Skip to main content

The Role of Integrated Interventions in Psychosomatic Diseases

  • Chapter
  • First Online:
  • 816 Accesses

Part of the book series: Integrating Psychiatry and Primary Care ((IPPC))

Abstract

Based on the evidence that there can be no health without mental health, psychosomatic medicine recognizes the complexity of the interface between psychiatry, lifestyle and medicine. At the clinical level, psychosomatic medicine integrates interdisciplinary evaluation and management involving diverse specialties including psychiatry, psychology, neurology, internal medicine, allergology, dermatology, rheumatology and endocrinology. At the research level, the fields of psychoneuroimmunology and psychoneuroendocrinology integrate findings from neuroscience, experimental psychology, physiology, genetics, pharmacology and molecular biology to understand the mechanistic underpinnings of psychosomatics. A clinical approach based on personalized and scientifically based integrated interventions, consistent with the bio-psycho-social model of medicine, is the best way to actually promote clinically significant physical and mental health improvements.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. American Psychiatric Association. Diagnostic and statistical manual of mental disorders. 5th ed. Washington, DC: American Psychiatric Association; 2013.

    Book  Google Scholar 

  2. Biondi M, Bersani FS, Valentini M. The Italian edition of DSM-5Riv Psichiatr. 2014;49(2):57–60.

    PubMed  Google Scholar 

  3. Levenson JL. Essentials of psychosomatic medicine. Arlington, VA: American Psychiatric Press; 2006.

    Google Scholar 

  4. Prince M, et al. No health without mental health. Lancet. 2007;370(9590):859–77.

    Article  PubMed  Google Scholar 

  5. Biondi M. Beyond the brain-mind dichotomy and toward a common organizing principle of pharmacological and psychological treatments. Psychother Psychosom. 1995;64(1):1–8.

    Article  CAS  PubMed  Google Scholar 

  6. World Health Organization. Mental health: new understanding, new hope. 2001.

    Google Scholar 

  7. Helzer JE, et al. Dimensional approaches in diagnostic classification. Refining the research agenda for DSM-V. Arlington, VA: American Psychiatric Association; 2008.

    Google Scholar 

  8. Biondi M, Pasquini M. Dimensional psychopharmacology in somatising patients. Adv Psychosom Med. 2015;34:24–35.

    Article  PubMed  Google Scholar 

  9. Biondi M, et al. Dimensional psychopathology of depression: detection of an ‘activation’ dimension in unipolar depressed outpatients. J Affect Disord. 2005;84(2–3):133–9.

    Article  CAS  PubMed  Google Scholar 

  10. Dazzi F, et al. Predictors of inpatient psychiatric admission in patients presenting to the emergency department: the role of dimensional assessment. Gen Hosp Psychiatry. 2015;37(6):587–94.

    Article  PubMed  Google Scholar 

  11. Pancheri P, et al. Validazione della scala per la valutazione rapida dimensionale “SVARAD”. Riv Psichiatr. 1999;34:84–93.

    Google Scholar 

  12. Pasquini M, et al. Detection and treatment of depressive and anxiety disorders among cancer patients: feasibility and preliminary findings from a liaison service in an oncology division. Depress Anxiety. 2006;23(7):441–8.

    Article  CAS  PubMed  Google Scholar 

  13. Pasquini M, et al. Relevance of anger and irritability in outpatients with major depressive disorder. Psychopathology. 2004;37(4):155–60.

    Article  CAS  PubMed  Google Scholar 

  14. Pasquini M, et al. Combining an SSRI with an anticonvulsant in depressed patients with dysphoric mood: an open study. Clin Pract Epidemiol Ment Health. 2007;3:3.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Pancheri P, et al. Costruzione della “SVARAD”, una scala per la valutazione rapida dimensionale. Riv Psichiatr. 1999;34:72–83.

    Google Scholar 

  16. McEwen BS. The neurobiology of stress: from serendipity to clinical relevance. Brain Res. 2000;886(1–2):172–89.

    Article  CAS  PubMed  Google Scholar 

  17. Olff M, et al. Changes in cortisol and DHEA plasma levels after psychotherapy for PTSD. Psychoneuroendocrinology. 2007;32(6):619–26.

    Article  CAS  PubMed  Google Scholar 

  18. Fischer S, Cleare AJ. Cortisol as a predictor of psychological therapy response in anxiety disorders-systematic review and meta-analysis. J Anxiety Disord. 2017;47:60–8.

    Article  PubMed  Google Scholar 

  19. Epel E, et al. Can meditation slow rate of cellular aging? Cognitive stress, mindfulness, and telomeres. Ann N Y Acad Sci. 2009;1172:34–53.

    Article  PubMed  PubMed Central  Google Scholar 

  20. O’Donovan A, et al. Stress appraisals and cellular aging: a key role for anticipatory threat in the relationship between psychological stress and telomere length. Brain Behav Immun. 2012;26(4):573–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Kessler TA. The cognitive appraisal of health scale: development of psychometric evaluation. Res Nurs Health. 1998;21(1):73–82.

    Article  CAS  PubMed  Google Scholar 

  22. Levine AB, Levine LM, Levine TB. Posttraumatic stress disorder and cardiometabolic disease. Cardiology. 2014;127(1):1–19.

    Article  PubMed  Google Scholar 

  23. Lazarus RS, Folkman S. Stress, appraisal, and coping. Berlin: Springer; 1984.

    Google Scholar 

  24. Bigatti SM, Steiner JL, Miller KD. Cognitive appraisals, coping and depressive symptoms in breast cancer patients. Stress Health. 2012;28(5):355–61.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Lin FY, Rong JR, Lee TY. Resilience among caregivers of children with chronic conditions: a concept analysis. J Multidiscip Healthc. 2013;6:323–33.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Harmell AL, et al. A review of the psychobiology of dementia caregiving: a focus on resilience factors. Curr Psychiatry Rep. 2011;13(3):219–24.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Schulz R, Beach SR. Caregiving as a risk factor for mortality: the caregiver health effects study. JAMA. 1999;282(23):2215–9.

    Article  CAS  PubMed  Google Scholar 

  28. McCombie AM, Mulder RT, Gearry RB. Psychotherapy for inflammatory bowel disease: a review and update. J Crohns Colitis. 2013;7(12):935–49.

    Article  PubMed  Google Scholar 

  29. Gearry RB, et al. Population-based cases control study of inflammatory bowel disease risk factors. J Gastroenterol Hepatol. 2010;25(2):325–33.

    Article  PubMed  Google Scholar 

  30. Bouma G, Strober W. The immunological and genetic basis of inflammatory bowel disease. Nat Rev Immunol. 2003;3(7):521–33.

    Article  CAS  PubMed  Google Scholar 

  31. Nicholson RA. Chronic headache: the role of the psychologist. Curr Pain Headache Rep. 2010;14(1):47–54.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Lumley MA. Beyond cognitive-behavioral therapy for fibromyalgia: addressing stress by emotional exposure, processing, and resolution. Arthritis Res Ther. 2011;13(6):136.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Salviati M, et al. A brain centred view of psychiatric comorbidity in tinnitus: from otology to hodology. Neural Plast. 2014;2014:817852.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Salviati M, et al. Tinnitus: clinical experience of the psychosomatic connection. Neuropsychiatr Dis Treat. 2014;10:267–75.

    PubMed  PubMed Central  Google Scholar 

  35. Hanifin JM, et al. Guidelines of care for atopic dermatitis, developed in accordance with the American Academy of Dermatology (AAD)/American Academy of Dermatology Association “Administrative Regulations for Evidence-Based Clinical Practice Guidelines”. J Am Acad Dermatol. 2004;50(3):391–404.

    Article  PubMed  Google Scholar 

  36. Colom F. The evolution of psychoeducation for bipolar disorder: from lithium clinics to integrative psychoeducation. World Psychiatry. 2014;13(1):90–2.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Adams RJ. Improving health outcomes with better patient understanding and education. Risk Manag Healthc Policy. 2010;3:61–72.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Bersani FS, et al. Psychoeducational intervention focused on healthy living improves psychopathological severity and lifestyle quality in psychiatric patients: preliminary findings from a controlled study. J Ment Health. 2017;26(3):271–5.

    Article  PubMed  Google Scholar 

  39. Chochinov HM, et al. Dignity therapy: a novel psychotherapeutic intervention for patients near the end of life. J Clin Oncol. 2005;23(24):5520–5.

    Article  PubMed  Google Scholar 

  40. Costantini A, Levenson JA, Bersani FS. In: Wise TN, Biondi M, Costantini A, editors. The crisis of discovery—psychological and psychopathological reaction to the disease, in psycho-oncology. Washington, DC: American Psychiatric Association; 2013.

    Google Scholar 

  41. Blackburn EH. Telomere states and cell fates. Nature. 2000;408(6808):53–6.

    Article  CAS  PubMed  Google Scholar 

  42. Blackburn EH. Telomeres and telomerase: the means to the end (Nobel lecture). Angew Chem Int Ed Engl. 2010;49(41):7405–21.

    Article  CAS  PubMed  Google Scholar 

  43. Blackburn EH, Greider CW, Szostak JW. Telomeres and telomerase: the path from maize, Tetrahymena and yeast to human cancer and aging. Nat Med. 2006;12(10):1133–8.

    Article  CAS  PubMed  Google Scholar 

  44. Bersani FS, et al. Telomerase activation as a possible mechanism of action for psychopharmacological interventions. Drug Discov Today. 2015;20(11):1305–9.

    Article  CAS  PubMed  Google Scholar 

  45. Starkweather AR, et al. An integrative review of factors associated with telomere length and implications for biobehavioral research. Nurs Res. 2014;63(1):36–50.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Bersani FS, et al. Association of dimensional psychological health measures with telomere length in male war veterans. J Affect Disord. 2016;190:537–42.

    Article  PubMed  Google Scholar 

  47. Lindqvist D, et al. Psychiatric disorders and leukocyte telomere length: underlying mechanisms linking mental illness with cellular aging. Neurosci Biobehav Rev. 2015;55:333–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Martin-Ruiz C, et al. Telomere length predicts poststroke mortality, dementia, and cognitive decline. Ann Neurol. 2006;60(2):174–80.

    Article  PubMed  Google Scholar 

  49. Cawthon RM, et al. Association between telomere length in blood and mortality in people aged 60 years or older. Lancet. 2003;361(9355):393–5.

    Article  CAS  PubMed  Google Scholar 

  50. Fitzpatrick AL, et al. Leukocyte telomere length and cardiovascular disease in the cardiovascular health study. Am J Epidemiol. 2007;165(1):14–21.

    Article  PubMed  Google Scholar 

  51. Gorbunova V, Seluanov A. Telomerase as a growth-promoting factor. Cell Cycle. 2003;2(6):534–7.

    Article  CAS  PubMed  Google Scholar 

  52. Saretzki G. Extra-telomeric functions of human telomerase: cancer, mitochondria and oxidative stress. Curr Pharm Des. 2014;20(41):6386–403.

    Article  CAS  PubMed  Google Scholar 

  53. Scheffler IE. Mitochondria make a come back. Adv Drug Deliv Rev. 2001;49(1–2):3–26.

    Article  CAS  PubMed  Google Scholar 

  54. Johannsen DL, Ravussin E. The role of mitochondria in health and disease. Curr Opin Pharmacol. 2009;9(6):780–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Kasahara A, Scorrano L. Mitochondria: from cell death executioners to regulators of cell differentiation. Trends Cell Biol. 2014;24(12):761–70.

    Article  CAS  PubMed  Google Scholar 

  56. Campbell CT, Kolesar JE, Kaufman BA. Mitochondrial transcription factor a regulates mitochondrial transcription initiation, DNA packaging, and genome copy number. Biochim Biophys Acta. 2012;1819(9–10):921–9.

    Article  CAS  PubMed  Google Scholar 

  57. Clay Montier LL, Deng JJ, Bai Y. Number matters: control of mammalian mitochondrial DNA copy number. J Genet Genomics. 2009;36(3):125–31.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Bersani FS, et al. Mitochondrial DNA copy number is reduced in male combat veterans with PTSD. Prog Neuro-Psychopharmacol Biol Psychiatry. 2016;64:10–7.

    Article  CAS  Google Scholar 

  59. Lee HC, Wei YH. Mitochondrial biogenesis and mitochondrial DNA maintenance of mammalian cells under oxidative stress. Int J Biochem Cell Biol. 2005;37(4):822–34.

    Article  CAS  PubMed  Google Scholar 

  60. Moyes C, Battersby B. Regulation of muscle mitochondrial design. J Exp Biol. 1998;201(3):299–307.

    CAS  PubMed  Google Scholar 

  61. Laderman KA, et al. Aging-dependent functional alterations of mitochondrial DNA (mtDNA) from human fibroblasts transferred into mtDNA-less cells. J Biol Chem. 1996;271(27):15891–7.

    Article  CAS  PubMed  Google Scholar 

  62. Bratic A, Larsson NG. The role of mitochondria in aging. J Clin Invest. 2013;123(3):951–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Blokhin A, et al. Variations in mitochondrial DNA copy numbers in MS brains. J Mol Neurosci. 2008;35(3):283–7.

    Article  CAS  PubMed  Google Scholar 

  64. Choi YS, Kim S, Pak YK. Mitochondrial transcription factor A (mtTFA) and diabetes. Diabetes Res Clin Pract. 2001;54(Suppl 2):S3–9.

    Article  CAS  PubMed  Google Scholar 

  65. Kim JH, Im JA, Lee DC. The relationship between leukocyte mitochondrial DNA contents and metabolic syndrome in postmenopausal women. Menopause. 2012;19(5):582–7.

    Article  PubMed  Google Scholar 

  66. Lee HK, et al. Decreased mitochondrial DNA content in peripheral blood precedes the development of non-insulin-dependent diabetes mellitus. Diabetes Res Clin Pract. 1998;42(3):161–7.

    Article  CAS  PubMed  Google Scholar 

  67. Macmillan CJ, Shoubridge EA. Mitochondrial DNA depletion: prevalence in a pediatric population referred for neurologic evaluation. Pediatr Neurol. 1996;14(3):203–10.

    Article  CAS  PubMed  Google Scholar 

  68. Morten KJ, et al. Liver mtDNA content increases during development: a comparison of methods and the importance of age- and tissue-specific controls for the diagnosis of mtDNA depletion. Mitochondrion. 2007;7(6):386–95.

    Article  CAS  PubMed  Google Scholar 

  69. Tiao MM, et al. Early stage of biliary atresia is associated with significant changes in 8-hydroxydeoxyguanosine and mitochondrial copy number. J Pediatr Gastroenterol Nutr. 2007;45(3):329–34.

    Article  CAS  PubMed  Google Scholar 

  70. Xing J, et al. Mitochondrial DNA content: its genetic heritability and association with renal cell carcinoma. J Natl Cancer Inst. 2008;100(15):1104–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Yu M, et al. Reduced mitochondrial DNA copy number is correlated with tumor progression and prognosis in Chinese breast cancer patients. IUBMB Life. 2007;59(7):450–7.

    Article  CAS  PubMed  Google Scholar 

  72. Saretzki G. Telomerase, mitochondria and oxidative stress. Exp Gerontol. 2009;44(8):485–92.

    Article  CAS  PubMed  Google Scholar 

  73. Kim JH, et al. The relationship between leukocyte mitochondrial DNA copy number and telomere length in community-dwelling elderly women. PLoS One. 2013;8(6):e67227.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Tyrka AR, et al. Association of telomere length and mitochondrial DNA copy number in a community sample of healthy adults. Exp Gerontol. 2015;66:17–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Pieters N, et al. Molecular responses in the telomere-mitochondrial axis of ageing in the elderly: a candidate gene approach. Mech Ageing Dev. 2015;145:51–7.

    Article  CAS  PubMed  Google Scholar 

  76. Tyrka AR, et al. Alterations of mitochondrial DNA copy number and telomere length with early adversity and psychopathology. Biol Psychiatry. 2016;79(2):78–86.

    Article  CAS  PubMed  Google Scholar 

  77. Hough CM, et al. Leukocyte telomere length predicts SSRI response in major depressive disorder: a preliminary report. Mol Neuropsychiatry. 2016;2(2):88–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Schutte NS, Malouff JM. A meta-analytic review of the effects of mindfulness meditation on telomerase activity. Psychoneuroendocrinology. 2014;42:45–8.

    Article  CAS  PubMed  Google Scholar 

  79. Kornfeld DS. Consultation-liaison psychiatry: contributions to medical practice. Am J Psychiatry. 2002;159(12):1964–72.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Massimo Pasquini .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Biondi, M., Bersani, F.S., Pasquini, M. (2019). The Role of Integrated Interventions in Psychosomatic Diseases. In: Grassi, L., Riba, M., Wise, T. (eds) Person Centered Approach to Recovery in Medicine. Integrating Psychiatry and Primary Care. Springer, Cham. https://doi.org/10.1007/978-3-319-74736-1_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-74736-1_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-74735-4

  • Online ISBN: 978-3-319-74736-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics