Skip to main content

Anesthesia for Video-Assisted Thoracoscopic Surgery

  • Chapter
  • First Online:
Anesthesiology

Abstract

Video-assisted thoracoscopic surgery (VATS) procedures have shown a great deal of technological innovation that has dramatically changed thoracic surgery. VATs has shown to be less invasive painful and equally efficacious compared to traditional open surgery for specific diseases. The preoperative evaluation involves a comprehensive approach to address not only the underlying lung condition that warrants VATs but the patient’s other comorbid conditions. This chapter discusses the utility of pulmonary function test (PFTs) that may be needed to establish candidate suitability along with intraoperative positioning considerations. The methods for lung isolation will be discussed along with treatment strategies for problems encountered with one lung ventilation. A thorough consideration of multimodal perioperative pain control will help the anesthesia team to work towards best patient outcomes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Luh SP, Liu HP. Video-assisted thoracic surgery—the past, present status and the future. J Zhejiang Univ Sci B. 2006;7(2):118–28. Review. PMID: 16421967.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Sihoe AD, et al. The evolution of minimally invasive thoracic surgery: implications for the practice of uniportal thoracoscopic surgery. J Thorac Dis. 2014;6(Suppl 6):S604–17.

    PubMed  PubMed Central  Google Scholar 

  3. Rocco G, Khalil M, Jutley R. Uniportal video-assisted thoracoscopic surgery wedge lung biopsy in the diagnosis of interstitial lung diseases. J Thorac Cardiovasc Surg. 2005;129(4):947–8. PMID: 15821673.

    Article  PubMed  Google Scholar 

  4. Reinersman JM, Passera E, Rocco G. Overview of uniportal video-assisted thoracic surgery (VATS): past and present. Ann Cardiothorac Surg. 2016;5(2):112–7. PMID: 27134837.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Ng CS, Rocco G, Wong RH, Lau RW, Yu SC, Yim AP. Uniportal and single-incision video-assisted thoracic surgery: the state of the art. Interact Cardiovasc Thorac Surg. 2014;19(4):661–6. PMID: 24994696.

    Article  PubMed  Google Scholar 

  6. Society of Cardiothoracic Surgeons of Great Britain and Ireland Working Party. BTS guidelines; guidelines on selection of patients with lung cancer for surgery. Thorax. 2001;56(2):89–108.

    Article  Google Scholar 

  7. Brunelli A, Kim AW, Berger KI, Addrizzo-Harris DJ. Physiologic evaluation of the patient with lung cancer being considered for resectional surgery: diagnosis and management of lung cancer, 3rd ed: American College of Chest Physicians evidence-based clinical practice guidelines. Chest. 2013;143(5):e166s–90s.

    Article  PubMed  CAS  Google Scholar 

  8. Alam NZ. Lung resection in patients with marginal pulmonary function. Thorac Surg Clin. 2014;24(4):361–9.

    Article  PubMed  Google Scholar 

  9. Colice GL, Shafazand S, Griffin JP, Keenan R, Bolliger CT, American College of Chest Physicians. Physiologic evaluation of the patient with lung cancer being considered for resectional surgery: ACCP evidenced-based clinical practice guidelines (2nd edition). Chest. 2007;132(3 Suppl):161S–77S.

    Article  PubMed  Google Scholar 

  10. Torchio R, Gulotta C, Perboni A, Ciacco C, Guglielmo M, Orlandi F, Milic-Emili J. Orthopnea and tidal expiratory flow limitation in patients with euthyroidi goiter. Chest. 2003;124(1):133–40.

    Article  PubMed  Google Scholar 

  11. Ali MK, Mountain CF, Ewer MS, Johnston D, Haynie TP. Predicting loss of pulmonary function after pulmonary resection for bronchogenic carcinoma. Chest. 1980;77(3):337–42.

    Article  PubMed  CAS  Google Scholar 

  12. Fields AC, Divino CM. Surgical outcomes in patients with chronic obstructive pulmonary disease undergoing abdominal operations: an analysis of 331,425 patients. Surgery. 2016;159(4):1210.

    Article  PubMed  Google Scholar 

  13. Smetana GW, Lawrence VA, Cornell JE. Preoperative pulmonary risk stratification for noncardiothoracic surgery: systematic review of the American College of Physicians. Ann Intern Med. 2006;144(8):581.

    Article  PubMed  Google Scholar 

  14. Milledge JS, Nunn JF. Criteria of fitness for anaesthesia in patients with chronic obstructive pulmonary disease. Br Med J. 1975;3(5985):670.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Fleisher LA, Fleischmann KE, Auerbach A, Barnason S, Beckman J, Bozkurt B, Davila-Roman V, Gerhard-Herman M, Holly T, Kane G, Marine J, Nelson T, Spencer C, Thompson A, Ting H, Uretsky B, Wijeysundera D. 2014 ACC/AHA guideline on perioperative cardiovascular evaluation and management of patients undergoing noncardiac surgery. J Am Coll Cardiol. 2014;64(22):e77–137.

    Article  PubMed  Google Scholar 

  16. Gronjaer M, Eliasen M, Skoy-Ettrup LS, Tolstrup JS, Christiansen AH, Mikkelsen SS, Becker U, Flensborg-Madsen T. Preoperative smoking status and postoperative complications: a systematic review and meta-analysis. Ann Surg. 2014;259(1):52–71.

    Article  Google Scholar 

  17. Wightman JA. A prospective survey of the incidence of postoperative pulmonary complications. Br J Surg. 1968;55(2):85.

    Article  PubMed  CAS  Google Scholar 

  18. Mastracci TM, Carli F, Finley RJ, Muccio S, Warner DO. Effect of preoperative smoking cessation interventions on postoperative complications. J Am Coll Surg. 2011;212(6):1094–6.

    Article  PubMed  Google Scholar 

  19. Warner MA, Divertie MB, Tinker JH. Preoperative cessation of smoking and pulmonary complications in coronary artery bypass patients. Anesthesiology. 1984;60(4):380–3.

    Article  PubMed  CAS  Google Scholar 

  20. Gourgiotis S, Aloizos S, Aravosita P, Mystakelli C, Isaia EC, Gakis C, Salemis NS. The effects of tobacco smoking on the incidence and risk of intraoperative and postoperative complications in adults. Surgeon. 2011;9(4):225–32.

    Article  PubMed  Google Scholar 

  21. Valkenet K, van de Port IG, Dronkers JJ, de Vries WR, Lindeman E, Backx FJ. The effect of preoperative exercise therapy on postoperative outcome: a systematic review. Clin Rehabil. 2011;25(2):99–111.

    Article  PubMed  Google Scholar 

  22. Mujovic N, Mujovic NE, Subotic D, Marinkovic M, Milovanovic A, Stojsic J, Zugic V, Grajic M, Nikolic D. Preoperative pulmonary rehabilitiation in patients with non-small cell lung cancer and chronic obstructive pulmonary disease. Arch Med Sci. 2014;10(1):68–75.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Knoll H, Ziegeler S, Schreiber JU, Buchinger H, Bialas P, Semyonov K, Graeter T, Mencke T. Airway injuries after one-lung ventilation: a comparison between double-lumen tube and endobronchial blocker: a randomized, prospective, controlled trial. Anesthesiology. 2006;105(3):471–7.

    Article  PubMed  Google Scholar 

  24. Bauer C, Winter C, Hentz JG, Ducrocq X, Steib A, Dupeyron JP. Bronchial blocker compared to double-lumen tube for one-lung ventilation during thoracoscopy. Acta Anaesthesiol Scand. 2001;45(2):250–4.

    PubMed  CAS  Google Scholar 

  25. Narayanaswamy M, McRae K, Slinger P, Dugas G, Kanellakos GW, Roscoe A, Lacroix M. Choosing a lung isolation device for thoracic surgery: a randomized trial of three bronchial blockers versus double-lumen tubes. Anesth Analg. 2009;108(4):1097–101. https://doi.org/10.1213/ane.0b013e3181999339.

    Article  PubMed  CAS  Google Scholar 

  26. Campos JH, Massa FC, Kernstine KH. The incidence of right upper-lobe collapse when comparing a right-sided double-lumen tube versus a modified left double-lumen tube for left-sided thoracic surgery. Anesth Analg. 2000;90(3):535–40.

    Article  PubMed  CAS  Google Scholar 

  27. Brodsky JB, Lemmens HJ. Tracheal width and left double-lumen tube size: a formula to estimate left-bronchial width. J Clin Anesth. 2005;17(4):267–70.

    Article  PubMed  Google Scholar 

  28. Kaplan J, Slinger P. Lung separation techniques. Thoracic anesethesia, 3rd ed. Javier H. Campos. Elsevier Science; Copyright 2003.

    Google Scholar 

  29. Brodsky JB, Macario A, Mark JB. Tracheal diameter predicts double-lumen tube size: a method for selecting left double-lumen tube size. Anesth Analg. 1996;82(4):861–4.

    PubMed  CAS  Google Scholar 

  30. Russell WJ, Strong TS. Dimensions of double-lumen tracheobronchial tubes. Anaesth Intensive Care. 2003;31(1):50–3.

    PubMed  CAS  Google Scholar 

  31. Brodsky JB, Malott K, Angst M, Fitzmaurice BG, Kee SP, Logan L. The relationship between tracheal width and left bronchial width: implications for left-sided double-lumen tube selection. J Cardiothorac Vasc Anesth. 2001;15(2):216–7.

    Article  PubMed  CAS  Google Scholar 

  32. Morrell NW, Nijran KS, Biggs T, Seed WA. Magnitude and time course of acute hypoxic pulmonary vasoconstriction in man. Respir Physiol. 1995;100(3):271–81.

    Article  PubMed  CAS  Google Scholar 

  33. Lumb AB, Slinger P. Hypoxic pulmonary vasoconstriction: physiology and anesthetic implications. Anesthesiology. 2015;122(4):932–46. https://doi.org/10.1097/ALN.0000000000000569.

    Article  PubMed  CAS  Google Scholar 

  34. Wigmore TJ, Mohammed K, Jhanji S. Long term survival for patients undergoing volatile versus IV anesthesia for cancer surgery: a retrospective analysis. Anesthesiology. 2016;124(1):69–79.

    Article  PubMed  CAS  Google Scholar 

  35. Boussofara M, Mtaallah MH, Bracco D, Sellam MR, Raucoles M. Co-analgesic effect of ketorolac after thoracic surgery. Tunis Med. 2006;84(7):427–31.

    PubMed  Google Scholar 

  36. Wurnig PN, Lackner H, Teiner C, Hollaus PH, Pospisil M, Fohsl-Grande B, Osarowsky M, Pridun NS. Is intercostal block for pain management in thoracic surgery more successful than epidural anesthesia? Eur J Cardiothorac Surg. 2002;21(6):1115–9.

    Article  CAS  PubMed  Google Scholar 

  37. Mukherjee M, Goswami A, Gupta S, Sarbapalli D, Pal R, Kar S. Analgesia in post-thoracotomy patients: comparison between thoracic epidural and thoracic paravertebral blocks. Anesth Essays Res. 2010;4(2):75–80.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Licker M, de Perrot M, Spiliopoulos A, Robert J, Diaper J, Chevalley C, Tschopp J. Risk factors for acute lung injury after thoracic surgery for lung cancer. Anesth Analg. 2003;97(6):1558–65.

    Article  PubMed  Google Scholar 

  39. Alam N, Park BJ, Wilton A, Seshan VE, Bains MS, Downey RJ, Flores RM, Rizk N, Rusch VW, Amar D. Incidence and risk factors for lung injury after lung cancer resection. Ann Thorac Surg. 2007;84(4):1085–91.

    Article  PubMed  Google Scholar 

  40. Yao S, Mao T, Fang W, Zu M, Chen W. Incidence and risk factors for acute lung injury after open thoracotomy for thoracic diseases. J Thorac Dis. 2013;5(4):455–60.

    PubMed  PubMed Central  Google Scholar 

  41. Jeong DM, Ahn HJ, Park HW, Yang M, Park J. Stroke volume variation and pulse pressure variation are not useful for predicting fluid responsiveness in thoracic surgery. Anesth Analg. 2017;125(4):1158–65.

    Article  PubMed  Google Scholar 

  42. Ashes C, Slinger P. Volume management and resuscitation in thoracic surgery. Curr Anesthesiol Rep. 2014;4:386–96.

    Article  Google Scholar 

  43. Chau EH, Slinger P. Perioperative fluid management for pulmonary resection surgery and esophagectomy. Semin Cardiothorac Vasc Anesth. 2014;18(1):36–44.

    Article  PubMed  Google Scholar 

  44. Ahn HJ, Kim JA, Lee AR, Yang M, Heo B. The risk of acute kidney injury from fluid restriction and hydroxyethyl starch in thoracic surgery. Anesth Analg. 2016;122(1):186–93.

    Article  PubMed  CAS  Google Scholar 

  45. Kozek-Langenecker SA. Fluids and coagulation. Curr Opin Crit Care. 2015;21(4):285–91.

    Article  PubMed  Google Scholar 

  46. Ceppa DP, Kosinski AS, Berry MF, Tong BC, Harpole DH, Mitchell JD, D’Amico TA, Onaitis MW. Thoracoscopic lobectomy has increasing benefit in patients with poor pulmonary function: a Society of Thoracic Surgeons Database analysis. Ann Surg. 2012;256(3):487–93. PMID: 22868367.

    Article  PubMed  Google Scholar 

  47. Yang CF, Sun Z, Speicher PJ, Saud SM, Gulack BC, Hartwig MG, Harpole DH Jr, Onaitis MW, Tong BC, D’Amico TA, Berry MF. Use and outcomes of minimally invasive lobectomy for stage I non-small cell lung cancer in the National Cancer Data Base. Ann Thorac Surg. 2016;101(3):1037–42. PMID: 26822346.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Yang HX, Woo KM, Sima CS, Bains MS, Adusumilli PS, Huang J, Finley DJ, Rizk NP, Rusch VW, Jones DR, Park BJ. Long-term survival based on the surgical approach to lobectomy for clinical stage I nonsmall cell lung cancer: comparison of robotic, video-assisted thoracic surgery, and thoracotomy lobectomy. Ann Surg. 2016;265(2):431–7. PMID: 27011367.

    Article  Google Scholar 

  49. Bendixen M, Jørgensen OD, Kronborg C, Andersen C, Licht PB. Postoperative pain and quality of life after lobectomy via video-assisted thoracoscopic surgery or anterolateral thoracotomy for early stage lung cancer: a randomised controlled trial. Lancet Oncol. 2016;17(6):836–44. https://doi.org/10.1016/S1470-2045(16)00173-X. PMID: 27160473.

    Article  PubMed  Google Scholar 

  50. Handy JR Jr, Asaph JW, Douville EC, Ott GY, Grunkemeier GL, Wu Y. Does video-assisted thoracoscopic lobectomy for lung cancer provide improved functional outcomes compared with open lobectomy? Eur J Cardiothorac Surg. 2010;37(2):451–5. PMID: 19747837.

    PubMed  Google Scholar 

  51. Chen K, Wang X, Yang F, Li J, Jiang G, Liu J, Wang J. Propensity-matched comparison of video-assisted thoracoscopic with thoracotomy lobectomy for locally advanced non-small cell lung cancer. J Thorac Cardiovasc Surg. 2016;153(4):967–976.e2. pii: PMID: 28088426.

    Article  PubMed  Google Scholar 

  52. Medbery RL, et al. Nodal upstaging is more common with thoracotomy than with VATS during lobectomy for early-stage lung cancer: an analysis from the National Cancer Data Base. J Thorac Oncol. 2016;11(2):222–33.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Zhang W, Wei Y, Jiang H, Xu J, Yu D. Thoracotomy is better than thoracoscopic lobectomy in the lymph node dissection of lung cancer: a systematic review and meta-analysis. World J Surg Oncol. 2016;14(1):290. PMID: 27855709.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Susan Smith M.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Roussel, J., Smith, S. (2018). Anesthesia for Video-Assisted Thoracoscopic Surgery. In: Goudra, B., et al. Anesthesiology. Springer, Cham. https://doi.org/10.1007/978-3-319-74766-8_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-74766-8_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-74765-1

  • Online ISBN: 978-3-319-74766-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics