Skip to main content

Innovative and Safe Packaging Technologies for Food and Beverages: Updated Review

  • Chapter
  • First Online:
Innovations in Technologies for Fermented Food and Beverage Industries

Part of the book series: Food Microbiology and Food Safety ((FMFS))

Abstract

The diverse consumer demand is the main drive for innovations in food packaging. Active as well as intelligent packaging is undoubtedly a huge milestone of the packaging sector in this era extending the shelf life as well as maintaining the food quality. Bioactive packaging, a new approach, has a great role in improving the consumer’s health. Nanotechnology like a magical spell has revolutionized the packaging from lighter, more robust, and flexible films to the smart packaging monitoring the food condition. Nanoscale innovations are bringing the packaging area to a brand new unimaginable distinction. The emerging packaging technologies have a monumental influence on several facets of the food segment by minimizing the food wastage, spoilage, food-borne diseases’ breakthrough, recalls, and retailer and consumer complaints. This chapter deals with the novel packaging technologies that lower the pathogen detection time, improve the food safety, and control the food packaging and quality all over the supply chain.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abad E, Palacio F, Nuin M et al (2009) RFID smart tag for traceability and cold chain monitoring of foods: demonstration in an intercontinental fresh fish logistic chain. J Food Engg 93:394–399

    Article  Google Scholar 

  • Abdellah AM, Ken AI (2012) Effect of storage packaging on sunflower oil oxidative stability. Am J Food Technol 7:700–707

    Article  CAS  Google Scholar 

  • Ahvenainen R (2003) Active and intelligent packaging: an introduction. In: Ahvenainen R (ed) Novel food packaging techniques. Woodhead Publishing Ltd., Cambridge, UK, pp 5–21

    Chapter  Google Scholar 

  • Akbar A, Anal AK (2014) Zinc oxide nanoparticles loaded active packaging, a challenge study against Salmonella typhimurium and Staphylococcus aureus in ready-to-eat poultry meat. Food Control 38:88–95

    Article  CAS  Google Scholar 

  • Almenar E, Catala R, Hernandez-Munoz P, Gavara R (2009) Optimization of an active package for wild strawberries based on the release of 2-nonanone. LWT-Food Sci Technol 42:587–593

    Article  CAS  Google Scholar 

  • Anthierens T, Ragaert P, Verbrugghe S et al (2011) Use of endospore-forming bacteria as an active oxygen scavenger in plastic packagingmaterials. Innov Food Sci Emerg Technol 12(4):594–599

    Article  CAS  Google Scholar 

  • Bacigalupi C, Lemaistre MH, Boutroy N et al (2013) Changes in nutritional and sensory properties of orange juice packed in pet bottles: an experimental and modelling approach. Food Chem 141:3827–3836

    Article  CAS  Google Scholar 

  • Barbosa-Pereira L, Aurrekoetxea GP, Angulo I et al (2014) Development of new active packaging films coated with natural phenolic compounds to improve the oxidative stability of beef. Meat Sci 97(2):249–254

    Article  CAS  Google Scholar 

  • Basch C, Jagus R, Flores S (2013) Physical and antimicrobial properties of tapioca starch-HPMC edible films incorporated with nisin and/or potassium sorbate. Food Bioprocess Tech 6(9):2419–2428

    Article  CAS  Google Scholar 

  • Bechini A, Cimino M, Marcelloni F et al (2008) Patterns and technologies for enabling supply chain traceability through collaborative e-business. Inf Softw Technol 50:342–359

    Article  Google Scholar 

  • Blanco MM, Molina V, Sanchez M et al (2014) Active polymers containing Lactobacillus curvatus CRL705 bacteriocins: effectiveness assessment in Wieners. Int J Food Microbiol 178:7–12

    Article  Google Scholar 

  • Bodenhamer WT (2000) Method and apparatus for selective biological material detection. US patent 6, 051, 388 (Toxin Alert Inc. Canada)

    Google Scholar 

  • Brockgreitens J, Abbas A (2016) Responsive food packaging: recent progress and technological prospects. Compr Rev Food Sci Food Saf 15:3–15

    Article  Google Scholar 

  • CAEN RFID (2017) CAEN RFID easy2log© RT0005. http://www.caenrfid.it/en/Caen Prod.js p?mypage=3&parent=65&idmod=780 Accessed 14 May 2017

  • Calatayud M, LĂłpez-de-Dicastillo C, LĂłpez-Carballo G et al (2013) Active films based on cocoa extract with antioxidant, antimicrobial and biological applications. Food Chem 139:51–58

    Article  CAS  Google Scholar 

  • Camo J, Beltran JA, Roncales P (2008) Extension of the display life of lamb with an antioxidant active packaging. Meat Sci 80:1086–1091

    Article  CAS  Google Scholar 

  • Campos CA, Gerschenson LN, Flores SK (2011) Development of edible films and coatings with antimicrobial activity. Food Bioprocess Technol 4:849–875

    Article  CAS  Google Scholar 

  • Clariant (2017) Oxygen protection for packaged foods. http://www.clariant.com/oxy-guard-oxygen-scavenger Accessed 16 May 2017

  • Coma V (2008) Bioactive packaging technologies for extended shelf life of meat-based products. Meat Sci 78:90–103

    Article  CAS  Google Scholar 

  • CSL (2017) CS8304 cold chain temperature logging tag. http://www.convergence.com. hk/products/rfid/rfid-tags/cs8304/. Accessed 11 May 2017

  • Dainelli D, Gontard N, Spyropoulos D et al (2008) Active and intelligent food packaging: legal aspects and safety concerns. Trends Food Sci Technol 19:S103–S112 http:// dx.doi.org/10.1016/j.tifs.2008.09.011

    Article  Google Scholar 

  • Day BPF (2003) Active packaging. In: Coles R, McDowell D, Kirwan M (eds) Food packaging technologies. CRC Press, Boca Raton, pp 282–302

    Google Scholar 

  • Day BPF (2008) Active packaging of food. In: Kerry J, Butler P (eds) Smart packaging technologies for fast moving consumer goods. Wiley, New York, pp 1–18

    Google Scholar 

  • de Abreu PDA, Cruz JM, Losada PP (2012) Active and intelligent packaging for the food industry. Food Rev Int 28:146–187

    Article  Google Scholar 

  • de Abreu PDA, Losada PP, Maroto J et al (2011) Natural antioxidant active packaging film and its effect on lipid damage in frozen blue shark (Prionace glauca). Innov Food Sci Emerg Technol 12(1):50–55

    Article  Google Scholar 

  • De La Puerta MCCN, Gutierrez BC, Sanchez JC (2010) Smart packaging for detecting microorganisms. US Patent US8741596 B2, 21 Apr 2010

    Google Scholar 

  • Doyle ME (2006) Nanotechnology: a brief literature review. Food Research Institute Briefings [Internet] https://fri.wisc.edu/files/Briefs_File/FRIBrief_Nanotech_Lit _Rev.pdf. Accessed 14 May 2017

  • EFSA (2014) Scientific opinion on the safety assessment of the active substances, palladium metal and hydrogen gas, for use in active food contact materials. EFSA J 12(2):3558–3566

    Article  Google Scholar 

  • El Amin A (2007) Nanoscale particles designed to block UV light. http://foodproductiondaily.com/news/ng.asp?id=80676 Accessed 18 May 2017

    Google Scholar 

  • ETC Group (2004) ETC group report down on the farm: the impact of nano-scale technologies on food and agriculture http://www.nanowerk.com/nanotechnology/ reports/reportpdf/report10.pdf. Accessed 29 May 2017

  • Etienne M, Ifremer N (2005) SEAFOODplus-traceability-valid-methods for chemical quality assessment-Volatile amines as criteria for chemical quality assessment. http://archimer.ifremer.fr/doc/2005/rapport-6486.pdf. Accessed 13 May 2017

  • EU (2009) Guidance to the commission regulation (EC) No 450/2009 of 29 May 2009 on active and intelligent materials and articles intended to come into contact with food. Version 10. European Commission Health and Consumers Directorate- General Directorate E-Safety of the Food chain. E6- Innovation and sustainability

    Google Scholar 

  • Ferrari MC, Carranzaa S, Bonnecazea RT et al (2009) Modeling of oxygen scavenging for improved barrier behavior: blend films. J Membr Sci 329:183–192

    Article  CAS  Google Scholar 

  • Ferrocinoa I, Greppia A, La Storiab A et al (2016) Impact of nisin-activated packaging on microbiota of beef burgers during storage. Appl Environ Microbiol 82:549–559

    Article  Google Scholar 

  • Freshpoint (2017a) BestBy. http://www.freshpoint-tti.com/time-from-opening-indicators/. Accessed 15 May 2017

  • Freshpoint (2017b) BestBy. http://www.freshpoint-tti.com/technology/. Accessed 15 May 2017

  • Georgescu I, Cobianu C, Dumitru VG (2008) Intelligent packaging method and system based on acoustic wave devices. US patent US 7755489 B2, 28 Apr 2008

    Google Scholar 

  • Gontard N (2000) Panorama des emballages alimentaire actif (Panorama of active food packaging). In: Gontard N (ed) Les Emballages Actifs. Tech & Doc Editions, Londres. ISBN-10: 2743003871

    Google Scholar 

  • Gunders D (2012) Wasted: how America is losing up to 40 percent of its food from farm to fork to landfill. NDRC Issue Paper IP:12–06-B https://www.nrdc.org/sites/default /files/wasted-food-IP.pdf. Accessed 6 May 2017

  • Hong SI, Park WS (2000) Use of color indicators as an active packaging system for evaluating kimchi fermentation. J Food Eng 46:67–72

    Article  Google Scholar 

  • Insignia Technologies (2017) Novas: embedded label. http://insignia.mtcserver11.com/ portfolio-view/novas-embedded-label/. Accessed 3 May 2017

  • Jamshidian M, Tehrany EA, Imran M et al (2012) Structural, mechanical and barrier properties of active PLA-antioxidant films. J Food Eng 110(3):380–389

    Article  CAS  Google Scholar 

  • Jayasena DD, Jo C (2013) Essential oils as potential antimicrobial agents in meat and meat products: a review. Trends Food Sci Technol 34:96–108

    Article  CAS  Google Scholar 

  • Jin T, Zhang H (2008) Biodegradable polylactic acid polymer with nisin for use in antimicrobial food packaging. J Food Sci 73:127–134

    Article  CAS  Google Scholar 

  • JofrĂ© A, Aymerich T, Garriga M (2008) Assessment of the effectiveness of antimicrobial packaging combined with high pressure to control Salmonella sp. in cooked ham. Food Control 19(6):634–638

    Article  Google Scholar 

  • Johns Hopkins University Applied Physics Laboratory (2014) A colorimetric sensor of food spoilage based on a molecularly imprinted polymer. http://www.jhuapl.edu/ott/technologies/technology/articles/P01491.asp. Accessed 18 May 2017

  • Joseph T, Morrison M (2006) Nanotechnology in agriculture and food. A nanoforum report https://cordis.europa.eu/pub/nanotechnology/docs/nanotechnology_in_agriculture_and_food.pdf. Accessed 22 May 2016

  • Kang HJ, Jo C, Kwon JH et al (2007a) Effect of pectin-based edible coating containing green tea powder on the quality of irradiated pork patty. Food Control 18(5):430–435

    Article  CAS  Google Scholar 

  • Kang S, Pinault M, Pfefferle LD et al (2007b) Single-walled carbon nanotubes exhibit strong antimicrobial activity. Langmuir 23:8670–8673

    Article  CAS  Google Scholar 

  • Keep-it Technologies (2017) The shelf life indicator. http://keep-it.com/Accessed 2 May 2017

  • Kerry JP (2014) New packaging technologies, materials and formats for fast-moving consumer products. In: Han JH (ed) Innovations in food packaging, 2nd edn. Academic, San Diego, pp 549–584

    Chapter  Google Scholar 

  • Kerry JP, O’Grady MN, Hogan SA (2006) Past, current and potential utilisation of active and intelligent packaging systems for meat and muscle-based products: a review. Meat Sci 74:113–130

    Article  CAS  Google Scholar 

  • Knee M (1990) Ethylene effects in controlled atmosphere storage of horticultural crops. In: Calderon M, Barkai-Golan R (eds) Food preservation by modified atmospheres. CRC Press, Boca Raton, pp 225–235

    Google Scholar 

  • Laboratories STANDA (2017a) ATCO®. http://www.standa-fr.com/eng/laboratoiresstanda/ atco/. Accessed 4 May 2017

  • Laboratories STANDA (2017b) SANICO® is our range of antifungal coatings for the agro-food industry. http://www.standa-fr.com/eng/laboratoires-standa/sanico/Accessed 4 May 2017

  • Lagaron JM (2005) Bioactive packaging: a novel route to generate healthier foods. Paper presented at 2nd conference in food packaging interactions, Campdem (CCFRA), Chipping Campden, UK, 14–15 Jul 2005

    Google Scholar 

  • Landau S (2007) The future of flavor and odor release. Paper presented at Intertech Pira conference on the future of caps and closures-latest innovations and new applications for caps and closures, Atlanta, 20–21 June 2007

    Google Scholar 

  • Lawrie K, Mills A, Hazafy D (2013) Simple inkjet-printed, UV-activated oxygen indicator. Sens Actuators B Chem 176:1154–1159

    Article  CAS  Google Scholar 

  • Lee DS (2014) Antioxidant packaging system. In: Han JH (ed) Innovations in food packaging. Academic, San Diego, pp 111–131

    Chapter  Google Scholar 

  • Lee DS, Yam KL, Piergiovanni L (2008) Food packaging science and technology. CRC Press, New York, pp 243–274

    Google Scholar 

  • LINPAC (2012) LINPAC packaging partners Addmaster to tackle packaging bugs. http://www.linpacpackaging.com/pt-pt/news/201208/linpac-packaging-partnersadd master-tackle-packaging-bugs. Accessed 21 May 2017

  • LINPAC (2017) Not just trays and film. https://www.linpacpackaging.com/en/not-just-trays-and-film. Accessed 15 May 2017

  • Liu XH, Xie SY, Zhou LB et al (2013) Preparation method of nano TiO2 powder and method for preparing oxygen gas indicator from nano TiO2 powder. China patent CN103641163A, 28 Nov 2013

    Google Scholar 

  • Lloret E, Picouet P, Fernández A (2012) Matrix effects on the antimicrobial capacity of silver based nanocomposite absorbing materials. LWT Food Sci Technol 49:333–338

    Article  CAS  Google Scholar 

  • Lopez-Rubio A, Gavara R, Lagaron JM (2006) Bioactive packaging: turning foods into healthier foods through biomaterials. Trends Food Sci Technol 17:567–575

    Article  CAS  Google Scholar 

  • Lövenklev M, Artin I, Hagberg O et al (2004) Quantitative interaction effects of carbon dioxide, sodium chloride, and sodium nitrite on neurotoxin gene expression in nonproteolytic Clostridium botulinum type B. Appl Environ Microbiol 70:2928–2934

    Article  Google Scholar 

  • Majid I, Nayik GA, Dar SM et al (2016) Novel food packaging technologies: innovations and future prospective. J Saudi Soc Agric Sci https://doi.org/10.1016/j.jssas. 2016.11.003

  • Marcos B, Aymerich T, Monfort JM et al (2007) Use of antimicrobial biodegradable packaging to control Listeria monocytogenes during storage of cooked ham. Int J Food Microbiol 120:152–158

    Article  CAS  Google Scholar 

  • Marcos B, Aymerich T, Monfort JM et al (2008) High-pressure processing and antimicrobial biodegradable packaging to control Listeria monocytogenes during storage of cooked ham. Food Microbiol 25:177–182

    Article  CAS  Google Scholar 

  • MartĂ­nez-Olmos A, Fernández-SalmerĂłn J, Lopez-Ruiz N et al (2013) Screen printed flexible radiofrequency identification tag for oxygen monitoring. Anal Chem 85:11098–11105

    Article  Google Scholar 

  • Maxwell Chase Technologies (2017) Fresh-R-Pax® trays. http://www.maxwellchase.com/food-packaging/absorbent-trays/. Accessed 4 May 2017

  • McAirlaid (2017) MeatPad. http://www.meatpads.info/en/Accessed 25 May 2017

  • Mennecke B, Townsend A (2005) Radio frequency identification tagging as a mechanism of creating a viable producer's brand in the cattle industry. Midwest Agribusiness Trade Research and Information Center, Iowa State University, Ames USA http://www.card.iastate.edu/products/publications/pdf/05mrp8.pdf. Accessed 1May 2017

  • Miller G, Senjen R (2008) Out of the laboratory and on to our plates – Nanotechnology in food and agriculture. http://libcloud.s3.amazonaws.com/93/b5/4/547/ Nanotechnology_in_food_and_agriculture_-_web_resolution.pdf. Accessed 7 May 2017

  • Mitsubishi Gas Chemical (2017a) AGELESS® http://www.mgc.co.jp/eng/products/abc/ageless/index.html. Accessed 15 May 2017

  • Mitsubishi Gas Chemical (2017b) AGELESS OMAC® oxygen absorbing film. http://ageless.mgc-a.com/product/ageless-omac/. Accessed 15 May 2017

  • NORDENIA (2011) Nor®Absorbit makes your food nice and crispy. http://www.worldpressonline.com/PressRelease/nordenia-innovative-packaging-for-microwave-dishes-31607.html. Accessed 12 May 2017

  • Naknikham U, Jitwatcharakomol T, Tapasa K et al (2014) The simple method for increasing chemical stability of glass bottles. Key Eng Mater 608:307–310

    Article  CAS  Google Scholar 

  • O'Grady MN, Kerry JP (2008) Smart packaging technology. In: Toldra F (ed) Meat biotechnology. Springer, New York, pp 425–451

    Chapter  Google Scholar 

  • Ozdemir M, Floros JD (2004) Active food packaging technologies. Crit Rev Food Sci Nutr 44:185–193. https://doi.org/10.1080/10408690490441578

    Article  CAS  Google Scholar 

  • Perry MR, Lentz RR (2009) Susceptors in microwave packaging. In: Lorence MW, Pesheck PS (eds) Development of packaging and products for use in microwave ovens. Woodhead Publishing Limited Cambridge, UK, pp 207–236

    Chapter  Google Scholar 

  • Pospiskova K, Safarik I, Sebela M et al (2012) Magnetic particles-based biosensor for biogenic amines using an optical oxygen sensor as a transducer. Microchim Acta 180:311–318

    Article  Google Scholar 

  • Realini CE, Marcos B (2014) Active and intelligent packaging systems for a modern society. Meat Sci 98(3):404–419

    Article  Google Scholar 

  • Regier M (2014) Microwavable food packaging. In: Han JH (ed) Innovations in food packaging, 2nd edn. Academic, San Diego, pp 495–514

    Chapter  Google Scholar 

  • Regier M, Knoerzer K, Schubert H (2016) The microwave processing of foods, 2nd edn. Woodhead Publishing Ltd, Cambridge, pp 273–299

    Google Scholar 

  • Rooney ML (1995) Overview of active packaging. In: Rooney ML (ed) Active food packaging. Blackie Academic and Professional, Glasgow, pp 1–37

    Chapter  Google Scholar 

  • Salinas Y, Ros-Lis JV, Vivancos JL et al (2014) A novel colorimetric sensor array for monitoring fresh pork sausages spoilage. Food Control 35:166–176

    Article  Google Scholar 

  • Sealed Air (2017) Cryovac® OS films-rapid headspace. http://www.cryovac.com/NA/EN/pdf/osfilms.pdf. Accessed 10 May 2017

  • SEALPAC (2014) TenderPac-best meat quality, appetizing appearance. http://www.sealpac.de/fileadmin/user_upload/media/innovations/verpackungsloesungen/TenderPac_2014_online-EN.pdf. Accessed 17 May 2017

  • Sen L, Hyun KH, Kim JW et al (2013) The design of smart RFID system with gas sensor for meat freshness monitoring. Adv Sci Technol Lett 41:17–20

    Google Scholar 

  • Sirane (2011) A-Crisp™ boxes, boards, sleeves and liners for crisping in a microwave. http://www.sirane.com/microwave-susceptors-crisp-it-range/sira-cook-crisp-it-susceptor-boards-boxes.html. Accessed 26 May 2017

  • Smith AJ, Poulston S, Rowsell L et al (2009) A new palladium-based ethylene scavenger to control ethylene-induced ripening of climacteric fruit. Platin Met Rev 53:112–122

    Article  CAS  Google Scholar 

  • Smolander M (2000) Freshness indicators for direct quality evaluation of packaged foods. Paper presented at International conference on active and intelligent packaging, Chipping Campden, UK 7–8 Sept 2000 pp 1–16

    Google Scholar 

  • Sozer N, Kokini JL (2009) Nanotechnology and its applications in the food sector. Trends Biotechnol 27:82–89

    Article  CAS  Google Scholar 

  • Suppakul P, Miltz J, Sonneveld K et al (2003) Active packaging technologies with an emphasis on antimicrobial concise reviews in food science. J Food Sci 68:408–420

    Article  CAS  Google Scholar 

  • Tempra Technology™ (2017) Self chilling cans, Tempra Technology™ Florida, USA. http://www.tempratech.com/portfolio/i-c-cans/. Accessed 23 May 2017

  • Timestrip (2016) Timestrip® cold chain products for food. http://timestrip.com/products/food-range/. Accessed 15 May 2017

  • Uniform Code Council (2017) GS1 databar family. Available from: Lawrenceville NJ: Uniform Code Council https://www.gs1.org/barcodes/databar. Accessed 6 June 2017

  • Vermeiren L, Heirlings L, Devlieghere F et al (2003) Oxygen, ethylene and other scavengers. In: Ahvenainen R (ed) Novel food packaging techniques. CRC Press, USA, pp 5–49

    Google Scholar 

  • VITSAB (2015) Seafood TTI labels. http://vitsab.com/?page_id=1983. Accessed 2 May 2017

  • Wanihsuksombat C, Hongtrakul V, Suppakul P (2010) Development and characterization of a prototype of a lactic acid–based time–temperature indicator for monitoring food product quality. J Food Engg 100:427–434

    Article  Google Scholar 

  • Yam KL, Takhistov PT, Miltz J (2005) Intelligent packaging: concepts and applications. J Food Sci 70:R1R10

    Article  Google Scholar 

  • Yeh JT, Cui L, Chang CJ et al (2008) Investigation of the oxygen depletion properties of novel oxygen-scavenging plastics. J Appl Polym Sci 110:1420–1434

    Article  CAS  Google Scholar 

  • Yoshida CMP, Maciel VBV, Mendonça MED (2014) Chitosan bio-based and intelligent films: Monitoring pH variations. Food Sci Technol-LEB 55:83–89

    Article  CAS  Google Scholar 

  • Zagory D (1995) Ethylene-removing packaging. In: Rooney ML (ed) Active food packaging. Blackie Academic and Professional, Glasgow, pp 38–54

    Chapter  Google Scholar 

  • Zelzer M, Todd SJ, Hirst AR et al (2013) Enzyme responsive materials: design strategies and future developments. Biomater Sci 1:11–39

    Article  CAS  Google Scholar 

  • Zenner BD, Benedict CS (2002) Polymer compositions containing oxygen scavenging compounds. US Patent, 6391406, 21 May 2002

    Google Scholar 

  • Zhai RC (2010) Intelligent packaging bottle with voice advertisement. China patent CN201784843U, 22 Mar 2010

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Majid, I., Thakur, M., Nanda, V. (2018). Innovative and Safe Packaging Technologies for Food and Beverages: Updated Review. In: Panda, S., Shetty, P. (eds) Innovations in Technologies for Fermented Food and Beverage Industries. Food Microbiology and Food Safety. Springer, Cham. https://doi.org/10.1007/978-3-319-74820-7_13

Download citation

Publish with us

Policies and ethics