. 1975;131:182–5.

    Article  PubMed  CAS  Google Scholar 

  95. Rustia M, Shubik P. Experimental induction of hematomas, mammary tumors and other tumors with metronidazole in noninbred Sas: WRC (WT)BR rats. J Natl Cancer Inst. 1979;63:863–8.

    Article  PubMed  CAS  Google Scholar 

  96. Cohen SM, Ertürk E, Von Esch AM, et al. Carcinogenicity of 5-nitrofurans, 5-nitroimidazoles, 4-nitrobenzenes, and related compounds. J Natl Cancer Inst. 1973;51:403–17.

    Article  PubMed  CAS  Google Scholar 

  97. Beard CM, Noller KL, O’Fallon WM, et al. Lack of evidence for cancer due to use of metronidazole. N Engl J Med. 1979;301:519–22.

    Article  PubMed  CAS  Google Scholar 

  98. Townsend ML, Pound MW, Drew RH. Tigecycline: a new glycylcycline antimicrobial. Int J Clin Pract. 2006;60:1662–7.

    Article  PubMed  CAS  Google Scholar 

  99. Goldstein EJC, Citron DM, et al. Comparative in vitro susceptibilities of 396 unusual anaerobic strains to tigecycline and eight other antimicrobial agents. Antimicrob Agents Chemother. 2006;50:3507–13.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  100. Jacobus NV, McDermott LA, Ruthazer R, et al. In vitro activities of tigecycline against the Bacteroides fragilis group. Antimicrob Agents Chemother. 2004;48:1034–6.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  101. Edmiston CE, Krepel CJ, Seabrook GR, et al. In vitro activities of moxifloxacin against 900 aerobic and anaerobic surgical isolates from patients with intra-abdominal and diabetic foot infections. Antimicrob Agents Chemother. 2004;48:1012–6.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  102. Stein GE, Goldstein EJ. Fluoroquinolones and anaerobes. Clin Infect Dis. 2006;42:1598–607.

    Article  PubMed  CAS  Google Scholar 

  103. United States Food and Drug Administration. FDA News Release: FDA updates warnings for fluoroquinolone use. July 26, 2016. http://www.fda.gov/NewsEvents/Newsroom/PressAnnouncements/ucm513183.htm.

  104. Oh H, Hedberg M, Edlund C. Efflux-mediated fluoroquinolone resistance in the Bacteroides fragilis group. Anaerobe. 2002;8:277–82.

    Article  CAS  Google Scholar 

  105. Tyrrell KL, Citron DM, Warren YA, et al. In-vitro activity of TD-1792, a multivalent glycopeptide-cephalosporin antibiotic, against 377 strains of anaerobic bacteria and 34 strains of Corynebacterium species. Antimicrob Agents Chemother. 2012;56:2194–7.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  106. Finch RG. Antibacterial activity of quinupristin/dalfopristin. Rationale for clinical use. Drugs. 1996;51:31–7.

    Article  PubMed  CAS  Google Scholar 

  107. Brook I, Gober E. Emergence of beta-lactamase-producing aerobic and anaerobic bacteria in the oropharynx of children following penicillin chemotherapy. Clin Pediatr. 1984;23:338–42.

    Article  CAS  Google Scholar 

  108. Wexler HM. Bacteroides: the good, the bad, and the nitty-gritty. Clin Microbiol Rev. 2007;20(4):593–621.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Brook, I. (2018). Antibiotic-Resistant Pathogens in Ear, Nose, and Throat Infections. In: Durand, M., Deschler, D. (eds) Infections of the Ears, Nose, Throat, and Sinuses. Springer, Cham. https://doi.org/10.1007/978-3-319-74835-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-74835-1_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-74834-4

  • Online ISBN: 978-3-319-74835-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics