Skip to main content

Right Ventricular Failure Post Left Ventricular Assist Device Implantation

  • Chapter
  • First Online:
  • 404 Accesses

Abstract

Heart failure epidemic has been on the rise over the last few decades. With limited organ donors, the number of left ventricular assist device implantation (LVAD) has been on the rise. LVAD support comes with different complications including right ventricular failure (RVF). The incidence of RVF post LVAD implantation is estimated to be around 10–40%. Mechanism of RVF post LVAD implantation has a complex pathophysiology that involves patient hemodynamics, biochemical profile, comorbidities, and pump mechanics. Predicting RVF has been an extensive area of research. Multiple risk scores have been developed to predict RVF post-op and the need of a right ventricular assist device. Moreover, multiple echocardiographic and hemodynamic parameters have been reported in the literature that could predict RVF. After diagnosis, management of RVF remains complex and involves judicious optimization of hemodynamics and biochemical profile in the perioperative period. Despite optimal management many patients will end up developing chronic RVF, which has been associated with worse outcome even among patients undergoing heart transplantation. Additionally, RVF has been reported to be a strong risk factor for acute kidney injury and progression to renal failure post LVAD implantation. This chapter reviews the pathophysiology, diagnosis, and management of RVF post LVAD implantation.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   129.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   129.00
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Dang NC, Topkara VK, Mercando M, Kay J, Kruger KH, Aboodi MS, et al. Right heart failure after left ventricular assist device implantation in patients with chronic congestive heart failure. J Heart Lung Transplant. 2006;25(1):1–6.

    Article  PubMed  Google Scholar 

  2. Patel ND, Weiss ES, Schaffer J, Ullrich SL, Rivard DC, Shah AS, et al. Right heart dysfunction after left ventricular assist device implantation: a comparison of the pulsatile HeartMate I and axial-flow HeartMate II devices. Ann Thorac Surg. 2008;86(3):832–40; discussion −40

    Article  PubMed  Google Scholar 

  3. Matthews JC, Koelling TM, Pagani FD, Aaronson KD. The right ventricular failure risk score a pre-operative tool for assessing the risk of right ventricular failure in left ventricular assist device candidates. J Am Coll Cardiol. 2008;51(22):2163–72.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Kormos RL, Teuteberg JJ, Pagani FD, Russell SD, John R, Miller LW, et al. Right ventricular failure in patients with the HeartMate II continuous-flow left ventricular assist device: incidence, risk factors, and effect on outcomes. J Thorac Cardiovasc Surg. 2010;139(5):1316–24.

    Article  Google Scholar 

  5. Baumwol J, Macdonald PS, Keogh AM, Kotlyar E, Spratt P, Jansz P, et al. Right heart failure and “failure to thrive” after left ventricular assist device: clinical predictors and outcomes. J Heart Lung Transplant. 2011;30(8):888–95.

    PubMed  Google Scholar 

  6. Guidance Regarding Adult Heart Status 1A(b) Device-Related Complications. https://optn.transplant.hrsa.gov/SharedContentDocuments/Guidance_Adult_Heart_Status_Device_Related_Complications.pdf.

  7. Interagency Registry for Mechanically Assisted Circulatory Support (INTERMACS). Appendix A: Adverse event definitions: adult and pediatric patients. 2016. Report No.

    Google Scholar 

  8. Farrar DJ, Compton PG, Hershon JJ, Fonger JD, Hill JD. Right heart interaction with the mechanically assisted left heart. World J Surg. 1985;9(1):89–102.

    Article  CAS  PubMed  Google Scholar 

  9. MacNee W. Pathophysiology of cor pulmonale in chronic obstructive pulmonary disease. Part one. Am J Respir Crit Care Med. 1994;150(3):833–52.

    Article  CAS  PubMed  Google Scholar 

  10. Morgan JA, Paone G, Nemeh HW, Murthy R, Williams CT, Lanfear DE, et al. Impact of continuous-flow left ventricular assist device support on right ventricular function. J Heart Lung Transplant. 2013;32(4):398–403.

    Article  PubMed  Google Scholar 

  11. Uriel N, Sayer G, Addetia K, Fedson S, Kim GH, Rodgers D, et al. Hemodynamic ramp tests in patients with left ventricular assist devices. JACC Heart Fail. 2016;4(3):208–17.

    Article  PubMed  Google Scholar 

  12. Mikus E, Stepanenko A, Krabatsch T, Loforte A, Dandel M, Lehmkuhl HB, et al. Reversibility of fixed pulmonary hypertension in left ventricular assist device support recipients. Eur J Cardiothorac Surg. 2011;40(4):971–7.

    PubMed  Google Scholar 

  13. Santamore WP, Dell'Italia LJ. Ventricular interdependence: significant left ventricular contributions to right ventricular systolic function. Prog Cardiovasc Dis. 1998;40(4):289–308.

    Article  CAS  PubMed  Google Scholar 

  14. Moon MR, Bolger AF, DeAnda A, Komeda M, Daughters GT 2nd, Nikolic SD, et al. Septal function during left ventricular unloading. Circulation. 1997;95(5):1320–7.

    Article  CAS  PubMed  Google Scholar 

  15. Krishan K, Nair A, Pinney S, Adams DH, Anyanwu AC. Liberal use of tricuspid-valve annuloplasty during left-ventricular assist device implantation. Eur J Cardiothorac Surg. 2012;41(1):213–7.

    Article  PubMed  Google Scholar 

  16. Bellofiore A, Chesler NC. Methods for measuring right ventricular function and hemodynamic coupling with the pulmonary vasculature. Ann Biomed Eng. 2013;41(7):1384–98.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Dandel M, Krabatsch T, Falk V. Left ventricular vs. biventricular mechanical support: decision making and strategies for avoidance of right heart failure after left ventricular assist device implantation. Int J Cardiol. 2015;198:241–50.

    Article  PubMed  Google Scholar 

  18. Cantillon DJ, Saliba WI, Wazni OM, Kanj M, Starling RC, Tang WH, et al. Low cardiac output associated with ventricular tachyarrhythmias in continuous-flow LVAD recipients with a concomitant ICD (LoCo VT study). J Heart Lung Transplant. 2014;33(3):318–20.

    Article  PubMed  Google Scholar 

  19. Brisco MA, Sundareswaran KS, Milano CA, Feldman D, Testani JM, Ewald GA, et al. Incidence, risk, and consequences of atrial arrhythmias in patients with continuous-flow left ventricular assist devices. J Card Surg. 2014;29(4):572–80.

    Article  PubMed  Google Scholar 

  20. Dent CL, Ma Q, Dastrala S, Bennett M, Mitsnefes MM, Barasch J, et al. Plasma neutrophil gelatinase-associated lipocalin predicts acute kidney injury, morbidity and mortality after pediatric cardiac surgery: a prospective uncontrolled cohort study. Crit Care. 2007;11(6):R127.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Pronschinske KB, Qiu S, Wu C, Kato TS, Khawaja T, Takayama H, et al. Neutrophil gelatinase-associated lipocalin and cystatin C for the prediction of clinical events in patients with advanced heart failure and after ventricular assist device placement. J Heart Lung Transplant. 2014;33(12):1215–22.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Yost GL, Coyle L, Bhat G, Model TAJ. For end-stage liver disease predicts right ventricular failure in patients with left ventricular assist devices. J Artif Organs. 2016;19(1):21–8.

    Article  PubMed  Google Scholar 

  23. Potapov EV, Stepanenko A, Dandel M, Kukucka M, Lehmkuhl HB, Weng Y, et al. Tricuspid incompetence and geometry of the right ventricle as predictors of right ventricular function after implantation of a left ventricular assist device. J Heart Lung Transplant. 2008;27(12):1275–81.

    Article  PubMed  Google Scholar 

  24. Vivo RP, Cordero-Reyes AM, Qamar U, Garikipati S, Trevino AR, Aldeiri M, et al. Increased right-to-left ventricle diameter ratio is a strong predictor of right ventricular failure after left ventricular assist device. J Heart Lung Transplant. 2013;32(8):792–9.

    Article  PubMed  Google Scholar 

  25. Kukucka M, Stepanenko A, Potapov E, Krabatsch T, Redlin M, Mladenow A, et al. Right-to-left ventricular end-diastolic diameter ratio and prediction of right ventricular failure with continuous-flow left ventricular assist devices. J Heart Lung Transplant. 2011;30(1):64–9.

    Article  PubMed  Google Scholar 

  26. Kato TS, Farr M, Schulze PC, Maurer M, Shahzad K, Iwata S, et al. Usefulness of two-dimensional echocardiographic parameters of the left side of the heart to predict right ventricular failure after left ventricular assist device implantation. Am J Cardiol. 2012;109(2):246–51.

    Article  PubMed  Google Scholar 

  27. Kiernan MS, French AL, DeNofrio D, Parmar YJ, Pham DT, Kapur NK, et al. Preoperative three-dimensional echocardiography to assess risk of right ventricular failure after left ventricular assist device surgery. J Card Fail. 2015;21(3):189–97.

    Article  PubMed  Google Scholar 

  28. Puwanant S, Hamilton KK, Klodell CT, Hill JA, Schofield RS, Cleeton TS, et al. Tricuspid annular motion as a predictor of severe right ventricular failure after left ventricular assist device implantation. J Heart Lung Transplant. 2008;27(10):1102–7.

    Article  PubMed  Google Scholar 

  29. Grant AD, Smedira NG, Starling RC, Marwick TH. Independent and incremental role of quantitative right ventricular evaluation for the prediction of right ventricular failure after left ventricular assist device implantation. J Am Coll Cardiol. 2012;60(6):521–8.

    Article  PubMed  Google Scholar 

  30. Kato TS, Jiang J, Schulze PC, Jorde U, Uriel N, Kitada S, et al. Serial echocardiography using tissue Doppler and speckle tracking imaging to monitor right ventricular failure before and after left ventricular assist device surgery. JACC Heart Fail. 2013;1(3):216–22.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Fitzpatrick JR 3rd, Frederick JR, Hsu VM, Kozin ED, O'Hara ML, Howell E, et al. Risk score derived from pre-operative data analysis predicts the need for biventricular mechanical circulatory support. J Heart Lung Transplant. 2008;27(12):1286–92.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Atluri P, Goldstone AB, Fairman AS, MacArthur JW, Shudo Y, Cohen JE, et al. Predicting right ventricular failure in the modern, continuous flow left ventricular assist device era. Ann Thorac Surg. 2013;96(3):857–63; discussion 63-4

    Article  PubMed  PubMed Central  Google Scholar 

  33. Morine KJ, Kiernan MS, Pham DT, Paruchuri V, Denofrio D, Kapur NK. Pulmonary artery Pulsatility index is associated with right ventricular failure after left ventricular assist device surgery. J Card Fail. 2016;22(2):110–6.

    Article  Google Scholar 

  34. Kalogeropoulos AP, Kelkar A, Weinberger JF, Morris AA, Georgiopoulou VV, Markham DW, et al. Validation of clinical scores for right ventricular failure prediction after implantation of continuous-flow left ventricular assist devices. J Heart Lung Transplant. 2015;34(12):1595–603.

    Article  PubMed  Google Scholar 

  35. Loghmanpour NA, Kormos RL, Kanwar MK, Teuteberg JJ, Murali S, Antaki JF. A Bayesian model to predict right ventricular failure following left ventricular assist device therapy. JACC Heart Fail. 2016;4(9):711–21.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Feldman D, Pamboukian SV, Teuteberg JJ, Birks E, Lietz K, Moore SA, et al. The 2013 International Society for Heart and Lung Transplantation guidelines for mechanical circulatory support: executive summary. J Heart Lung Transplant. 2013;32(2):157–87.

    Article  Google Scholar 

  37. Argenziano M, Choudhri AF, Moazami N, Rose EA, Smith CR, Levin HR, et al. Randomized, double-blind trial of inhaled nitric oxide in LVAD recipients with pulmonary hypertension. Ann Thorac Surg. 1998;65(2):340–5.

    Article  CAS  Google Scholar 

  38. Hamdan R, Mansour H, Nassar P, Saab M. Prevention of right heart failure after left ventricular assist device implantation by phosphodiesterase 5 inhibitor. Artif Organs. 2014;38(11):963–7.

    Article  CAS  PubMed  Google Scholar 

  39. Tedford RJ, Hemnes AR, Russell SD, Wittstein IS, Mahmud M, Zaiman AL, et al. PDE5A inhibitor treatment of persistent pulmonary hypertension after mechanical circulatory support. Circ Heart Fail. 2008;1(4):213–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Baker WL, Radojevic J, Gluck JA. Systematic review of phosphodiesterase-5 inhibitor use in right ventricular failure following left ventricular assist device implantation. Artif Organs. 2016;40(2):123–8.

    Article  CAS  PubMed  Google Scholar 

  41. Lampert BC, Teuteberg JJ. Right ventricular failure after left ventricular assist devices. J Heart Lung Transplant. 2015;34(9):1123–30.

    Article  Google Scholar 

  42. Copeland JG, Smith RG, Arabia FA, Nolan PE, Sethi GK, Tsau PH, et al. Cardiac replacement with a total artificial heart as a bridge to transplantation. N Engl J Med. 2004;351(9):859–67.

    Article  CAS  PubMed  Google Scholar 

  43. Haglund NA, Burdorf A, Jones T, Shostrom V, Um J, Ryan T, et al. Inhaled Milrinone after left ventricular assist device implantation. J Card Fail. 2015;21(10):792–7.

    Article  CAS  Google Scholar 

  44. Hanke JS, Haverich A, Schmitto JD. Right heart failure after left ventricular assist devices: surgical considerations. J Heart Lung Transplant. 2016;35(3):395–6.

    Article  PubMed  Google Scholar 

  45. Goldstein DJ, Left BRB. Ventricular assist devices and bleeding: adding insult to injury. Ann Thorac Surg. 2003;75(6 Suppl):S42–7.

    Article  Google Scholar 

  46. Robertson JO, Grau-Sepulveda MV, Okada S, O'Brien SM, Matthew Brennan J, Shah AS, et al. Concomitant tricuspid valve surgery during implantation of continuous-flow left ventricular assist devices: a Society of Thoracic Surgeons database analysis. J Heart Lung Transplant. 2014;33(6):609–17.

    Article  PubMed  Google Scholar 

  47. Kirklin JK, Naftel DC, Kormos RL, Stevenson LW, Pagani FD, Miller MA, et al. Fifth INTERMACS annual report: risk factor analysis from more than 6,000 mechanical circulatory support patients. J Heart Lung Transplant. 2013;32(2):141–56.

    Article  PubMed  Google Scholar 

  48. Fitzpatrick JR 3rd, Frederick JR, Hiesinger W, Hsu VM, McCormick RC, Kozin ED, et al. Early planned institution of biventricular mechanical circulatory support results in improved outcomes compared with delayed conversion of a left ventricular assist device to a biventricular assist device. J Thorac Cardiovasc Surg. 2009;137(4):971–7.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Morgan JA, John R, Lee BJ, Oz MC, Naka Y. Is severe right ventricular failure in left ventricular assist device recipients a risk factor for unsuccessful bridging to transplant and post-transplant mortality. Ann Thorac Surg. 2004;77(3):859–63.

    Article  PubMed  Google Scholar 

  50. Cheung AW, White CW, Davis MK, Short-term FDH. Mechanical circulatory support for recovery from acute right ventricular failure: clinical outcomes. J Heart Lung Transplant. 2014;33(8):794–9.

    Article  PubMed  Google Scholar 

  51. Kapelios CJ, Charitos C, Kaldara E, Malliaras K, Nana E, Pantsios C, et al. Late-onset right ventricular dysfunction after mechanical support by a continuous-flow left ventricular assist device. J Heart Lung Transplant. 2015;34(12):1604–10.

    Article  PubMed  Google Scholar 

  52. Gosev I, Katz JN, Patel CB, et al. Late right heart failure in destination therapy patients with HeartMate II continuous flow device. J Heart Lung Transplant. 2015;34:S65–S6.

    Article  Google Scholar 

  53. Takeda K, Takayama H, Colombo PC, Yuzefpolskaya M, Fukuhara S, Han J, et al. Incidence and clinical significance of late right heart failure during continuous-flow left ventricular assist device support. J Heart Lung Transplant. 2015;34(8):1024–32.

    Article  PubMed  Google Scholar 

  54. Takeda K, Takayama H, Colombo PC, Jorde UP, Yuzefpolskaya M, Fukuhara S, et al. Late right heart failure during support with continuous-flow left ventricular assist devices adversely affects post-transplant outcome. J Heart Lung Transplant. 2015;34(5):667–74.

    Article  PubMed  Google Scholar 

  55. Welp H, Rukosujew A, Tjan TD, Hoffmeier A, Kosek V, Scheld HH, et al. Effect of pulsatile and non-pulsatile left ventricular assist devices on the renin-angiotensin system in patients with end-stage heart failure. Thorac Cardiovasc Surg. 2010;58(Suppl 2):S185–8.

    Article  PubMed  Google Scholar 

  56. Hasin T, Topilsky Y, Schirger JA, Li Z, Zhao Y, Boilson BA, et al. Changes in renal function after implantation of continuous-flow left ventricular assist devices. J Am Coll Cardiol. 2012;59(1):26–36.

    Article  PubMed  Google Scholar 

  57. Kamdar F, Boyle A, Liao K, Colvin-adams M, Joyce L, Effects JR. Of centrifugal, axial, and pulsatile left ventricular assist device support on end-organ function in heart failure patients. J Heart Lung Transplant. 2009;28(4):352–9.

    Article  PubMed  Google Scholar 

  58. Borgi J, Tsiouris A, Hodari A, Cogan CM, Paone G, Morgan JA. Significance of postoperative acute renal failure after continuous-flow left ventricular assist device implantation. Ann Thorac Surg. 2013;95(1):163–9.

    Article  PubMed  Google Scholar 

  59. Slaughter MS, Rogers JG, Milano CA, Russell SD, Conte JV, Feldman D, et al. Advanced heart failure treated with continuous-flow left ventricular assist device. N Engl J Med. 2009;361(23):2241–51.

    Article  CAS  PubMed  Google Scholar 

  60. Alba AC, Rao V, Ivanov J, Ross HJ, Delgado DH. Predictors of acute renal dysfunction after ventricular assist device placement. J Card Fail. 2009;15(10):874–81.

    Article  PubMed  Google Scholar 

  61. Kirklin JK, Naftel DC, Pagani FD, Kormos RL, Stevenson LW, Blume ED, et al. Sixth INTERMACS annual report: a 10,000-patient database. J Heart Lung Transplant. 2014;33(6):555–64.

    Article  PubMed  Google Scholar 

  62. Brisco MA, Kimmel SE, Coca SG, Putt ME, Jessup M, Tang WW, et al. Prevalence and prognostic importance of changes in renal function after mechanical circulatory support. Circ Heart Fail. 2014;7(1):68–75.

    Article  PubMed  Google Scholar 

  63. Coffin ST, Waguespack DR, Haglund NA, Maltais S, Dwyer JP, Keebler ME. Kidney dysfunction and left ventricular assist device support: a comprehensive perioperative review. Cardiorenal Med. 2015;5(1):48–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Drakos SG, Janicki L, Horne BD, Kfoury AG, Reid BB, Clayson S, et al. Risk factors predictive of right ventricular failure after left ventricular assist device implantation. Am J Cardiol. 2010;105(7):1030–5.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abbas Bitar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bitar, A., Abramov, D. (2018). Right Ventricular Failure Post Left Ventricular Assist Device Implantation. In: Desai, C., Cotts, W., Lerma, E., Rudnick, M. (eds) Ventricular-Assist Devices and Kidney Disease. Springer, Cham. https://doi.org/10.1007/978-3-319-74657-9_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-74657-9_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-74656-2

  • Online ISBN: 978-3-319-74657-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics