Skip to main content

Lactic Acid Bacteria and Yeasts as Starter Cultures for Fermented Foods and Their Role in Commercialization of Fermented Foods

  • Chapter
  • First Online:

Part of the book series: Food Microbiology and Food Safety ((FMFS))

Abstract

Consumption of fermented foods has substantially increased in the recent years due to their valuable traits that extend well beyond shelf life, preservation and sensory qualities. These foods turn out to play a central role in the diet of several cultures because of its enriched health benefits that are known to possess antimicrobial, antidiabetic, anti-atherosclerotic, antioxidant and anti-inflammatory activities. Consequently, fermentable microorganisms, fermentation process and its products draw scientific interest. Currently fermented food production is mainly carried out using starter cultures for a precise and expectable fermentation. Lactic acid bacteria (LAB) and yeast are the highly studied starters applied in several fermented food production industries such as dairy, meat, sourdough, vegetables, etc. Advanced genetic approaches towards selection of promising organisms can meet the huge demand in starter culture markets along with providing functional value to some traditional food products. This chapter outlines about fermented foods, starter culture types, selection criteria, starter culture markets, role and application of LAB and yeast in fermented foods.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Achi OK, Ukwuru M (2015) Cereal-based fermented foods of Africa as functional foods. Int J Microbiol Appl 2(4):71–83

    Google Scholar 

  • Ahmed Z, Wang Y, Ahmad A, Khan ST, Nisa M, Ahmad H, Afreen A (2013) Kefir and health: a contemporary perspective. Crit Rev Food Sci Nutr 53(5):422–434

    Article  PubMed  Google Scholar 

  • Aidoo KE, Nout NJR, Sarkar PK (2006) Occurrence and function of yeasts in Asian indigenous fermented foods. FEMS Yeast Res 6:30–39

    Article  CAS  PubMed  Google Scholar 

  • Altieri C, Ciuffreda E, Di Maggio B, Sinigaglia M (2016). Lactic acid bacteria as starter cultures. In: Speranza B, Bevilacqua A, Corbo MR, Sinigaglia M. (Eds.). (2016). Starter Cultures in Food Production. John Wiley & Sons., Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany, 1–15

    Google Scholar 

  • Alvarez-Martin P, Florez AB, Hernández-Barranco A, Mayo B (2008) Interaction between dairy yeasts and lactic acid bacteria strains during milk fermentation. Food Control 19(1):62–70

    Article  CAS  Google Scholar 

  • Ammor MS, Mayo B (2007) Selection criteria for lactic acid bacteria to be used as functional starter cultures in dry sausage production: an update. Meat Sci 76(1):138–146

    Article  CAS  PubMed  Google Scholar 

  • An SY, Lee MS, Jeon JY, Ha ES, Kim TH, Yoon JY, Han SJ (2013) Beneficial effects of fresh and fermented kimchi in prediabetic individuals. Ann Nutr Metab 63(1–2):111–119

    Article  CAS  PubMed  Google Scholar 

  • Andrade MJ, Rodríguez M, Casado EM, Bermúdez E, Córdoba JJ (2009) Differentiation of yeasts growing on dry cured Iberian ham by mitochondrial DNA restriction analysis, RAPDPCR and their volatile compounds production. Food Microbiol 26:578–586

    Article  CAS  PubMed  Google Scholar 

  • Ardhana MM, Fleet GH (2003) The microbial ecology of cocoa bean fermentations in Indonesia. Int J Food Microbiol 86:87–99

    Article  CAS  PubMed  Google Scholar 

  • Arroyo López FN, Romero Gil V, Bautista Gallego J et al (2012) Potential benefits of the application of yeast starters in table olive processing. Front Microbiol 3:1–4

    Article  Google Scholar 

  • Arroyo-López FN, Durán-Quintana MC, Ruiz-Barba JL, Querol A, Garrido-Fernández A (2006) Use of molecular methods for the identification of yeast associated with table olives. Food Microbiol 23(8):791–796

    Article  PubMed  CAS  Google Scholar 

  • Assadi MM, Pourahmad R, Moazami N (2000) Use of isolated kefir starter cultures in kefir production. World J Microbiol Biotechnol 16(6):541–543

    Article  Google Scholar 

  • Bachmann H, Pronk JT, Kleerebezem M, Teusink B (2015) Evolutionary engineering to enhance starter culture performance in food fermentations. Curr Opin Biotechnol 32:1–7

    Article  PubMed  CAS  Google Scholar 

  • Baer A, Ryba I (1992) Serological identification of propionibacteria in milk and cheese samples. Int Dairy J 2(5):299–310

    Article  Google Scholar 

  • Beganović J, Kos B, Pavunc AL, Uroić K, Jokić M, Šušković J (2014) Traditionally produced sauerkraut as source of autochthonous functional starter cultures. Microbiol Res 169(7):623–632

    Article  PubMed  CAS  Google Scholar 

  • Benkerroum N (2013) Traditional fermented foods of North African countries: technology and food safety challenges with regard to microbiological risks. Compr Rev Food Sci Food Saf 12(1):54–89

    Article  CAS  Google Scholar 

  • Bevilacqua A, Beneduce L, Sinigaglia M, Corbo MR (2013) Selection of yeasts as starter cultures for table olives. J Food Sci 78:742–751

    Article  CAS  Google Scholar 

  • Blana VA, Grounta A, Tassou CC, Nychas GJE, Panagou EZ (2014) Inoculated fermentation of green olives with potential probiotic Lactobacillus pentosus and Lactobacillus plantarum starter cultures isolated from industrially fermented olives. Food Microbiol 38:208–218

    Article  CAS  PubMed  Google Scholar 

  • Blandino A, Al-Aseeri ME, Pandiella SS, Cantero D, Webb C (2003) Cereal-based fermented foods and beverages. Food Res Int 36(6):527–543

    Article  CAS  Google Scholar 

  • Boekhout T, Samson R (2005) Fungal biodiversity and food. In: Nout RMJ, de Vos WM, Zwietering MH (eds) Food fermentation. Wageningen Academic, Gelderland, pp 29–41

    Google Scholar 

  • Bourrie BC, Willing BP, Cotter PD (2016) The microbiota and health promoting characteristics of the fermented beverage kefir. Front Microbiol 7:647

    Article  PubMed  PubMed Central  Google Scholar 

  • Buckenhüskes HJ (1993) Selection criteria for lactic acid bacteria to be used as starter cultures for various food commodities. FEMS Microbiol Rev 12:253–272

    Article  Google Scholar 

  • Buzzini P, Vaughan Martini A (2006) Yeast biodiversity and biotechnology. In: Rosa C, Péter G (eds) The yeast handbook: biodiversity and ecophysiology of yeasts. Springer, Berlin, pp 533–559

    Chapter  Google Scholar 

  • Camu N, De Winter T, Verbrugghe K, Cleenwerck I, Vandamme P, Takrama JS, De Vuyst L (2007) Dynamics and biodiversity of populations of lactic acid bacteria and acetic acid bacteria involved in spontaneous heap fermentation of cocoa beans in Ghana. Appl Environ Microbiol 73(6):1809–1824

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Capece A, Romaniello R, Siesto G et al (2010) Selection of indigenous Saccharomyces cerevisiae strains for Nero d’Avola wine and evaluation of selected starter implantation in pilot fermentation. Int J Food Microbiol 144:187–192

    Article  CAS  PubMed  Google Scholar 

  • Caplice E, Fitzgerald GF (1999) Food fermentations: role of microorganisms in food production and preservation. Int J Food Microbiol 50(1):131–149

    Article  CAS  PubMed  Google Scholar 

  • Carminati D, Giraffa G, Quiberoni A, Binetti A, Suarez V, Reinhemer J (2010) Advances and trends in starter culture for dairy fermentation. In: Mozzi F, Raya RR, Vignolo GM (eds) Biotechnology of lactic acid bacteria: novel applications. Blackwell, Oxford, pp 177–192

    Chapter  Google Scholar 

  • Chelule PK, Mbongwa HP, Carries S, Gqaleni N (2010) Lactic acid fermentation improves the quality of amahewu, a traditional South African maize-based porridge. Food Chem 122(3):656–661

    Article  CAS  Google Scholar 

  • Chen LS, Ma Y, Maubois JL, He SH, Chen LJ, Li HM (2010) Screening for the potential probiotic yeast strains from raw milk to assimilate cholesterol. Dairy Sci Technol 90(5):537–548

    Article  CAS  Google Scholar 

  • Chen M, Sun Q, Giovannucci E, Mozaffarian D, Manson JE, Willett WC, Hu FB (2014) Dairy consumption and risk of type 2 diabetes: 3 cohorts of US adults and an updated meta-analysis. BMC Med 12(1):215

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen Y, Aorigele C, Wang C, Simujide H, Yang S (2015) Screening and extracting mycocin secreted by yeast isolated from koumiss and their antibacterial effect. J Food Nutr Res 3(1):52–56

    Article  CAS  Google Scholar 

  • Cheng H (2010) Volatile flavor compounds in yogurt: a review. Crit Rev Food Sci Nutr 50(10):938–950

    Article  CAS  PubMed  Google Scholar 

  • Chilton SN, Burton JP, Reid G (2015) Inclusion of fermented foods in food guides around the world. Forum Nutr 7(1):390–404

    Google Scholar 

  • Choi IK, Jung SH, Kim BJ, Park SY, Kim J, Han HU (2003) Novel Leuconostoc citreum starter culture system for the fermentation of kimchi, a fermented cabbage product. Antonie Van Leeuwenhoek 84(4):247–253

    Article  CAS  PubMed  Google Scholar 

  • Cogan TM, Beresford TP, Steele J, Broadbent J, Shah NP, Ustunol Z (2007) Invited review: advances in starter cultures and cultured foods. J Dairy Sci 90(9):4005–4021

    Article  CAS  PubMed  Google Scholar 

  • Coppola S, Mauriello G, Aponte M, Moschetti G, Villani F (2000) Microbial succession during ripening of Naples-type salami, a southern Italian fermented sausage. Meat Sci 56(4):321–329

    Article  CAS  PubMed  Google Scholar 

  • Corbo MR, Lanciotti R, Albenzio M, Sinigaglia M (2001) Occurrence and characterization of yeasts isolated from milks and dairy products of Apulia region. Int J Food Microbiol 69(1):147–152

    Article  CAS  PubMed  Google Scholar 

  • Corona-González RI, Ramos-Ibarra JR, Gutiérrez-González P, Pelayo-Ortiz C, Guatemala-Morales GM, Arriola-Guevara E (2013) The use of response surface methodology to evaluate the fermentation conditions in the production of tepache. Revista Mexicana de Ingeniería Química 12(1):19–28

    Google Scholar 

  • Corsetti A, Perpetuini G, Schirone M, Tofalo R, Suzzi G (2012) Application of starter cultures to table olive fermentation: an overview on the experimental studies. Front Microbiol 3:1–6

    Article  Google Scholar 

  • Coton E, Coton M, Levert D, Casaregola S, Sohier D (2006) Yeast ecology in French cider and black olive natural fermentations. Int J Food Microbiol 108(1):130–135

    Article  CAS  PubMed  Google Scholar 

  • Coulin P, Farah Z, Assanvo J, Spillmann H, Puhan Z (2006) Characterisation of the microflora of attiéké, a fermented cassava product, during traditional small scale preparation. Int J Food Microbiol 106(2):131–136

    Article  CAS  PubMed  Google Scholar 

  • Crafack M, Mikkelsen MB, Saerens S et al (2013) Influencing cocoa flavour using Pichia kluyveri and Kluyveromyces marxianus in a defined mixed starter culture for cocoa fermentation. Int J Food Microbiol 167:103–116

    Article  CAS  PubMed  Google Scholar 

  • Dalié DKD, Deschamps AM, Richard-Forget F (2010) Lactic acid bacteria–potential for control of mould growth and mycotoxins: a review. Food Control 21(4):370–380

    Article  CAS  Google Scholar 

  • Daniel HM, Vrancken G, Takrama JF, Camu N, De Vos P, De Vuyst L (2009) Yeast diversity of Ghanaian cocoa bean heap fermentations. FEMS Yeast Res 9:774–783

    Article  CAS  PubMed  Google Scholar 

  • Daniel HM, Moons MC, Huret S, Vrancken G, De Vuyst L (2011) Wickerhamomyces anomalus in the sourdough microbial ecosystem. Antonie Van Leeuwenhoek 99(1):63–73

    Article  PubMed  Google Scholar 

  • De Castro A, Montaño A, Casado FJ, Sánchez AH, Rejano L (2002) Utilization of Enterococcus casseliflavus and Lactobacillus pentosus as starter cultures for Spanish-style green olive fermentation. Food Microbiol 19(6):637–644

    Article  CAS  Google Scholar 

  • De Vuyst L (2000) Technology aspects related to the application of functional starter cultures. Food Technol Biotechnol 38(2):105–112

    Google Scholar 

  • De Wit M, Osthoff G, Viljoen BC, Hugo A (2005) A comparative study of lipolysis and proteolysis in cheddar cheese and yeast-inoculated cheddar cheeses during ripening. Enzym Microb Technol 37(6):606–616

    Article  CAS  Google Scholar 

  • Drider D, Bekal S, Prevost H (2004) Genetic organization and expression of citrate permease in lactic acid bacteria. Genet Mol Res 3:273–281

    CAS  PubMed  Google Scholar 

  • Ebner S, Smug LN, Kneifel W, Salminen SJ, Sanders ME (2014) Probiotics in dietary guidelines and clinical recommendations outside the European Union. World J Gastroenterol: WJG 20(43):16095

    Article  PubMed  PubMed Central  Google Scholar 

  • Elmacı SB, Tokatlı M, Dursun D, Özçelik F, Şanlıbaba P (2015) Phenotypic and genotypic identification of lactic acid bacteria isolated from traditional pickles of the Çubuk region in Turkey. Folia Microbiol 60(3):241–251

    Article  CAS  Google Scholar 

  • Erten H, Ağirman B, Gündüz CPB, Çarşanba E, Sert S, Bircan S, Tangüler H (2014) Importance of yeasts and lactic acid bacteria in food processing. In: Food processing: strategies for quality assessment. Springer, New York, pp 351–378

    Google Scholar 

  • Fadda ME, Viale S, Deplano M, Pisano MB, Cosentino S (2010) Characterization of yeast population and molecular fingerprinting of Candida zeylanoides isolated from goat’s milk collected in Sardinia. Int J Food Microbiol 136(3):376–380

    Article  CAS  PubMed  Google Scholar 

  • Faria-Oliveira F, Diniz RH, Godoy-Santos F, Piló FB, Mezadri H, Castro IM, Brandão RL (2015) The role of yeast and lactic acid bacteria in the production of fermented beverages in South America. In: Food production and industry. InTech

    Google Scholar 

  • Feijoo-Siota L, Blasco L, Luis Rodriguez-Rama J, Barros-Velázquez J, de Miguel T, Sánchez-Pérez A, Villa G, T. (2014) Recent patents on microbial proteases for the dairy industry. Recent Adv DNA Gene Seq (Formerly Recent Patents DNA Gene Seq) 8(1):44–55

    Article  CAS  Google Scholar 

  • Ferreira AD, Viljoen BC (2003) Yeasts as adjunct starters in matured cheddar cheese. Int J Food Microbiol 86(1):131–140

    Article  CAS  PubMed  Google Scholar 

  • Fleet GH (2003) Yeast interactions and wine flavour. Int J Food Microbiol 86(1):11–22

    Article  CAS  PubMed  Google Scholar 

  • Foerst P, Santivarangkna C (2014) In: Holzapfel W (ed) Advances in starter culture technology: focus on drying processes. Advances in fermented foods and beverages: improving quality, technologies and health benefits. Woodhead Publishing, Cambridge, UK, pp 249–270

    Google Scholar 

  • Fontán MCG, Martínez S, Franco I, Carballo J (2006) Microbiological and chemical changes during the manufacture of kefir made from cows’ milk, using a commercial starter culture. Int Dairy J 16(7):762–767

    Article  CAS  Google Scholar 

  • Galle S, Schwab C, Arendt E, Gänzle M (2010) Exopolysaccharide-forming Weissella strains as starter cultures for sorghum and wheat sourdoughs. J Agric Food Chem 58(9):5834–5841

    Article  CAS  PubMed  Google Scholar 

  • Garofalo C, Osimani A, Milanović V, Aquilanti L, De Filippis F, Stellato G, Clementi F (2015) Bacteria and yeast microbiota in milk kefir grains from different Italian regions. Food Microbiol 49:123–133

    Article  CAS  PubMed  Google Scholar 

  • Geis A (2003) Perspectives of genetic engineering of bacteria used in food fermentations. In: Heller KJ (ed) Genetically engineered food: methods and detection. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany, pp 100–118

    Chapter  Google Scholar 

  • González-Quijano GK, Dorantes-Alvarez L, Hernández-Sánchez H, Jaramillo-Flores ME, de Jesús Perea-Flores M, Vera-Ponce de León A, Hernández-Rodríguez C (2014) Halotolerance and survival kinetics of lactic acid bacteria isolated from jalapeño pepper (Capsicum annuum L.) fermentation. J Food Sci 79(8):M1545–M1553

    Article  PubMed  CAS  Google Scholar 

  • Greppi A, Krych Ł, Costantini A, Rantsiou K, Hounhouigan DJ, Arneborg N et al (2015) Phytase-producing capacity of yeasts isolated from traditional African fermented food products and PHYPk gene expression of Pichia kudriavzevii strains. Int J Food Microbiol 205:81–89

    Article  CAS  PubMed  Google Scholar 

  • Gupta C, Prakash D, Gupta S (2015) A biotechnological approach to microbial based perfumes and flavours. J Microbiol Exp 2(1):00034

    Google Scholar 

  • Hammes WP, Brandt MJ, Francis KL, Rosenheim J, Seitter MF, Vogelmann SA (2005) Microbial ecology of cereal fermentations. Trends Food Sci Technol 16(1):4–11

    Article  CAS  Google Scholar 

  • Hansen EB (2002) Commercial bacterial starter cultures for fermented foods of the future. Int J Food Microbiol 78(1):119–131

    Article  PubMed  Google Scholar 

  • Hayakawa K, Kimura M, Kasaha K, Matsumoto K, Sansawa H, Yamori Y (2004) Effect of a γ-aminobutyric acid-enriched dairy product on the blood pressure of spontaneously hypertensive and normotensive Wistar–Kyoto rats. Br J Nutr 92(3):411–417

    Article  CAS  PubMed  Google Scholar 

  • Hjortmo SB, Hellström AM, Andlid TA (2008) Production of folates by yeasts in Tanzanian fermented togwa. FEMS Yeast Res 8(5):781–787

    Article  CAS  PubMed  Google Scholar 

  • Ho VTT, Zhao J, Fleet GH (2014) Yeasts are essential for cocoa bean fermentation. Int J Food Microbiol 174:72–87

    Article  CAS  PubMed  Google Scholar 

  • Høier E, Janzen T, Henriksen CM, Rattray F, Brockmann E, Johansen E (1999) The production, application and action of lactic cheese starter cultures. In: Law BA (ed) Technology of cheese making. Sheffild Academic Press, Sheffild, pp 99–131

    Google Scholar 

  • Holzapfel WH (2002) Appropriate starter culture technologies for small-scale fermentation in developing countries. Int J Food Microbiol 75(3):197–212

    Article  CAS  PubMed  Google Scholar 

  • Hou J, Hannon JA, McSweeney PL, Beresford TP, Guinee TP (2017) Effect of galactose metabolising and non-metabolising strains of Streptococcus thermophilus as a starter culture adjunct on the properties of cheddar cheese made with low or high pH at whey drainage. Int Dairy J 65:44–55

    Article  CAS  Google Scholar 

  • Hugenholtz J, Kleerebezem M, Starrenburg M, Delcour J, de Vos W, Hols P (2000) Lactococcus lactis as a cell factory for high-level diacetyl production. Appl Environ Microbiol 66(9):4112–4114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hurtado A, Reguant C, Esteve-Zarzoso B, Bordons A, Rozès N (2008) Microbial population dynamics during the processing of Arbequina table olives. Food Res Int 41(7):738–744

    Article  CAS  Google Scholar 

  • Hutkins RW (ed) (2006) Introduction in microbiology and technology of fermented foods, Blackwell Publishing, Ames, Iowa, USA

    Google Scholar 

  • Jayani RS, Saxena S, Gupta R (2005) Microbial pectinolytic enzymes: a review. J Food Biochem 40:2931–2944

    CAS  Google Scholar 

  • Jayaram VB, Cuyvers S, Lagrain B, Verstrepen KJ, Delcour JA, Courtin CM (2013) Mapping of Saccharomyces cerevisiae metabolites in fermenting wheat straight-dough reveals succinic acid as pH-determining factor. Food Chem 136(2):301–308

    Article  CAS  PubMed  Google Scholar 

  • Jayaram VB, Cuyvers S, Verstrepen KJ, Delcour JA, Courtin CM (2014) Succinic acid in levels produced by yeast (Saccharomyces cerevisiae) during fermentation strongly impacts wheat bread dough properties. Food Chem 151:421–428

    Article  CAS  PubMed  Google Scholar 

  • Kapsenberg ML (2003) Dendritic-cell control of pathogen-driven T-cell polarization. Nat Rev Immunol 3(12):984–993

    Article  CAS  PubMed  Google Scholar 

  • Kariluoto S, Vahteristo L, Salovaara H, Katina K, Liukkonen KH, Piironen V (2004) Effect of baking method and fermentation on folate content of rye and wheat breads. Cereal Chem 81(1):134–139

    Article  CAS  Google Scholar 

  • Kariluoto S, Aittamaa M, Korhola M, Salovaara H, Vahteristo L, Piironen V (2006) Effects of yeasts and bacteria on the levels of folates in rye sourdoughs. Int J Food Microbiol 106(2):137–143

    Article  CAS  PubMed  Google Scholar 

  • Katina K, Poutanen K (2013) Nutritional aspects of cereal fermentation with lactic acid bacteria and yeast. In: Handbook on sourdough biotechnology. Springer, USA, pp 229–244

    Chapter  Google Scholar 

  • Katina K, Laitila A, Juvonen R, Liukkonen KH, Kariluoto S, Piironen V, Poutanen K (2007) Bran fermentation as a means to enhance technological properties and bioactivity of rye. Food Microbiol 24(2):175–186

    Article  CAS  PubMed  Google Scholar 

  • Kim JY, Lee MY, Ji GE, Lee YS, Hwang KT (2009) Production of γ-aminobutyric acid in black raspberry juice during fermentation by Lactobacillus brevis GABA100. Int J Food Microbiol 130(1):12–16

    Article  CAS  PubMed  Google Scholar 

  • Kim B, Hong VM, Yang J, Hyun H, Im JJ, Hwang J, Kim JE (2016) A review of fermented foods with beneficial effects on brain and cognitive function. Prev Nutr Food Sci 21(4):297

    Article  PubMed  PubMed Central  Google Scholar 

  • Kimaryo VM, Massawe GA, Olasupo NA, Holzapfel WH (2000) The use of a starter culture in the fermentation of cassava for the production of “kivunde”, a traditional Tanzanian food product. Int J Food Microbiol 56(2):179–190

    Article  CAS  PubMed  Google Scholar 

  • Kingcha Y, Tosukhowong A, Zendo T, Roytrakul S, Luxananil P, Chareonpornsook K, Visessanguan W (2012) Anti-listeria activity of Pediococcus pentosaceus BCC 3772 and application as starter culture for Nham, a traditional fermented pork sausage. Food Control 25(1):190–196

    Article  CAS  Google Scholar 

  • Kleerebezem M, Kuipers OP, Smid EJ (2017) Lactic acid bacteria—a continuing journey in science and application. FEMS Microbiol Rev 41(Supp_1):S1–S2

    Article  PubMed  Google Scholar 

  • Kopermsub P, Yunchalard S (2010) Identification of lactic acid bacteria associated with the production of plaa-som, a traditional fermented fish product of Thailand. Int J Food Microbiol 138(3):200–204

    Article  CAS  PubMed  Google Scholar 

  • Korakli M, Gänzle MG, Vogel RF (2002) Metabolism by bifidobacteria and lactic acid bacteria of polysaccharides from wheat and rye, and exopolysaccharides produced by Lactobacillus sanfranciscensis. J Appl Microbiol 92(5):958–965

    Article  CAS  PubMed  Google Scholar 

  • Kumar P, Chatli MK, Verma AK, Mehta N, Malav OP, Kumar D, Sharma N (2017) Quality, functionality, and shelf life of fermented meat and meat products: a review. Crit Rev Food Sci Nutr 57(13):2844–2856

    Article  CAS  PubMed  Google Scholar 

  • Kumura H, Tanoue Y, Tsukahara M, Tanaka T, Shimazaki K (2004) Screening of dairy yeast strains for probiotic applications. J Dairy Sci 87(12):4050–4056

    Article  CAS  PubMed  Google Scholar 

  • Lacerda CHF, Hayashi C, Soares CM, Boscolo WR, Kavata LCB (2005) Replacement of corn Zea mays L. by cassava Manihot esculenta crants meal in grass-carp Ctenopharyngodon idella fingerlings diets. Acta Sci Anim Sci 27(2):241–245

    Article  Google Scholar 

  • Ladero V, del Rio B, Linares DM, Fernandez M, Mayo B, Martin MC, Alvarez MA (2014) Genome sequence analysis of the biogenic amine-producing strain Lactococcus lactis subsp. cremoris CECT 8666 (formerly GE2-14). Genome Announc 2(5):e01088–e01014

    Article  PubMed  PubMed Central  Google Scholar 

  • Lamontanara A, Orrù L, Cattivelli L, Russo P, Spano G, Capozzi V (2014) Genome sequence of Oenococcus oeni OM27, the first fully assembled genome of a strain isolated from an Italian wine. Genome Announc 2(4):e00658–e00614

    Article  PubMed  PubMed Central  Google Scholar 

  • Landete JM (2017) A review of food-grade vectors in lactic acid bacteria: from the laboratory to their application. Crit Rev Biotechnol 37(3):296–308

    Article  CAS  PubMed  Google Scholar 

  • LeBlanc JG, Milani C, de Giori GS, Sesma F, Van Sinderen D, Ventura M (2013) Bacteria as vitamin suppliers to their host: a gut microbiota perspective. Curr Opin Biotechnol 24(2):160–168

    Article  CAS  PubMed  Google Scholar 

  • Lee JS, Heo GY, Lee JW, Oh YJ, Park JA, Park YH, Ahn JS (2005) Analysis of kimchi microflora using denaturing gradient gel electrophoresis. Int J Food Microbiol 102(2):143–150

    Article  CAS  PubMed  Google Scholar 

  • Lefeber T, Papalexandratou Z, Gobert W, Camu N, De Vuyst L (2012) On-farm implementation of a starter culture for improved cocoa bean fermentation and its influence on the flavour of chocolates produced thereof. Food Microbiol 30:379–392

    Article  CAS  PubMed  Google Scholar 

  • Leite AMO, Mayo B, Rachid CTCC, Peixoto RS, Silva JT, Paschoalin VMF, Delgado S (2012) Assessment of the microbial diversity of Brazilian kefir grains by PCR-DGGE and pyrosequencing analysis. Food Microbiol 31(2):215–221

    Article  CAS  PubMed  Google Scholar 

  • Leroy F, De Vuyst L (2004) Lactic acid bacteria as functional starter cultures for the food fermentation industry. Trends Food Sci Technol 15(2):67–78

    Article  CAS  Google Scholar 

  • Leroy F, Verluyten J, De Vuyst L (2006) Functional meat starter cultures for improved sausage fermentation. Int J Food Microbiol 106(3):270–285

    Article  PubMed  Google Scholar 

  • Limsowtin GKY, Powell IB, Parente E (1996) Types of starters. In: Cogan TM, Accolas JE (eds) Dairy starter cultures. VCH, New York, pp 101–129

    Google Scholar 

  • London LEE, Chaurin V, Auty MAE, Fenelon MA, Fitzgerald GF, Ross RP, Stanton C (2015) Use of Lactobacillus mucosae DPC 6426, an exopolysaccharide-producing strain, positively influences the techno-functional properties of yoghurt. Int Dairy J 40:33–38

    Article  Google Scholar 

  • Lortal S, Chapot-Chartier MP (2005) Role, mechanisms and control of lactic acid bacteria lysis in cheese. Int Dairy J 15(6):857–871

    Article  CAS  Google Scholar 

  • Magalhães KT, Pereira GDM, Dias DR, Schwan RF (2010) Microbial communities and chemical changes during fermentation of sugary Brazilian kefir. World J Microbiol Biotechnol 26(7):1241–1250

    Article  PubMed  CAS  Google Scholar 

  • Malisorn C, Suntornsuk W (2008) Optimization of β-carotene production by Rhodotorula glutinis DM28 in fermented radish brine. Bioresour Technol 99(7):2281–2287

    Article  CAS  PubMed  Google Scholar 

  • Marco ML, Heeney D, Binda S, Cifelli CJ, Cotter PD, Foligne B, Smid EJ (2017) Health benefits of fermented foods: microbiota and beyond. Curr Opin Biotechnol 44:94–102

    Article  CAS  PubMed  Google Scholar 

  • Martín B, Jofré A, Garriga M, Pla M, Aymerich T (2006) Rapid quantitative detection of Lactobacillus sakei in meat and fermented sausages by real-time PCR. Appl Environ Microbiol 72(9):6040–6048

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Masoud W, Jespersen L (2006) Pectin degrading enzymes in yeasts involved in fermentation of Coffea arabica in East Africa. Int J Food Microbiol 110:291–296

    Article  CAS  PubMed  Google Scholar 

  • Matthews A, Grimaldi A, Walker M, Bartowsky E, Grbin P, Jiranek V (2004) Lactic acid bacteria as a potential source of enzymes for use in vinification. Appl Environ Microbiol 70(10):5715–5731

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maturano YP, Nally MC, Toro ME, De Figueroa LIC, Combina M, Vazquez F (2012) Monitoring of killer yeast populations in mixed cultures: influence of incubation temperature of microvinifications samples. World J Microbiol Biotechnol 28(11):3135–3142

    Article  PubMed  Google Scholar 

  • Mauriello G, Casaburi A, Blaiotta G, Villani F (2004) Isolation and technological properties of coagulase negative staphylococci from fermented sausages of Southern Italy. Meat Sci 67(1):149–158

    Article  CAS  PubMed  Google Scholar 

  • McGovern PE, Zhang J, Tang J, Zhang Z, Hall GR, Moreau RA, Cheng G (2004) Fermented beverages of pre-and proto-historic China. Proc Natl Acad Sci U S A 101(51):17593–17598

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McSweeney PL, Sousa MJ (2000) Biochemical pathways for the production of flavour compounds in cheeses during ripening: a review. Lait 80(3):293–324

    Article  CAS  Google Scholar 

  • Michaylova M, Minkova S, Kimura K, Sasaki T, Isawa K (2007) Isolation and characterization of Lactobacillus delbrueckii ssp. bulgaricus and Streptococcus thermophilus from plants in Bulgaria. FEMS Microbiol Lett 269(1):160–169

    Article  CAS  PubMed  Google Scholar 

  • Mohammadi R, Sohrabvandi S, Mohammad Mortazavian A (2012) The starter culture characteristics of probiotic microorganisms in fermented milks. Eng Life Sci 12:399–409

    Article  CAS  Google Scholar 

  • Mokoena MP (2017) Lactic acid bacteria and their bacteriocins: classification, biosynthesis and applications against uropathogens: a mini-review. Molecules 22(8):1255

    Article  CAS  PubMed Central  Google Scholar 

  • Montaño A, Sánchez AH, Casado FJ, de Castro A, Rejano L (2003) Chemical profile of industrially fermented green olives of different varieties. Food Chem 82:297–302

    Article  CAS  Google Scholar 

  • Montel MC, Buchin S, Mallet A, Delbes-Paus C, Vuitton DA, Desmasures N, Berthier F (2014) Traditional cheeses: rich and diverse microbiota with associated benefits. Int J Food Microbiol 177:136–154

    Article  PubMed  Google Scholar 

  • Moslehi-Jenabian S, Lindegaard L, Jespersen L (2010) Beneficial effects of probiotic and food borne yeasts on human health. Forum Nutr 2(4):449–473

    CAS  Google Scholar 

  • Mukdsi MCA, Haro C, González SN, Medina RB (2013) Functional goat milk cheese with feruloyl esterase activity. J Funct Foods 5(2):801–809

    Article  CAS  Google Scholar 

  • Newberry MP, Phan-Thien N, Larroque OR, Tanner RI, Larsen NG (2002) Dynamic and elongation rheology of yeasted bread doughs. Cereal Chem 79(6):874

    Article  CAS  Google Scholar 

  • Nguyen TTT, Loiseau G, Icard-Vernière C, Rochette I, Trèche S, Guyot JP (2007) Effect of fermentation by amylolytic lactic acid bacteria, in process combinations, on characteristics of rice/soybean slurries: a new method for preparing high energy density complementary foods for young children. Food Chem 100(2):623–631

    Article  CAS  Google Scholar 

  • Nielsen DS, Teniola OD, Ban-Koffi L, Owusu M, Andersson TS, Holzapfel WH (2007) The microbiology of Ghanaian cocoa fermentations analysed using culture-dependent and culture-independent methods. Int J Food Microbiol 114:168–186

    Article  CAS  PubMed  Google Scholar 

  • Nout MR (2003) 17 Traditional fermented products from Africa, Latin America and Asia. In: Boekhout T, Robert V (eds) Yeasts in Food-Beneficial and Detrimental Aspects. Behr's-Verlag GmbH & Co. KG, Hamburg, Germany pp 451–473

    Chapter  Google Scholar 

  • Ogunremi OR, Sanni AI, Agrawal R (2015) Probiotic potentials of yeasts isolated from some cereal-based Nigerian traditional fermented food products. J Appl Microbiol 119(3):797–808

    Article  CAS  PubMed  Google Scholar 

  • Oguntoyinbo FA, Tourlomousis P, Gasson MJ, Narbad A (2011) Analysis of bacterial communities of traditional fermented West African cereal foods using culture independent methods. Int J Food Microbiol 145(1):205–210

    Article  PubMed  Google Scholar 

  • Ong L, Henriksson A, Shah NP (2006) Development of probiotic cheddar cheese containing Lactobacillus acidophilus, Lb. casei, Lb. paracasei and Bifidobacterium spp. and the influence of these bacteria on proteolytic patterns and production of organic acid. Int Dairy J 16(5):446–456

    Article  CAS  Google Scholar 

  • Padilla B, Manzanares P, Belloch C (2014) Yeast species and genetic heterogeneity within Debaryomyces hansenii along the ripening process of traditional ewes’ and goats’ cheeses. Food Microbiol 38:160–166

    Article  CAS  PubMed  Google Scholar 

  • Páez-Lerma JB, Arias-García A, Rutiaga-Quiñones OM, Barrio E, Soto-Cruz NO (2013) Yeasts isolated from the alcoholic fermentation of Agave duranguensis during mezcal production. Food Biotechnol 27(4):342–356

    Article  CAS  Google Scholar 

  • Papalexandratou Z, De Vuyst L (2011) Assessment of the yeast species composition of cocoa bean fermentations in different cocoa-producing regions using denaturing gradient gel electrophoresis. FEMS Yeast Res 11(7):564–574

    Article  CAS  PubMed  Google Scholar 

  • Paramithiotis S, Chouliaras Y, Tsakalidou E, Kalantzopoulos G (2005) Application of selected starter cultures for the production of wheat sourdough bread using a traditional three-stage procedure. Process Biochem 40(8):2813–2819

    Article  CAS  Google Scholar 

  • Parente E, Cogan TM (2004) Starter cultures: general aspects. In: Fox PF, McSweeney PLH, Cogan TM, Guinee TP (eds) Cheese: chemistry, physics and microbiology, 3rd edn. Elsevier, London, pp 123–148

    Chapter  Google Scholar 

  • Park KB, Oh SH (2006) Isolation and characterization of Lactobacillus buchneri strains with high γ-aminobutyric acid producing capacity from naturally aged cheese. Food Sci Biotechnol 15:86–90

    CAS  Google Scholar 

  • Patel A, Shah N, Prajapati JB (2013) Biosynthesis of vitamins and enzymes in fermented foods by lactic acid bacteria and related genera-A promising approach. Croat J Food Sci Technol 5(2):85–91

    Google Scholar 

  • Patrignani F, Lucci L, Vallicelli M, Guerzoni ME, Gardini F, Lanciotti R (2007) Role of surface-inoculated Debaryomyces hansenii and Yarrowia lipolytica strains in dried fermented sausage manufacture. Part 1: evaluation of their effects on microbial evolution, lipolytic and proteolytic patterns. Meat Sci 75:676–686

    Article  CAS  PubMed  Google Scholar 

  • Petrova PM, Petrov KK (2011) Antimicrobial activity of starch degrading Lactobacillus strains isolated from boza. Biotechnol Biotechnol Equip 25:114–116

    Article  Google Scholar 

  • Petrova P, Petrov K, Stoyancheva G (2013) Starch-modifying enzymes of lactic acid bacteria–structures, properties, and applications. Starch-Stärke 65(1–2):34–47

    Article  CAS  Google Scholar 

  • Pistarino E, Aliakbarian B, Casazza AA, Paini M, Cosulich ME, Perego P (2013) Combined effect of starter culture and temperature on phenolic compounds during fermentation of Taggiasca black olives. Food Chem 138:2043–2049

    Article  CAS  PubMed  Google Scholar 

  • Poutanen K, Flander L, Katina K (2009) Sourdough and cereal fermentation in a nutritional perspective. Food Microbiol 26(7):693–699

    Article  CAS  PubMed  Google Scholar 

  • Powell IB, Broome MC, Limsowtin GKY (2011) Cheese: starter cultures: specific properties. In: Fuquay JW, Fox PF, McSweeney PLH (eds) Encyclopedia of dairy sciences. Elsevier Academic, Amsterdam, pp 559–566

    Google Scholar 

  • Psani M, Kotzekidou P (2006) Technological characteristics of yeast strains and their potential as starter adjuncts in Greek-style black olive fermentation. World J Microbiol Biotechnol 22(12):1329–1336

    Article  CAS  Google Scholar 

  • Purriños L, Carballo J, Lorenzo JM (2013) The influence of Debaryomyces hansenii, Candida deformans and Candida zeylanoides on the aroma formation of dry-cured ‘lacón’. Meat Sci 93:344–350

    Article  PubMed  CAS  Google Scholar 

  • Rad AH, Khosroushahi AY, Khalili M, Jafarzadeh S (2016) Folate bio-fortification of yoghurt and fermented milk: a review. Dairy Sci Technol 96(4):427–441

    Article  CAS  Google Scholar 

  • Rai AK, Jeyaram K (2015) Health benefits of functional proteins in fermented foods. In: Tamang JP (ed) Health benefits of fermented foods and beverages. CRC Press, London, New York, pp 455–474

    Google Scholar 

  • Ray RC, Sivakumar PS (2009) Traditional and novel fermented foods and beverages from tropical root and tuber crops. Int J Food Sci Technol 44(6):1073–1087

    Article  CAS  Google Scholar 

  • Ray M, Ghosh K, Singh S, Mondal KC (2016) Folk to functional: an explorative overview of rice-based fermented foods and beverages in India. J Ethn Foods 3(1):5–18

    Article  Google Scholar 

  • Reddy G, Altaf MD, Naveena BJ, Venkateshwar M, Kumar EV (2008) Amylolytic bacterial lactic acid fermentation—a review. Biotechnol Adv 26(1):22–34

    Article  CAS  PubMed  Google Scholar 

  • Rhee SJ, Lee JE, Lee CH (2011) Importance of lactic acid bacteria in Asian fermented foods. Microb Cell Factories 10(1):S5

    Article  Google Scholar 

  • Romano P, Capece A, Jespersen L (2006) Taxonomic and ecological diversity of foods and beverage yeasts. In: Querol A, Fleet GH (eds) Yeasts in food and beverages. Springer, Berlin, pp 13–54

    Chapter  Google Scholar 

  • Ruiz‐Rodríguez L, Bleckwedel J, Eugenia Ortiz M, Pescuma M, Mozzi F (2017) Lactic Acid Bacteria. In: Wittmann C, Liao JC (eds) Industrial Biotechnology: Microorganisms. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany, pp 395–451 

    Chapter  Google Scholar 

  • Rul F, Zagorec M, Champomier-Vergès MC (2013) Lactic acid bacteria in fermented foods. In: Proteomics in foods. Springer, USA, pp 261–283

    Chapter  Google Scholar 

  • Saarela M, Mogensen G, Fondén R, Mättö J, Mattila-Sandholm T (2000) Probiotic bacteria: safety, functional and technological properties. J Biotechnol 84(3):197–215

    Article  CAS  PubMed  Google Scholar 

  • Saithong P, Panthavee W, Boonyaratanakornkit M, Sikkhamondhol C (2010) Use of a starter culture of lactic acid bacteria in plaa-som, a Thai fermented fish. J Biosci Bioeng 110(5):553–557

    Article  CAS  PubMed  Google Scholar 

  • Sanchez AH, Rejano L, Montano A, de Castro A (2001) Utilization at high pH of starter cultures of lactobacilli for Spanish-style green olive fermentation. Int J Food Microbiol 67(1–2):115–122

    Article  CAS  PubMed  Google Scholar 

  • Sánchez-Molinero F, Arnau J (2008) Effect of the inoculation of a starter culture and vacuum packaging during the resting stage on sensory traits of dry-cured ham. Meat Sci 80:1074–1080

    Article  PubMed  Google Scholar 

  • Santivarangkna C, Kulozik U, Foerst P (2007) Alternative drying processes for the industrial preservation of lactic acid starter cultures. Biotechnol Prog 23(2):302–315

    Article  CAS  PubMed  Google Scholar 

  • Saubade F, Hemery YM, Guyot JP, Humblot C (2017) Lactic acid fermentation as a tool for increasing the folate content of foods. Crit Rev Food Sci Nutr 57:3894–3910

    Article  CAS  PubMed  Google Scholar 

  • Sauer U (2001) Evolutionary engineering of industrially important microbial phenotypes. Adv Biochem Eng Biotechnol 73:129–170

    CAS  PubMed  Google Scholar 

  • Selhub EM, Logan AC, Bested AC (2014) Fermented foods, microbiota, and mental health: ancient practice meets nutritional psychiatry. J Physiol Anthropol 33(1):2

    Article  PubMed  PubMed Central  Google Scholar 

  • Seok JH, Park KB, Kim YH, Bae MO, Lee MK, Oh SH (2008) Production and characterization of kimchi with enhanced levels of γ-aminobutyric acid. Food Sci Biotechnol 17(5):940–946

    CAS  Google Scholar 

  • Sicard D, Legras JL (2011) Bread, beer and wine: yeast domestication in the Saccharomyces sensu stricto complex. C R Biol 334(3):229–236

    Article  PubMed  Google Scholar 

  • Silva CF, Vilela DM, de Souza Cordeiro C, Duarte WF, Dias DR, Schwan RF (2013) Evaluation of a potential starter culture for enhance quality of coffee fermentation. World J Microbiol Biotechnol 29:235–247

    Article  CAS  PubMed  Google Scholar 

  • Singracha P, Niamsiri N, Visessanguan W, Lertsiri S, Assavanig A (2017) Application of lactic acid bacteria and yeasts as starter cultures for reduced-salt soy sauce (moromi) fermentation. LWT Food Sci Technol 78:181–188

    Article  CAS  Google Scholar 

  • Smid EJ, Kleerebezem M (2014) Production of aroma compounds in lactic fermentations. Annu Rev Food Sci Technol 5:313–326

    Article  CAS  PubMed  Google Scholar 

  • Smit G, Smit BA, Engels WJ (2005) Flavour formation by lactic acid bacteria and biochemical flavour profiling of cheese products. FEMS Microbiol Rev 29(3):591–610

    Article  CAS  PubMed  Google Scholar 

  • Sodini I, Lucas A, Oliveira MN, Remeuf F, Corrieu G (2002) Effect of milk base and starter culture on acidification, texture, and probiotic cell counts in fermented milk processing. J Dairy Sci 85(10):2479–2488

    Article  CAS  PubMed  Google Scholar 

  • Speranza B, Bevilacqua A, Corbo MR, Sinigaglia M (eds) (2016) Starter cultures in food production. Wiley, Hoboken

    Google Scholar 

  • Steinkraus KH (2002) Fermentations in world food processing. Compr Rev Food Sci Food Saf 1(1):23–32

    Article  CAS  Google Scholar 

  • Takeshima K, Yamatsu A, Yamashita Y, Watabe K, Horie N, Masuda K, Kim M (2014) Subchronic toxicity evaluation of γ-aminobutyric acid (GABA) in rats. Food Chem Toxicol 68:128–134

    Article  CAS  PubMed  Google Scholar 

  • Tamang JP, Fleet GH (2009) Yeasts diversity in fermented foods and beverages. In: Yeast biotechnology: diversity and applications. Springer, Netherlands, pp 169–198

    Chapter  Google Scholar 

  • Tamang JP, Kailasapathy K (eds) (2010) Fermented foods and beverages of the world. CRC Press, New York

    Google Scholar 

  • Tamang JP, Tamang B, Schillinger U, Franz CM, Gores M, Holzapfel WH (2005) Identification of predominant lactic acid bacteria isolated from traditionally fermented vegetable products of the Eastern Himalayas. Int J Food Microbiol 105(3):347–356

    Article  CAS  PubMed  Google Scholar 

  • Tamang JP, Watanabe K, Holzapfel WH (2016) Diversity of microorganisms in global fermented foods and beverages. Front Microbiol 7:377

    PubMed  PubMed Central  Google Scholar 

  • Tamime AY, Thomas L (eds) (2017) Probiotic dairy products. Wiley, Hoboken

    Google Scholar 

  • Tapsell LC (2015) Fermented dairy food and CVD risk. Br J Nutr 113(S2):S131–S135

    Article  CAS  PubMed  Google Scholar 

  • Taskila S (2016) Industrial production of starter cultures. In: Speranza B, Bevilacqua A, Corbo MR, Sinigaglia M (eds.) Starter Cultures in Food Production. John Wiley & Sons., Chichester, United States, pp 79–100 

    Google Scholar 

  • Teniola OD, Odunfa SA (2001) The effects of processing methods on the levels of lysine, methionine and the general acceptability of ogi processed using starter cultures. Int J Food Microbiol 63(1–2):1–9

    Article  CAS  PubMed  Google Scholar 

  • Tornadijo ME, Fresno JM, Sarmiento RM, Carballo J (1998) Study of the yeasts during the ripening process of Armada cheeses from raw goat’s milk. Lait 78(6):647–659

    Article  CAS  Google Scholar 

  • Treven P, Trmčić A, Matijašić BB, Rogelj I (2014) Improved draft genome sequence of probiotic strain Lactobacillus gasseri K7. Genome Announc 2(4):e00725–e00714

    Article  PubMed  PubMed Central  Google Scholar 

  • Tsai JS, Lin YS, Pan BS, Chen TJ (2006) Antihypertensive peptides and γ-aminobutyric acid from prozyme 6 facilitated lactic acid bacteria fermentation of soymilk. Process Biochem 41(6):1282–1288

    Article  CAS  Google Scholar 

  • Udomsil N, Rodtong S, Choi YJ, Hua Y, Yongsawatdigul J (2011) Use of Tetragenococcus halophilus as a starter culture for flavor improvement in fish sauce fermentation. J Agric Food Chem 59(15):8401–8408

    Article  CAS  PubMed  Google Scholar 

  • Valyasevi R, Rolle RS (2002) An overview of small-scale food fermentation technologies in developing countries with special reference to Thailand: scope for their improvement. Int J Food Microbiol 75(3):231–239

    Article  PubMed  Google Scholar 

  • Viljoen BC (2001) The interaction between yeasts and bacteria in dairy environments. Int J Food Microbiol 69(1):37–44

    Article  CAS  PubMed  Google Scholar 

  • Viljoen B (2006) Yeast ecological interactions. Yeast’ yeast, yeast’ bacteria, yeast’ fungi interactions and yeasts as biocontrol agents. In: Yeasts in food and beverages. Springer, Berlin, pp 83–110

    Chapter  Google Scholar 

  • Vrancken G, De Vuyst L, Van der Meulen R, Huys G, Vandamme P, Daniel HM (2010) Yeast species composition differs between artisan bakery and spontaneous laboratory sourdoughs. FEMS Yeast Res 10(4):471–481

    Article  CAS  PubMed  Google Scholar 

  • Wacher C, Cañas A, Bárzana E, Lappe P, Ulloa M, Owens JD (2000) Microbiology of Indian and Mestizo pozol fermentations. Food Microbiol 17(3):251–256

    Article  Google Scholar 

  • Wah TT, Walaisri S, Assavanig A, Niamsiri N, Lertsiri S (2013) Co-culturing of Pichia guilliermondii enhanced volatile flavor compound formation by Zygosaccharomyces rouxii in the model system of Thai soy sauce fermentation. Int J Food Microbiol 160(3):282–289

    Article  CAS  PubMed  Google Scholar 

  • Welman AD, Maddox IS (2003) Exopolysaccharides from lactic acid bacteria: perspectives and challenges. Trends Biotechnol 21(6):269–274

    Article  CAS  PubMed  Google Scholar 

  • Wood BJ (2012) Microbiology of fermented foods. Blackie Academic & Professional, London

    Google Scholar 

  • Xiong T, Li X, Guan Q, Peng F, Xie M (2014) Starter culture fermentation of Chinese sauerkraut: growth, acidification and metabolic analyses. Food Control 41:122–127

    Article  CAS  Google Scholar 

  • Yépez L, Tenea GN (2015) Genetic diversity of lactic acid bacteria strains towards their potential probiotic application. Rom Biotechnol Lett 20(2):10191–10199

    Google Scholar 

  • Zhang ZY, Liu C, Zhu YZ, Wei YX, Tian F, Zhao GP, Guo XK (2012) Safety assessment of Lactobacillus plantarum JDM1 based on the complete genome. Int J Food Microbiol 153(1):166–170

    Article  CAS  PubMed  Google Scholar 

  • Zhao L, Li Y, Jiang L, Deng F (2016) Determination of fungal community diversity in fresh and traditional Chinese fermented pepper by pyrosequencing. Microbiol Lett 363(24):fnw273

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kandasamy, S., Kavitake, D., Shetty, P.H. (2018). Lactic Acid Bacteria and Yeasts as Starter Cultures for Fermented Foods and Their Role in Commercialization of Fermented Foods. In: Panda, S., Shetty, P. (eds) Innovations in Technologies for Fermented Food and Beverage Industries. Food Microbiology and Food Safety. Springer, Cham. https://doi.org/10.1007/978-3-319-74820-7_2

Download citation

Publish with us

Policies and ethics