Skip to main content

Hyponatremia in Heart Failure and Ventricular Assist Device Patients

  • Chapter
  • First Online:
  • 386 Accesses

Abstract

Hyponatremia is commonly seen in heart failure (HF) patients and is a poor prognostic marker of HF mortality. The more severe the hyponatremia, the greater the association with poor outcomes. Although hyponatremia can be caused by multiple mechanisms, in HF patients the hyponatremia is most commonly categorized as hypo-osmolal hyponatremia with hypervolemia. The pathogenesis of hyponatremia in HF is due to cardiac dysfunction which results in a reduced glomerular filtration rate and an increase in vasopressin (ADH) secretion. Most HF patients with hyponatremia are asymptomatic and can be managed by limiting water intake and using diuretics. However if the plasma sodium level is <125 mEq/L or if symptoms of hyponatremia are present, then more active management of this electrolyte abnormality is necessary. Diuretics are the principal treatment for both hyponatremia and HF since they result in hypotonic fluid losses. Recently, selective and nonselective vasopressin antagonists have become available. However, despite demonstrated efficacy in producing a water diuresis and a correction of hyponatremia, vasopressin antagonists are not commonly used in HF patients. Vasopression antagonists have not been shown to affect mortality, have some potentially serious adverse reactions, and are costly.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   129.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   129.00
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Adrogue HJ, Madias NE. Hyponatremia. N Engl J Med. 2000;342(21):1581–9.

    Article  CAS  PubMed  Google Scholar 

  2. Bettari L, et al. Significance of hyponatremia in heart failure. Heart Fail Rev. 2012;17(1):17–26.

    Article  PubMed  Google Scholar 

  3. Ellison DH, Berl T. Clinical practice. The syndrome of inappropriate antidiuresis. N Engl J Med. 2007;356(20):2064–72.

    Article  CAS  PubMed  Google Scholar 

  4. Rossi J, et al. Improvement in hyponatremia during hospitalization for worsening heart failure is associated with improved outcomes: insights from the Acute and Chronic Therapeutic Impact of a Vasopressin Antagonist in Chronic Heart Failure (ACTIV in CHF) trial. Acute Card Care. 2007;9(2):82–6.

    Article  PubMed  Google Scholar 

  5. Scrutinio D, et al. Prognostic impact of comorbidities in hospitalized patients with acute exacerbation of chronic heart failure. Eur J Intern Med. 2016;34:63–7.

    Article  PubMed  Google Scholar 

  6. Rose EA, et al. Long-term use of a left ventricular assist device for end-stage heart failure. N Engl J Med. 2001;345(20):1435–43.

    Article  CAS  PubMed  Google Scholar 

  7. Miller LW, et al. Use of a continuous-flow device in patients awaiting heart transplantation. N Engl J Med. 2007;357(9):885–96.

    Article  CAS  PubMed  Google Scholar 

  8. Lietz K, et al. Outcomes of left ventricular assist device implantation as destination therapy in the post-REMATCH era: implications for patient selection. Circulation. 2007;116(5):497–505.

    Article  PubMed  Google Scholar 

  9. Slaughter MS, et al. Advanced heart failure treated with continuous-flow left ventricular assist device. N Engl J Med. 2009;361(23):2241–51.

    Article  CAS  PubMed  Google Scholar 

  10. Imamura T, et al. Low cardiac output stimulates vasopressin release in patients with stage D heart failure. Circ J. 2014;78(9):2259–67.

    Article  CAS  PubMed  Google Scholar 

  11. Leier CV, Dei Cas L, Metra M. Clinical relevance and management of the major electrolyte abnormalities in congestive heart failure: hyponatremia, hypokalemia, and hypomagnesemia. Am Heart J. 1994;128(3):564–74.

    Article  CAS  PubMed  Google Scholar 

  12. Lee WH, Packer M. Prognostic importance of serum sodium concentration and its modification by converting-enzyme inhibition in patients with severe chronic heart failure. Circulation. 1986;73(2):257–67.

    Article  CAS  PubMed  Google Scholar 

  13. Goldberg A, et al. Hyponatremia and long-term mortality in survivors of acute ST-elevation myocardial infarction. Arch Intern Med. 2006;166(7):781–6.

    Article  PubMed  Google Scholar 

  14. Klein L, et al. Lower serum sodium is associated with increased short-term mortality in hospitalized patients with worsening heart failure: results from the Outcomes of a Prospective Trial of Intravenous Milrinone for Exacerbations of Chronic Heart Failure (OPTIME-CHF) study. Circulation. 2005;111(19):2454–60.

    Article  CAS  PubMed  Google Scholar 

  15. Rondon-Berrios H, Berl T. Mild chronic hyponatremia in the ambulatory setting: significance and management. Clin J Am Soc Nephrol. 2015;10(12):2268–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Verbalis JG, et al. Tolvaptan and neurocognitive function in mild to moderate chronic hyponatremia: a randomized trial (INSIGHT). Am J Kidney Dis. 2016;67(6):893–901.

    Article  CAS  PubMed  Google Scholar 

  17. Howard C, Berl T. Disorders of water balance: hyponatremia & hypernatremia. In: Lerma EV, Berns JS, Nissenson AR, editors. CURRENT diagnosis & treatment: nephrology & hypertension. New York, NY: McGraw-Hill; 2009.

    Google Scholar 

  18. De Vecchis R, et al. Vasopressin receptor antagonists for the correction of hyponatremia in chronic heart failure: an underutilized therapeutic option in current clinical practice? J Clin Med. 2016;5(10).

    Google Scholar 

  19. Carpentier E, et al. Identification and characterization of an activating F229V substitution in the V2 vasopressin receptor in an infant with NSIAD. J Am Soc Nephrol. 2012;23(10):1635–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Esposito P, et al. The syndrome of inappropriate antidiuresis: pathophysiology, clinical management and new therapeutic options. Nephron Clin Pract. 2011;119(1):c62–73. discussion c73.

    Article  CAS  PubMed  Google Scholar 

  21. Sica DA. Hyponatremia and heart failure—pathophysiology and implications. Congest Heart Fail. 2005;11(5):274–7.

    Article  PubMed  Google Scholar 

  22. Sterns RH. Disorders of plasma sodium—causes, consequences, and correction. N Engl J Med. 2015;372(1):55–65.

    Article  CAS  PubMed  Google Scholar 

  23. Oren RM. Hyponatremia in congestive heart failure. Am J Cardiol. 2005;95(9A):2B–7B.

    Article  CAS  PubMed  Google Scholar 

  24. Adrogue HJ, Madias NE. The challenge of hyponatremia. J Am Soc Nephrol. 2012;23(7):1140–8.

    Article  CAS  PubMed  Google Scholar 

  25. Sterns R, Gottlieb S. Hyponatremia in patients with heart failure. 2017.

    Google Scholar 

  26. Fujisawa H, et al. Chronic hyponatremia causes neurologic and psychologic impairments. J Am Soc Nephrol. 2016;27(3):766–80.

    Article  CAS  PubMed  Google Scholar 

  27. Sterns RH, Hix JK, Silver S. Treating profound hyponatremia: a strategy for controlled correction. Am J Kidney Dis. 2010;56(4):774–9.

    Article  CAS  PubMed  Google Scholar 

  28. Verbalis JG, et al. Hyponatremia treatment guidelines 2007: expert panel recommendations. Am J Med. 2007;120(11 Suppl 1):S1–21.

    Article  CAS  PubMed  Google Scholar 

  29. Sterns RH, Riggs JE, Schochet SS Jr. Osmotic demyelination syndrome following correction of hyponatremia. N Engl J Med. 1986;314(24):1535–42.

    Article  CAS  PubMed  Google Scholar 

  30. Verbrugge FH, et al. Hyponatremia in acute decompensated heart failure: depletion versus dilution. J Am Coll Cardiol. 2015;65(5):480–92.

    Article  CAS  PubMed  Google Scholar 

  31. Felker GM, et al. Diuretic strategies in patients with acute decompensated heart failure. N Engl J Med. 2011;364(9):797–805.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. De Vecchis R, Ciccarelli A, Pucciarelli A. Unloading therapy by intravenous diuretic in chronic heart failure: a double-edged weapon? J Cardiovasc Med (Hagerstown). 2010;11(8):571–4.

    Google Scholar 

  33. Rouse D, et al. Captopril inhibits the hydroosmotic effect of ADH in the cortical collecting tubule. Kidney Int. 1987;32(6):845–50.

    Article  CAS  PubMed  Google Scholar 

  34. Danziger J, Zeidel ML. Osmotic homeostasis. Clin J Am Soc Nephrol. 2015;10(5):852–62.

    Article  CAS  PubMed  Google Scholar 

  35. Udelson JE, et al. Acute hemodynamic effects of conivaptan, a dual V(1A) and V(2) vasopressin receptor antagonist, in patients with advanced heart failure. Circulation. 2001;104(20):2417–23.

    Article  CAS  PubMed  Google Scholar 

  36. Konstam MA, et al. Effects of oral tolvaptan in patients hospitalized for worsening heart failure: the EVEREST Outcome Trial. JAMA. 2007;297(12):1319–31.

    Article  CAS  PubMed  Google Scholar 

  37. Schrier RW, et al. Tolvaptan, a selective oral vasopressin V2-receptor antagonist, for hyponatremia. N Engl J Med. 2006;355(20):2099–112.

    Article  CAS  PubMed  Google Scholar 

  38. Berl T, et al. Oral tolvaptan is safe and effective in chronic hyponatremia. J Am Soc Nephrol. 2010;21(4):705–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Torres VE, et al. Tolvaptan in patients with autosomal dominant polycystic kidney disease. N Engl J Med. 2012;367(25):2407–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. FDA. FDA Drug Safety Communication: FDA limits duration and usage of Samsca (tolvaptan) due to possible liver injury leading to organ transplant or death. https://www.fda.gov/Drugs/DrugSafety/ucm350062.htm.

  41. Baur BP, Meaney CJ. Review of tolvaptan for autosomal dominant polycystic kidney disease. Pharmacotherapy. 2014;34(6):605–16.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jason Cobb .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Cobb, J., Bailey, J.L. (2018). Hyponatremia in Heart Failure and Ventricular Assist Device Patients. In: Desai, C., Cotts, W., Lerma, E., Rudnick, M. (eds) Ventricular-Assist Devices and Kidney Disease. Springer, Cham. https://doi.org/10.1007/978-3-319-74657-9_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-74657-9_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-74656-2

  • Online ISBN: 978-3-319-74657-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics