Skip to main content

Shielding

  • Chapter
  • First Online:
  • 1148 Accesses

Part of the book series: SpringerBriefs in Space Development ((BRIEFSSPACE))

Abstract

“The space radiation environment will be a critical consideration for everything in the astronauts’ daily lives, both on the journeys between Earth and Mars and on the surface. You’re constantly being bombarded by some amount of radiation.”

– Ruthan Lewis, architect and engineer at NASA’s Goddard Space Flight Center

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   49.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    The Apollo Command Module’s hull provided 8 g/cm2 of radiation protection. The space shuttle had 11 g/cm2, and the International Space Station has up to 15 g/cm2 in its most shielded areas. In contrast, a spacesuit has only 0.25 g/cm2.

References

  1. Chancellor JC, Scott GB, Sutton JP. Space radiation: the number one risk to astronaut health beyond low Earth orbit. Life. 2014;4:491.

    Article  Google Scholar 

  2. Kennedy AR. Biological effects of space radiation and development of effective countermeasures. Life Sci Space Res. 2014;1:1.

    ADS  Google Scholar 

  3. Romero-Weaver AL, Wan XS, Diffenderfer ES, Lin L, Kennedy AR. Effect of SPE-like proton or photon radiation on the kinetics of mouse peripheral blood cells and radiation biological effectiveness determinations. Astrobiology. 2014;13:570.

    Article  ADS  Google Scholar 

  4. Wilson JW, Thibeault RC, Cucinotta FA, Shinn ML, Kim MH, Kiefer R, Badavi FF. Issues in protection from galactic cosmic rays. Radiat Environ Biophys. 1995;34:217.

    Article  Google Scholar 

  5. Walker SA, Townsend LW, Norbury JW. Heavy ion contributions to organ dose equivalent for the 1977 galactic cosmic ray spectrum. Adv Space Res. 2013;51:1792.

    Article  ADS  Google Scholar 

  6. Durante M, Cucinotta FA. Heavy ion carcinogenesis and human space exploration. Nat Rev Cancer. 2008;8:465.

    Article  Google Scholar 

  7. Sternheimer RM. Density effect for the ionizing loss of charged particles in various substances. Phys Rev B. 1982;26:6067.

    Article  ADS  Google Scholar 

  8. Zeitlin C, Heilbronn CL, Miller J, Schimmerling W, Townsend LW, Tripathi RK, Wilson JW. The fragmentation of 510 MeV/nucleon iron-56 in polyethylene. II. Comparisons between data and a model. Radiat Res. 1996;145:666–72.

    Article  ADS  Google Scholar 

  9. Durante M, George K, Gialanella G, Grossi G, La Tessa C, Manti L, Miller J, Pugliese M, Scampoli P, Cucinotta FA. Cytogenetic effects of high-energy iron ions: dependence on shielding thickness and material. Radiat Res. 2005;164:571–6.

    Article  ADS  Google Scholar 

  10. Zeitlin C, Guetersloh S, Heilbronn L, Miller J. Shielding and fragmentation studies. Radiat Prot Dosim. 2005;116:123–4.

    Article  Google Scholar 

  11. Badhwar GD, O’Neill PM. An improved model of GCR for space exploration missions. Nucl Tracks Radiat Meas. 1992;20:403–10.

    Article  Google Scholar 

  12. Aiginger H, et al. The FLUKA code: new developments and application to 1 GeV/n iron beams. Adv Space Res. 2005;35:214–22.

    Article  ADS  Google Scholar 

  13. Armstrong TW, Chandler KC. Stopping powers and ranges for muons, charged pions, protons, and heavy ions. Nucl Inst Methods. 1973;113:313.

    Article  ADS  Google Scholar 

  14. Shavers MR, Zapp N, Barber RE, Wilson JW, Qualls G, Toupes L, Ramsey S, Vinci V, Smith G, Cucinotta FA. Implementation of ALARA radiation protection on the ISS through polyethylene shielding augmentation of the Service Module Crew Quarters. Adv Space Res. 2004;34:1333–7.

    Article  ADS  Google Scholar 

  15. Stoffle N, Pinsky L, Kroupa M, Hoang S, Idarraga J, Amberboy C, Rios R, Hauss J, Keller J, Bahadori A, et al. Timepixbased radiation environment monitor measurements aboard the International Space Station. Nucl Instrum Methods Phys Res Sect A. 2015;782:143.

    Article  ADS  Google Scholar 

  16. Kim, MHY, Wilson, JW, Thibeault SA, Nealy JE, Badavi FF, Kiefer, RL. Performance study of galactic cosmic ray shield materials. NASA-TP-3473, 1994.

    Google Scholar 

  17. Harrison C, Weaver S, Bertelsen C, Burgett E, Hertel N, Grulke E. Polyethylene/boron nitride composites for space radiation shielding. J Appl Polym Sci. 2008;109:2529–38.

    Article  Google Scholar 

  18. Estevez JE, Ghazizadeh M, Ryan JG, Kelkar AD. Simulation of hydrogenated boron nitride nanotubes mechanical properties for radiation shielding applications. Int J Chem Sci Eng. 2014;8(1):63–7.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Seedhouse, E. (2018). Shielding. In: Space Radiation and Astronaut Safety. SpringerBriefs in Space Development. Springer, Cham. https://doi.org/10.1007/978-3-319-74615-9_6

Download citation

Publish with us

Policies and ethics