Skip to main content

Matrix Elements for Explicitly-Correlated Atomic Wave Functions

  • Conference paper
  • First Online:
Concepts, Methods and Applications of Quantum Systems in Chemistry and Physics

Part of the book series: Progress in Theoretical Chemistry and Physics ((PTCP,volume 31))

  • 655 Accesses

Abstract

We refer to atomic wave functions that contain the interelectron distances as “explicitly correlated”; we consider here situations in which an explicit correlation factor \(r_{ij}\) can occur as a power multiplying an orbital functional form (a Hylleraas function) and/or in an exponent (producing exponential correlation ). Hylleraas functions in which each wave-function term contains at most one linear \(r_{ij}\) factor define a method known as Hylleraas-CI . This paper reviews the analytical methods available for evaluating matrix elements involving exponentially-correlated and Hylleraas wave functions; attention is then focused on computation of integrals needed for the kinetic energy. In contrast to orbital-product and exponentially-correlated wave functions, no general formulas have been developed by others to relate the kinetic-energy integrals in Hylleraas-CI (or its recent extension by the Nakatsuji group) to contiguous potential-energy matrix elements. The present paper provides these missing formulas, obtaining them by using relevant properties of vector spherical harmonics. Validity of the formulas is confirmed by comparisons with kinetic-energy integrals obtained in other ways.

It is a pleasure to present this work as part of a tribute to Professor Josef Paldus in celebration of his eightieth birthday.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hylleraas EA (1929) Z Phys 54:347

    Article  CAS  Google Scholar 

  2. James HM, Coolidge AS (1936) Phys Rev 49:688

    Article  CAS  Google Scholar 

  3. Kolos W, Roothaan CCJ (1960) Rev Mod Phys 32:205

    Article  CAS  Google Scholar 

  4. Larsson S (1968) Phys Rev 169:49

    Article  CAS  Google Scholar 

  5. Kolos W (1994) J Chem Phys 101:1330

    Article  CAS  Google Scholar 

  6. Sims JS, Hagstrom SA (1971) J Chem Phys 55:4699

    Article  CAS  Google Scholar 

  7. WoĹşnicki W (1971) Theory of electronic shell in atoms and molecules, Jucys A (ed), p 103. Mintis, Vilnius

    Google Scholar 

  8. Pestka G, WoĹşnicki W (1996) Chem Phys Lett 255:281

    Article  CAS  Google Scholar 

  9. Sims JS, Hagstrom SA (2004) J Phys B 37:1519

    Article  CAS  Google Scholar 

  10. Sims JS, Hagstrom SA (2007) J Phys B 40:1575

    Article  CAS  Google Scholar 

  11. Sims JS, Hagstrom SA (2015) J Phys B 48:175003

    Article  CAS  Google Scholar 

  12. Bonham RA (1965) J Mol Spectrosc 15:112

    Article  CAS  Google Scholar 

  13. Bonham RA (1966) J Mol Spectrosc 20:197

    Article  Google Scholar 

  14. Rychlewski J, Cencek W, Komasa J (1994) Chem Phys Lett 229:657

    Article  CAS  Google Scholar 

  15. Fromm DM, Hill RN (1987) Phys Rev A 36:1013

    Article  CAS  Google Scholar 

  16. Wang C, Mei P, Kurokawa Y, Nakashima H, Nakatsuji H (2012) Phys Rev A 85:042512

    Article  CAS  Google Scholar 

  17. Condon EU, Shortley G (1951) The theory of atomic spectra, Cambridge University Press

    Google Scholar 

  18. Frolov AM, Smith VH (2001) J Chem Phys 115:1187

    Article  CAS  Google Scholar 

  19. Harris FE (1997) Phys Rev A 55:1820

    Article  CAS  Google Scholar 

  20. Remiddi E (1991) Phys Rev A 44:5492

    Google Scholar 

  21. Pachucki K, Puchalski M, Remiddi E (2004) Phys Rev A 70:032502

    Google Scholar 

  22. Harris FE (2009) Phys Rev A 79:032517

    Article  CAS  Google Scholar 

  23. Arfken GB, Weber HJ, Harris FE (2013) Math Methods Phys, 7th edn. Academic Press, New York, pp 799–800

    Google Scholar 

  24. Jen CK (1933) Phys Rev 43:540

    Article  CAS  Google Scholar 

  25. Ruiz MB (2009) J Math Chem 46:24

    Article  CAS  Google Scholar 

  26. Ruiz MB (2009) J Math Chem 46:1322

    Article  CAS  Google Scholar 

  27. Ruiz MB (2011) J Math Chem 49:2457

    Article  CAS  Google Scholar 

  28. Ruiz MB (2016) J Math Chem 54:1083

    Article  CAS  Google Scholar 

  29. Szasz L (1962) Phys Rev 126:169

    Article  CAS  Google Scholar 

  30. Levin D (1973) Int J Comput Math B 3:371

    Article  Google Scholar 

  31. Frost AA (1962) Theor Chim Acta (Berl) 1:36–41

    Article  CAS  Google Scholar 

  32. Harris FE (2004) Fundamental world of quantum chemistry: a tribute volume to the memory of Per-Olov Löwdin: Brändas EJ, Kryachko ES (eds), vol 3. Kluwer, Dordrecht, pp 115–128

    Google Scholar 

  33. Harris FE (2004) In Advances in Quant Chem: Sabin JR, Brändas EJ (eds), vol 47. Academic Press, New York, pp 129–155

    Google Scholar 

  34. Harris FE (2005) In Advances in Quant Chem: Sabin JR, Brändas EJ (eds), vol 50. Academic Press, New York, pp 61–75

    Google Scholar 

  35. Rebane TK (1993) Opt Spektrosk 75:945, 557

    Google Scholar 

  36. Harris FE, Frolov AM, Smith VH (2003) J Chem Phys 119:8833

    Article  CAS  Google Scholar 

  37. Harris FE (2016) J Chem Phys 144:204110; Erratum (2016) 145:129901

    Google Scholar 

  38. Morse PM, Feshbach H (1953) Methods of theoretical physics. Part II. McGraw-Hill, New York, pp 1898–1901

    Google Scholar 

  39. Edmonds AR (1957) Ang Moment Quant Mech. Princeton University Press, Princeton, NJ

    Book  Google Scholar 

  40. Pinchon D, Hoggan PE (2007) Int J Quant Chem 107:2186

    Article  CAS  Google Scholar 

  41. Kolos W, Roothaan CCJ (1960) Rev Mod Phys 32:219

    Article  CAS  Google Scholar 

  42. Harris FE (to be published)

    Google Scholar 

Download references

Acknowledgements

Completion of the numerical verifications referred to in this work involved significant consultations with Drs. María Belén Ruiz and James Sims. The author is pleased and grateful to acknowledge their assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frank E. Harris .

Editor information

Editors and Affiliations

Appendix. Angular-Momentum Coefficients

Appendix. Angular-Momentum Coefficients

The spherical harmonics \(Y_l^m(\theta ,\phi )\), alternatively written \(Y_l^m(\varOmega )\), can be defined with the sign convention chosen by Condon and Shortley [17] (Condon-Shortley phase) by the Rodrigues formula

$$\begin{aligned} Y^m_l(\varOmega ) = N_{lm}\frac{(-1)^m}{2^l l!}(1-u^2)^{m/2}\frac{d^{l+m}}{du^{l+m}} (u^2-1)^l e^{im\phi }, \end{aligned}$$
(31)

where \(u=\cos \theta \) and \(N_{lm}\) is the factor

$$\begin{aligned} N_{lm} = \sqrt{\frac{(2l+1)(l-m)!}{4\pi (l+m)!} } \end{aligned}$$
(32)

that makes the \(Y_l^m\) orthonormal. With these definitions,

$$\begin{aligned} Y^{m}_l(\varOmega )^* = (-1)^m Y^{-m}_l(\varOmega ). \end{aligned}$$
(33)

A product of spherical harmonics of the same argument \(\varOmega \) can be expanded into a sum of harmonics of that argument. The coefficients in that expansion are known as Gaunt coefficients. Unfortunately there is no unanimity as to the definition of the Gaunt coefficient. Choosing the definition of Pinchon and Hoggan [40], we introduce a bracket notation that we hope will become adopted:

$$\begin{aligned} \left[ \begin{array}{ccc}l_1&{}l_2&{}l_3\\ m_1&{}m_2&{}m_3\end{array}\right] = \int Y^{m_1}_{l_1}(\varOmega )Y^{m_2}_{l_2}(\varOmega )Y^{m_3}_{l_3}(\varOmega )\, d\varOmega \,. \end{aligned}$$
(34)

Expansion of the spherical harmonic product \(Y^{m_1}_{l_1}Y^{m_2}_{l_2}\) in the orthonormal set \(Y_L^M\), carried out by taking scalar products with \((Y_L^M)^*\), leads after use of Eqs. (33) and (34) to

$$\begin{aligned} Y^{m_1}_{l_1}(\varOmega )Y^{m_2}_{l_2}(\varOmega ) = \sum _{LM} (-1)^M \left[ \begin{array}{ccc}l_1&{}l_2&{}L\\ m_1&{}m_ 2&{}-M\end{array}\right] Y^M_L(\varOmega ). \end{aligned}$$
(35)

Because harmonics with upper indices \(m_1\) and \(m_2\) form a product all of whose terms have the same value of M, Eq. (35) can be simplified by dropping the M summation, setting \(M = m_1+m_2\).

The Gaunt coefficients can be written in terms of Wigner 3-j symbols [39]. Using the standard notation for that symbol (an array of l and m values in ordinary parentheses), the Gaunt coefficients as defined here can be written

$$\begin{aligned} \left[ \begin{array}{ccc}l_1&{}l_2&{}l_3\\ m_1&{}m_2&{}m_3\end{array}\right] = \sqrt{\frac{(2l_1+1)(2l_2+1)(2l_3+1)}{4\pi } } \left( \begin{array}{ccc}l_1&{}l_2&{}l_3\\ m_1&{}m_2&{}m_3\end{array}\right) \left( \begin{array}{ccc}l_1&{}l_2&{}l_3\\ 0&{}0&{}0\end{array}\right) . \end{aligned}$$
(36)

A pair of angular momenta in two independent variables can be coupled to form a quantity of definite resultant angular momentum by forming a linear combination of products of the individual angular momenta; the coefficients in that expansion are called Clebsch-Gordan coefficients. Coupling of the angular-momentum wave functions \(\psi _{j_1}^{m_1}(1)\) and \(\psi _{j_2}^{m_2}(2)\) with fixed values of \(j_1\) and \(j_2\) to form the combined function \(\varPsi _J^M(1,2)\) is described by

$$\begin{aligned} \varPsi ^M_J(1,2) = \sum _{m_1 m_2} \left\langle \begin{array}{ccc}j_1&{}j_2&{}J\\ m_1&{}m_2&{}M\end{array}\right\rangle \psi ^{m_1}_{j_1}(1) \psi ^{m_2}_{j_2}(2), \end{aligned}$$
(37)

where the array in angle brackets is our (nonstandard) notation for the Clebsch-Gordan coefficient. Here all contributing terms must satisfy \(m_1+m_2=M\), so we can actually reduce Eq. (37) to a single sum over, say, \(m_2\), with \(m_1\) set to \(M-m_2\).

The Clebsch-Gordan coefficients can also be written in terms of 3-j symbols:

$$\begin{aligned} \left\langle \begin{array}{ccc}j_1&{}j_2&{}j_3\\ m_1&{}m_2&{}m_3\end{array} \right\rangle = (-1)^{j_1-j_2+m_3} \sqrt{2j_3+1} \left( \begin{array}{ccc}j_1&{}j_2&{}j_3\\ m_1&{}m_2&{}-m_3\end{array}\right) . \end{aligned}$$
(38)

Well-documented computer programs exist for the evaluation of the 3-j symbols, making it straightforward to evaluate expressions involving Gaunt or Clebsch-Gordan coefficients.

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Harris, F.E. (2018). Matrix Elements for Explicitly-Correlated Atomic Wave Functions. In: Wang, Y., Thachuk, M., Krems, R., Maruani, J. (eds) Concepts, Methods and Applications of Quantum Systems in Chemistry and Physics. Progress in Theoretical Chemistry and Physics, vol 31. Springer, Cham. https://doi.org/10.1007/978-3-319-74582-4_2

Download citation

Publish with us

Policies and ethics